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An efficiency of the nonsingular meshless method is analyzed in an acoustic indoor problem. The
solution is assumed in the form of the series of radial bases functions. The Hardy’s multiquadratic func-
tions, as the bases, are taken into account. The room acoustic field with uniform, impedance walls is
considered. The representative, rectangular cross section of the room is chosen. Practical combinations of
acoustic boundary conditions, expressed through absorption coefficient values, are considered. The clas-
sical formulation of the boundary problem is used. It is established any coefficient in the multiquadratic
functions depend on the number of influence points, the frequency and the absorption coefficient. All
approximate results are calculated in relation to the exact ones. This way, it is proved that the meshless
method based on the multiquadratic functions is simple and efficient method in the description of the
complicated acoustic boundary problems for the low and medium ranges of frequency.
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1. Introduction

One of the main aims of room acoustics is to de-
scribe acoustical field. Both geometry of the room and
the sound absorption of walls determine the acoustic
phenomena (Kuttruff, 2000; Pilch, Kamisiński,
2011; Rubacha et al., 2012; Kamisiński, 2012;
Kamisiński et al., 2016).

Three approaches to room acoustics modeling are
distinguished: image source methods (ISM) (based
on the geometrical theory of the diffraction), acous-
tics energy methods (AEM) (Meissner, 2013) and
wave-based methods (WBM) (Meissner, 2009; 2016b;
Kamisiński et al., 2016; Siltanen, 2010). Each ap-
proach has advantages and disadvantages and different
approaches have some links between them (Rindel,
2010).

The ISM are widely applicable, but these methods
lack diffraction and they may be applied in medium
and high frequencies rather. Furthermore, they require
too much computational resources for higher-order re-
flections. The AEM lack phase information, so they
are not efficient at the early part of the response and
at the low frequency. The WBM are computationally
demanding and for this reason they are efficient at low
frequencies.

In practice hybrid methods are also implemented,
where two or three different methods, one belonging to
each groups mentioned above, can be combined. The
links among methods could be utilized to combine the
results for full room response, that would lead to both
efficient and accurate room acoustics modeling.

Generally speaking, the WBM ought to be used
for low frequencies, the ISM for the early part of the
room response for middle and high frequencies and the
AEM for the rest of the response for middle and high
frequencies. Searching of the general and all-purpose
method is an open question. Such a method ought to
be searched among WBM, i.e. particularly among fi-
nite element methods, boundary element methods and
meshless methods.

The finite elements methods (FEM) is widely ap-
plied in the interior domain technical problems (Rao,
2005; Fish, Belytschko, 2007; Dobrucki et al.,
2010). In the FEM, both the domain and the boundary
of the problem must be discretized.

The boundary element method (BEM) has been
recognized as an efficient numerical tool for exte-
rior domain problems (Beer et al., 2008; Manolis,
Polyzos, 2009). This is because the physical bound-
ary needs to be discretized only. In a standard, the
base functions in BEM constitute fundamental solu-
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tions (FS), which satisfy the governing equation. How-
ever, this BEM needs costly numerical calculations
of singular and nearly singular integrals (Sladek,
Sladek, 1998; Sladek et al., 2000). Recently, the
BEM, based on the Trefftz functions (they are non-
singular), is developed in (Brański et al., 2012;
Borkowski, 2015; Brański, Borkowska, 2015a;
2015b). Unfortunately, the construction of the mesh
of the boundary in the BEM is a bit difficult.

For this reason, recently researches are concerned
on meshless methods (MLM), sometimes called mesh-
free method (MFM) (Atluri, 2004; Chen et al., 2013;
Brański, Prędka, 2014; Prędka, 2015).

Generally, boundary MLM is classified into weak
and strong categories (group of methods); an excel-
lent survey is given in (Fu et al., 2014). Both groups
include many methods. The strong group includes,
among other the method of fundamental solutions
(MFS) (Chen et al., 2000; Young et al., 2006); so
far, the MFS plays a major part.

The basic concept of the MLM is to express of
the solution of the partial differential equation (PDE)
by the series, in which the base constitutes the radial
bases functions (RBF) and coefficients, which are inter-
preted as intensities of influence points. Unknown coef-
ficients can be obtained by collocation of the boundary
conditions or minimizing of the boundary error func-
tional (averaged error) (Pawłowski, 2009). The num-
ber and the distribution of influence points are signifi-
cant in the MLM and they remain the open issues. Up
to now, the great effort has been made to solve both
problems.

The goal of this study is to propose the non-singular
MLM, one of the WBM, to the solution of the acoustic
indoor problem with impedance boundary conditions
imposed on the walls. This method is tested in the wide
range of audible frequencies. Multiquadratic functions
are chosen as the RBF. It comes down to expression the
parameter of RBF as a function of number of influence
points, the frequency and the absorption coefficient.
All considerations are supported by many numerical
experiments. The approximated results are compared
to the exact ones.

2. Two dimensional (2D) boundary acoustic
problem

Let be given the 2D acoustic boundary problem in
the rectangular domain Ω. The mathematical model is
described by 2D wave equation and Robin boundary
conditions,

D2u(x, t)− (1/c2)D2
t u(x, t) = fe(x, t),

x = x′ ∈ Ω, (1)

η(x)Dn u(x, t) + γ(x)u(x, t) = g(x, t),

x ∈ Γ, (2)

where the initial conditions are assumed equal to ze-
ros, c is the speed of sound in that medium; x = (x, y);
t – time; Ω – physical domain; Γ – boundary of the do-
main; u(x, t) – acoustic potential, fe(x, t) – excitation
of acoustic field; more precisely, in 2D, it is the cross
section of the harmonic pulsating line acoustic source,
which may be constitutes by the cylinder with a very
little radius; g(x, t) – given function, γ(x), η(x) – given
functions, n – unit normal vector pointing outward.

Let

fe(x, t) = F (x) exp(i ωf t), (3)

u(x, t) = U(x) exp(i ωf t), (4)

where i =
√
−1.

Substituting these expressions to Eqs. (1) and (2)
leads to (Wu et al., 2011)

LU(x) = ∆U(x) + k2
fU(x) = F (x),

x = x′ ∈ Ω, (5)

BU(x) = η(x)DnU(x) + γ(x)U(x) = G(x),

x ∈ Γ, (6)

where kf is the wave number, kf = ωf/c, ωf – angular
frequency, F (x), G(x) – given functions; the rest of
symbols is given in Fig. 1.

Fig. 1. Geometry of the boundary problem.

From the Robin boundary condition, the Neumann
boundary condition can be derived, i.e. η(x) = 1,
γ(x) = 0 and G(x) = 0, or the Dirichlet boundary
condition, i.e. η(x) = 0, γ(x) = 1 and G(x) = 0.

2.1. Acoustic boundary conditions

In acoustics, the Robin boundary condition corre-
sponds to the specifying surface acoustic impedance
(Prędka, 2015; Kocan, Brański, 2015)

z(x) = p(x)/v(x), (7)

where z(x) is an acoustic impedance, p(x) – acoustics
pressure; v(x) – particle velocity. Sound parameters
described by the acoustic potential U(x) take the forms

p(x) = i ρ ω U(x), (8)

v(x) = −DnU(x) = −gradU(x), (9)

where ρ is the air density.
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As it can be seen, the impedance boundary condi-
tion in Eq. (7) can be written in the form

z(x)DnU(x) + iρ ω U(x) = 0, x ∈ Γ. (10)

Hereunder this boundary condition is considered.

2.2. Acoustic boundary conditions as a function
of absorption coefficient

In practice, the acoustic impedance z(x) is in
fact the acoustic impedance of any material and it
is won via the measure of the absorption coeffi-
cient α(x) (Meissner, 2016a; Piechowicz, Czajka,
2012). There are several methods to measure the α(x)
or the acoustic impedance of acoustic materials. The
classification of them is given in (Gerai, 1993). Both
α(x) and z(x) are connected each other by the formula
(Kuttruff, 2000)

z(x) = ρ c
1 + (1− α(x))1/2

1− (1− α(x))1/2
. (11)

The real part of z(x) is considered only, hereby an an-
gle between an acoustic pressure and the particle ve-
locity is assumed as zero. Thereby, all numerical results
are qualitative.

On account of Eq. (6), instead of Eq. (10), is

DnU(x) + z0(x)U(x) = 0, x ∈ Γ, (12)

where z0 = (ω ρ)/z(x).
For the practical acoustic case the hard floor is

modeled through the Neumann boundary condition
(N), but the walls and ceiling are modeled through
impedance Robin boundary conditions (R), Fig. 2
where x0 is the place of the source, xi ∈ Ω – arbi-
trary point, ri = |x0 − xi|. So, in the following, one
has,

DnU(x) = 0, x ∈ N, (13)

DnU(x) + z0(x)U(x) = 0, x ∈ R. (14)

Fig. 2. Geometry of the acoustic problem.

3. Radial basis functions (RBF)

From historical point of view, the RBF are intro-
duced to the numerical methods in (Kuttruff, 2000),

though this name is not used there; this name is in-
troduced in (Kansa, 1990). Theoretical bases of the
RBF are worked out in (Buhman, 2004; Chen et al.,
2007; Fasshauer, 2010; Ling, 2003). Furthermore, ex-
cept for the definition, the convergence of the solution
formed on their base and an error of this solution are
estimated. The definition of the RBF is formulated in
(Chen et al., 2007; Fasshauer, 2010; Ling, 2003).
The R(rν) depend only on rν = (s2ν −x2)1/2, where rν
is a distance between an influence point of the physical
effect sν ≡ xsν (it may be recognized as a source) and
the current point x (Kansa et al., 2009).

The RBF make up two main groups:

• the former, the RBF do not satisfy neither the
differential equation nor boundary conditions; in
order to not proliferate notations, hereunder these
RBF are marked by R(r) and they are basis func-
tions in the domain-boundary group of the MLM,
• the latter, the RBF satisfy the differential equa-

tion; they are either the Trefftz functions u◦(r) or
the fundamental solution u•(r); these RBF are ba-
sis functions in the boundary group of the MLM.

The main advantages of the RBF are:

• they provide good results at the low cost of calcu-
lations,
• if they are globally defined, they do not generate

of the rarely main matrix (Franke, Schaback,
1998),
• they assure the exponential convergence of the so-

lution.

However, the RBF provide the smooth solutions
only, so that to achieve the singular solution, any func-
tions ought to be added to the RBF; as a rule, there
are either fundamental solutions (Li et al., 2008), or
the polynomial of the appropriate order (Cheng, 2000;
Powell, 1992).

In the following, the RBF of the first group are
enumerated, since they play in technique a major part:
Hardy’s multiquadratic (Hardy, 1971), inverse multi-
quadratic, Gauss’, Duchon’s (Duchon, 1976; Cheng,
2000), Wendland’s and others.

It is proved in the paper (Franke, 1982), that
Hardy’s multiquadratic R(r) are the best accurate to
the multidimensional interpolation of discrete values.
Furthermore, the convergence of interpolating series is
theoretically proved in (Buhman, 2004). So, in the fol-
lowing, the multiquadratic R(r) are analyzed in the in-
door acoustic boundary problem. They are in the form

R(r) = (−1)dβe(C2 + r2)β ,

C > 0, β > 0, β /∈ N,
(15)

where dβe means the smallest integer larger than β.
To make the R(r) useful, the coefficient C must be

determined.
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4. Domain-boundary MLM

In this group of methods, the solution is assumed
as the series, here

Ũ(x′) =
∑
ν

aνR(r′ν), r′ν = |sν − x′| , (16)

where sν ∈ Ω = Ω ∪ Γ , x′ ∈ Ω, Fig. 3a.

a) b)

Fig. 3. a) Geometry of the problem, b) geometry of the
discrete problem.

The base R(rν) does not satisfy the differential
equation, so it is made up the domain-boundary group
of methods. In Eq. (16), the coefficients aν are staying
to calculation. For this purpose, first the solution (16)
is substituted to the problem (5) and (6), hence∑

ν

aνLR(r′ν) = F (x′), r′ν = |sν − x′| , (17)∑
ν

aνBR(rν) = G(x), rν = |sν − x| . (18)

Next, to set up the discrete problem, the set of collo-
cation points {xµ} should be selected in the domain
Ω, where µ = 1, 2, ..., m = n. In detail, the colloca-
tion points in the domain Ω may be formed by x′µ, i.e.
x′µ ∈ Ω, and the collocation points on the boundary Γ
may be marked by xµ, xµ ∈ Γ , Fig. 3b. Considering
the set {xµ} in Eq. (17) and (18), one obtains∑

ν

aνLR(r′νµ) = F (x′µ), r′νµ =
∣∣sν − x′µ∣∣ , (19)∑

ν

aνBR(rνµ) = G(xµ), rνµ = |sν − xµ| . (20)

5. Discrete acoustic domain-boundary MLM

For 2D acoustic problem, the differential operator
is L = ∆ + k2 = D2

x + D2
y + k2. Hence, instead of the

Eq. (19) one has∑
ν

aν
(
D2
xR(r′νµ)+D2

yR(r′νµ)+k2R(r′νµ)
)

=F (x′µ). (21)

The derivatives D2
x(·) and D2

y(·) need the explanation;
since r′νµ =

∣∣sν − x′µ∣∣, then in D2
x(·), the derivative

with respect to x should be understand as derivati-
ve with respect to x′µ and so on.

Whereas the Neumann and Robin boundary con-
ditions are given respectively by∑

ν

aνDnR(rνµ)=0, xµ ∈ N, (22)

∑
ν

aν(DnR(rνµ)+z0(xµ)R(rνµ))=0, xµ ∈ R. (23)

In Eqs. (22) and (23), the versor n is defined at xµ,
it is perpendicular to the boundary Γ and directed
outside the domain Ω, for example, if xµ ∈ N , the
Dn(·) = −Dy(·) and so on.

6. Numerical calculations, results, conclusions

In practice, instead of the acoustic potential, the
acoustic pressure plays a major part. First of all, the
acoustic pressure via Eq. (8) is calculated and consis-
tently, the value of the sound pressure level at the point
x is given by

L(x) = 20 log |p(x)/p0| , (24)

where p0 = 2 · 10−5 Pa.
To notice quantitative change of L(x), first the

mean value of the acoustic pressure pm ought to be
calculated based on the equation,

pm = 1/ni
∑
i

p(xi), (25)

where i = 1, 2, . . . , ni number of calculated points
inside of the acoustic room.

Next, instead of L(x), one has the mean value
of sound pressure level in the room, i.e. Lm =
20 log |pm/p0|; hereunder this quantity is considered.

An acoustic source in 2D is represented by the
source function F (x) in Eq. (5). In an explicit form
and in steady state the F (x) constitutes the solution
of the radial part of the Bessel’s differential equation
(McLachlan, 1964). Here, the 0-order, Hankel func-
tion of the second kind plays the major part, hence
F (x) = AH

(2)
0 (kf r), where A is an intensity of the

source. This is because it describes the outward prop-
agating wave solution of the Bessel’s equation.

The intensity A is chosen, so that the Lm takes
the same value for different values of the absorption
coefficient α and frequencies f . This way it is easy to
track the changeability of the Lm as the function of
number of influence points n, α and f .

Hereafter, numerical details are presented for dis-
crete values of the full scope of the absorption co-
efficient, i.e. {α} = {0.1, step 0.1, 0.9} and chosen
frequencies, namely {f} = {250, 500, 1000, 2000} Hz.
Hence, equivalent lengths of waves are λ = {1.376,
0.688, 0.344, 0.172} m respectively. The set number of
influence points on the length of the wave {n/λ} is
{n} = {4, 5, 6, 7 }.
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The following global values and symbols are as-
sumed: ρ = 1.205 kg/m3, c = 344 m/s, {ax, bx} =
{0, 5} m, {ay, by} = {0, 2.5} m, the point forced
source is placed at the point x0 = {x0, y0} =
{2.5, 1.25} m. Furthermore, the assumptions z0(ax) ≡
z0(bx) ≡ z0(by) = Z are the most frequently appears
in acoustic, where e.g. z0(ax) is z0(x) on the edge ax.
Otherwise, z0(ay) = ∞ as a result of the Neumann
boundary condition. Additionally, the influence points
are marked by „◦” and the collocation points, marked
by „•”. Both kinds of points cover each other and they
and the rest of labels are depicted in Fig. 4.

Fig. 4. Distribution of all points in the Ω.

Fig. 5. Sound pressure level Le;m = Lm = Lm(α, f), n = 5.

Fig. 6. Parameter C = C(α, f), n = 5.

Hereunder, all results are related to the exact ones,
which are presented in (Brański et al., 2017), hence
the rest assumptions are made for this paper. It is done
in the following manner. For current n, α and f in
MLM, the coefficient C in the multiquadratic func-
tions is searched in order to the Lm calculated by ap-
proximate way, should be the same as the exact Le;m,
namely Lm = Le;m; the results are shown in Fig. 5.

To attain the aim of the paper, three kinds of cal-
culations are carried out.

1) First, using results to Fig. 5, the coefficient C is
expressed as a function of the absorption coeffi-
cient α(x) and different values of the frequency f :
C = C(α, f), n = 5; results are depicted in Fig. 6
As can be seen, the coefficient C does not depend
on the absorption coefficient α(x), but it strongly
depends on the frequency f . But this relationship
is predictable, so it may be described by formula.
Another presentation of similar results, for all va-
lues n, is given below, in Fig. 7.
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Fig. 7. Parameter C = C(n, f), α = 0.5.

Fig. 8. Parameter C = C(f), α = 0.5.

2) In this stage, the coefficient C is calculated as
a function of number of influence points n and dif-
ferent values of the frequency f : C = C(n, f). The
value of the absorption coefficient α is assumed as
constant, i.e. α = 0.5; the results are presented in
Fig. 7. It should be noted that the coefficient C al-
most linearly depends on the number of influence
points n, but it strongly depends on the frequency
f again. Straight lines C = a1 n+ a2 are given in
Fig. 7, where {a1, a2} are any constants and they
are calculated based on the known discrete values
of C and least squares approximation theory.

3) At the end, the coefficient C is calculated as the
function of the frequency, C = C(f) for particu-
lar number n = {4, 5, 6, 7}, α = 0.5; the results
are presented in Fig. 8. At first side the curves are
in the shape of hyperbolic. Since, for all n, they
are very close to each other, so they may be re-
placed by one hyperbolic function. This function

takes the form C = b1/f + b2, where {b1, b2} are
any constants and they are calculated based on
the known discrete values of C and least squares
approximation theory; the result is given in Fig. 8
and b1 = 364.179, b2 = 0.0673.

7. Conclusions

The paper proposes the meshless method (MLM),
based on Hardy’s multi-quadratic functions, to the so-
lution of the acoustic boundary problem with uniform
impedance boundary conditions imposed on the walls.
The coefficient C, occurring in the radial basis function
(RBF), can be expressed analytically as a function of
the separate quantities. Hence, some conclusions are
arisen:

1. The coefficient C does not depend on the absorp-
tion coefficient α.
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2. The coefficient C almost linearly depends on the
number of influence points n: for lower frequency
this dependence is higher, but for higher frequency
the C is almost not depend on n.

3. The coefficient C strongly depend on the fre-
quency f . Fortunately, this relationship can be
expressed analytically, i.e. for all n, it may be de-
scribed in the shape of any hyperbolic function.

4. This MLM is restricted to low and middle frequen-
cies.

To sum up, the MLM, based on Hardy’s multi-
quadratic functions, is very handy and efficient to the
solution of the indoor acoustic boundary problem with
uniform impedance boundary conditions imposed on
the walls. For future, an efficiency of the MLM in
over mentioned form, ought to be researched to the
solution of the 3D acoustic boundary problem and
to the solution 2D and 3D acoustic boundary prob-
lems with non-uniform (random) impedance boundary
conditions. This method ought to be especially useful
to such problems, which may not be solved via exact
methods, for example with complicated geometry.
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Deacústica Salvador-Ba,18 A21 De Maio De.

45. Rubacha J., Pilch A., Zastawnik M. (2012), Mea-
surements of the Sound Absorption Coefficient of Au-
ditorium Seats for Various Geometries of the Sam-
ples, Archives of Acoustics, 37, 4, 483–488, doi:
10.2478/v10168-012-0060-1.

46. Siltanen S., Lokki T., Savioja L. (2010), Rays
or Waves? Understanding the Strengths and Weak-
nesses of Computational Room Acoustics Modeling
Techniques, Proceedings of the International Sympo-
sium on Room Acoustics, ISRA, 29–31 August 2010,
Melbourne, Australia.

47. Sladek V., Sladek J. (1998), Singular integrals and
boundary element methods, Computational Mechan-
ics Publications, Southampton, doi: 10.1016/S0045-
7825(97)00239-9.

48. Sladek V., Sladek J., Tanaka M. (2000),
Optimal transformations of the integration vari-
ables in computation of singular integrals in BEM,
Journal for Numerical Method in Engineering,
47, 1263–1283, http://dx.doi.org/10.1002/(SICI)1097-
0207(20000310)47:7<1263::AID-NME811>3.0.CO;2-I.

49. Wu C.S., Young D.L., Fan C.M. (2011), Frequency
response analyses in vibroacoustics using the method
of fundamental solutions, Computational Mechanics-
Springer, 47, 519–533, doi: 10.1007/s00466-010-0558-1.

50. Young D.L., Chen K.H., Lee C.W. (2006), Singular
meshless method using double layer potentials for exte-
rior acoustics, The Journal of the Acoustical Society
of America, 119, 96–107, doi: 10.1121/1.2141130.


