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Abstract. This paper discusses an efficient approach to the analysis of positivity and stability of linear discrete-time positive descriptor system. 
Irs main objective is to convert the necessary and sufficient condition of characterizing positivity and stability of positive descriptor systems into 
an optimization problem, then propose a method to numerically check the positivity and stability of the positive linear discrete-time systems. 
Comparing with the other methods now available, the approach presented in this paper is less theoretical and easier to implement. Examples 
are provided in order to validate results.
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positive descriptor systems of continuous-time and discrete-time 
cases are given in [17, 18]. An algorithm allowing to check the 
nonnegativity of generic descriptor systems was provided in [19]. 
A method for checking the positivity of descriptor linear systems 
with singular matrix pencil was given in [20]. In [21], a necessary 
and sufficient condition to guarantee the admissibility of positive 
continuous-time systems was constructed. In [22], authors further 
extended the results for the positive continuous-time descriptor 
systems in [17, 23]. Motivated by the the above conclusions and 
by [24], we present a novel numerical method which can be used 
to check nonnegativity and stability of the linear discrete-time 
descriptor systems based on equivalent stability conditions. Com-
paring with the results in [17, 23], our method is less theoretical 
and is easily implemented.

The paper is organized as follows. In Section 2, some pre-
liminaries are given. The checking methods of positivity of 
stability are presented in Section 3 and Section 4. Section 5 in-
cludes examples validating our methods. The paper ends with 
conclusions and cited references.

Notation: C denotes the field of complex numbers. N is the 
set of nonnegative integers. Rn is the vector of real numbers, 
and Rn×n is the space of n×n matrices with real entries. In is the 
n×n identity matrix. For v 2 Rn, v > 0(¸ 0) means all compo-
nents of v are positive(nonnegative). Similarly, for A 2 Rn×n, 
A > 0(¸ 0) means all components of A are positive(nonneg-
ative).

2. Preliminaries

Consider the descriptor linear discrete-time system

 Ex(k + 1) = Ax(k), (1)

where E, A 2 Rn×n are constant matrices, x 2 Rn is the state 
variable, k 2 N denotes the discrete-time instant. The systems E 

1. Introduction

Descriptor systems arise naturally in many significant applica-
tions, for example, in mechanical body motion, chemical pro-
cessing, power generation, network fluid flow, aircraft guidance 
and so on [1]. It is common to call these systems descriptor 
systems as they allow keeping the physical significance of state 
variables. Since the 1970s, abundant literature has shown the 
advantages of the generic specificity of descriptor systems. 
As descriptor systems describe an important class of systems 
of both theoretical and practical significance, they have been 
studied for many years since the 1990s. A remarkable number 
of results have been produced, particularly on some extensions 
of standard state-space control theory to descriptor systems in 
fields such as controllability and observability [2], regularity 
and regularization [3], admissibility and admissibilization [4], 
linear quadratic optimal control [5], H2 and H1 analysis and 
control synthesis [6], observer design [7], stochastic descriptor 
systems controller design [8, 9], and so on.

Positive descriptor systems (we refer to internal positive 
systems in this paper, which means the input and state vari-
able are positive) are a class of systems that all the states are 
nonnegative for any nonnegative initial condition at the non-
negative time instants. Positive descriptor systems can be used 
to model many related to electric charge, populations, network 
communication, number of molecules, etc. [10]. They are more 
complicated than generic descriptor systems due to the special 
positivity constraints. Positive linear systems have drawn atten-
tion of many researchers in recent years, but the results are not 
satisfying [11‒16]. This paper mainly focuses on the nonnega-
tivity and stability analysis of the linear discrete-time positive 
descriptor systems. Characterization and stability analysis for 
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may be descriptor when matrix E is singular, while the systems 
can be transformed as a standard linear system by multiply the 
inverse of E on both sides when E is nonsingular. In this paper, 
we always assume that E is singular since we mainly talk about 
the descriptor systems.

Definition 1. Let E, A 2 Rn×n, the matrix pair (E, A), or a matrix 
pencil λE ¡ A, is called regular if det(λE ¡ A)  6= 0 for some 
λ 2 C. The regularity of matrix pencil λE ¡ A ensure the admis-
sibility of systems (1), so we assume the regularity of matrix 
pencil λE ¡ A in this paper.

Theorem 1. [17] Let (E, A) be a regular matrix pair. Then, the 
solution of (1) has the form

 x(k) = (E ̂ DA ̂ )kE ̂ DE ̂ v, (2)

for some v 2 Rn, the matrices E ̂  and A ̂  are given by E ̂  = (λE ¡ A)–1E, 
A ̂  = (λE ¡ A)–1A, with λ is any complex number. The products 
E ̂ DE ̂ , E ̂ DA ̂  do not depend on the value of λ in [17].

For any matrix A 2 Rn×n, the Drazin inverse of A, denoted 
by AD, is the unique solution of the three equations, such that 
AX = XA, XAX = A, XAk + 1 = Ak, where k is the smallest non-
negative integer such that rank(Ak) = rank(Ak + 1). Moreover, 
the Drazin inverse can be computed by means of the Jordan 
canonical form. It is well known that for any given matrix A, it 
can be decomposed as

 

the solution of (1) has the form

x(k) = (ÊDÂ)kÊDÊv, (2)

for some v ∈ Rn, the matrices Ê and Â are given by
Ê = (λE −A)−1E, Â = (λE −A)−1A, with λ is any complex
number. The products ÊDÊ, ÊDÂ do not depend on the value
of λ in [17].

For any matrix A ∈ Rn×n, the Drazin inverse of A, denoted
by AD, is the unique solution of the three equations, such that
AX = XA, XAX = A, XAk+1 = Ak, where k is the smallest non-
negative integer such that rank(Ak) = rank(Ak+1). Moreover,
the Drazin inverse can be computed by means of the Jordan
canonical form. It is well known that for any given matrix A ,
it can be decomposed as

A = T

(
M 0
0 N

)
T−1, (3)

so the Drazin inverse of matrix A can be computed by the fol-
lowing (4),

AD = T

(
M−1 0

0 0

)
T−1, (4)

where M is invertible and N is a nilpotent matrix.

In order to derive our results about the positivity and sta-
bility of system (1), we shall make use of the following lemma.

Lemma 1 Consider the matrix equations AXB = C, where
A,B and C are given matrices and the matrix X is unknown. We
can rewrite this matrix equation into a linear equation systems
as the following:

(BT ⊗A)vec(X) = vec(AXB) = vec(C). (5)

Here, vec(X) denotes the vectorization of the matrix X formed
by stacking the columns of X into a single column vector,

⊗
is the Kronecker product of two matrices.
Proof: lemma 1 can be proved by the Kronecker product of
matrices.

Consider the inhomogeneous system of linear equations

Ax = b, (6)

where

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann



, x =




x1

x2
...

xn



, b =




b1

b2
...

bn



,

where A is the coefficient matrix, b is a nonzero vector. Taking
into account the problem of non-negative solution of linear
system (6), we can transform it into an optimization problem,
the nonnegative solution of system (6) can be obtained by
solving the following (7).

The nonnegative solution of systems (6) can be obtained
by solving the following optimization problem (7). The op-
timal solution of optimization problem (7) is the nonnega-
tive solution of linear equation systems (6). Rewrite matrix
A = [a1,a2, · · · ,an], where ai, i = 1,2, · · · ,n is the column vec-

tor of matrix A. Define function f (x) =
n
∑

i=1
|bi −aT

i x|, find the

nonnegative solution (or approximation solution) of systems
(6) can be obtained by finding the solution of the following
optimization problem (7).

min f (x)

s.t. x ≥ 0,x �= 0. (7)

We formulate the conclusion in the following lemma 2.

Lemma 2 Find the solution of optimization problem (7) is
equivalent to solve the following optimization problem (8).

min g(y) = (uT ,θ T )

(
t
x

)
=

n

∑
i=1

ti

s.t. B

(
t
x

)
≥

(
b
−b

)
,

(
t
x

)
≥ 0. (8)

where B =

(
I A
I −A

)
, t =




t1
t2
...
tn



,u =




u1

u2
...

un



,y =

(
t
x

)
,θ T = (0,0, · · · ,0). The optimal solution of (8) is

y0 =

(
t0

x0

)
, x0 is the nonnegative solution of optimization

(7), moreover, f (x0) = g(y0) =
n
∑

i=1
t0
i .

Proof. From (8), we have

t ≥ b−Ax, t ≥−(b−Ax), (9)

so we have ti ≥ bi −aT
i x, ti ≥−(bi −aT

i x), such that

ti ≥ |bi −aT
i x|, i = 1,2, · · · ,n. (10)

Suppose y0 =

(
t0

x0

)
is the solution of (8), then, we shall

prove that x0 is the nonnegative solution of (7) by contradic-
tion. If not, there must exists a nonnegative vector x∗ such that
f (x∗)< f (x0), let

t∗i = |bi −aT
i x∗|, i = 1,2, · · · ,n, (11)

then we have y� =

(
t∗

x∗

)
≥ 0,

where t∗ = (t∗1 , t
∗
2 , · · · , t∗n ),x∗ = (x∗1,x

∗
2, · · · ,x∗n),

By∗ =

(
t∗ Ax∗

t∗ −Ax∗

)
≥

(
b
−b

)
, (12)
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so the Drazin inverse of matrix A can be computed by the fol-
lowing (4),
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Here, vec(X) denotes the vectorization of the matrix X formed
by stacking the columns of X into a single column vector,
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Proof: lemma 1 can be proved by the Kronecker product of
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where A is the coefficient matrix, b is a nonzero vector. Taking
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system (6), we can transform it into an optimization problem,
the nonnegative solution of system (6) can be obtained by
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∑

i=1
|bi −aT

i x|, find the

nonnegative solution (or approximation solution) of systems
(6) can be obtained by finding the solution of the following
optimization problem (7).

min f (x)

s.t. x ≥ 0,x �= 0. (7)

We formulate the conclusion in the following lemma 2.
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ti ≥ |bi −aT
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Suppose y0 =
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f (x∗)< f (x0), let
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then we have y� =
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where M is invertible and N is a nilpotent matrix.
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2 , · · · , t∗n ),x∗ = (x∗1,x

∗
2, · · · ,x∗n),

By∗ =

(
t∗ Ax∗

t∗ −Ax∗

)
≥

(
b
−b

)
, (12)

2 Bull. Pol. Ac.: Tech. XX(Y) 2017

, 

the solution of (1) has the form
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Ê = (λE −A)−1E, Â = (λE −A)−1A, with λ is any complex
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A = T

(
M 0
0 N

)
T−1, (3)

so the Drazin inverse of matrix A can be computed by the fol-
lowing (4),

AD = T

(
M−1 0

0 0

)
T−1, (4)

where M is invertible and N is a nilpotent matrix.

In order to derive our results about the positivity and sta-
bility of system (1), we shall make use of the following lemma.

Lemma 1 Consider the matrix equations AXB = C, where
A,B and C are given matrices and the matrix X is unknown. We
can rewrite this matrix equation into a linear equation systems
as the following:

(BT ⊗A)vec(X) = vec(AXB) = vec(C). (5)

Here, vec(X) denotes the vectorization of the matrix X formed
by stacking the columns of X into a single column vector,

⊗
is the Kronecker product of two matrices.
Proof: lemma 1 can be proved by the Kronecker product of
matrices.

Consider the inhomogeneous system of linear equations

Ax = b, (6)

where

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann



, x =




x1

x2
...

xn



, b =




b1

b2
...

bn



,

where A is the coefficient matrix, b is a nonzero vector. Taking
into account the problem of non-negative solution of linear
system (6), we can transform it into an optimization problem,
the nonnegative solution of system (6) can be obtained by
solving the following (7).

The nonnegative solution of systems (6) can be obtained
by solving the following optimization problem (7). The op-
timal solution of optimization problem (7) is the nonnega-
tive solution of linear equation systems (6). Rewrite matrix
A = [a1,a2, · · · ,an], where ai, i = 1,2, · · · ,n is the column vec-

tor of matrix A. Define function f (x) =
n
∑

i=1
|bi −aT

i x|, find the

nonnegative solution (or approximation solution) of systems
(6) can be obtained by finding the solution of the following
optimization problem (7).

min f (x)

s.t. x ≥ 0,x �= 0. (7)

We formulate the conclusion in the following lemma 2.

Lemma 2 Find the solution of optimization problem (7) is
equivalent to solve the following optimization problem (8).

min g(y) = (uT ,θ T )

(
t
x

)
=

n

∑
i=1

ti

s.t. B

(
t
x

)
≥

(
b
−b

)
,

(
t
x

)
≥ 0. (8)

where B =

(
I A
I −A

)
, t =




t1
t2
...
tn



,u =




u1

u2
...

un



,y =

(
t
x

)
,θ T = (0,0, · · · ,0). The optimal solution of (8) is

y0 =

(
t0

x0

)
, x0 is the nonnegative solution of optimization

(7), moreover, f (x0) = g(y0) =
n
∑

i=1
t0
i .

Proof. From (8), we have

t ≥ b−Ax, t ≥−(b−Ax), (9)

so we have ti ≥ bi −aT
i x, ti ≥−(bi −aT

i x), such that

ti ≥ |bi −aT
i x|, i = 1,2, · · · ,n. (10)

Suppose y0 =

(
t0

x0

)
is the solution of (8), then, we shall

prove that x0 is the nonnegative solution of (7) by contradic-
tion. If not, there must exists a nonnegative vector x∗ such that
f (x∗)< f (x0), let

t∗i = |bi −aT
i x∗|, i = 1,2, · · · ,n, (11)

then we have y� =

(
t∗

x∗

)
≥ 0,

where t∗ = (t∗1 , t
∗
2 , · · · , t∗n ),x∗ = (x∗1,x

∗
2, · · · ,x∗n),

By∗ =

(
t∗ Ax∗

t∗ −Ax∗

)
≥

(
b
−b

)
, (12)
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for some v ∈ Rn, the matrices Ê and Â are given by
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number. The products ÊDÊ, ÊDÂ do not depend on the value
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, y = 
µ

t
x

¶
,

θT = (0, 0, …, 0). The optimal solution of (8) is y0 = 
µ

t0

x0

¶
, 

x0 is the nonnegative solution of optimization (7), moreover, 
f (x0) = g(y0) = ∑n

i=1ti0.

Proof. From (8), we have

 t ¸ b ¡ Ax, t ¸ ¡(b ¡ Ax) , (9)

so we have ti ¸ bi ¡ ai
Tx, ti ¸ ¡(bi ¡ ai

Tx), such that

 ti ¸ jbi ¡ ai
Txj, i = 1, 2, …, n. (10)

Suppose y0 = 
µ

t0

x0

¶
 is the solution of (8), then, we shall prove 

that x0 is the nonnegative solution of (7) by contradiction. 
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If not, there must exists a nonnegative vector x¤ such that 
f (x¤) < f (x0), let

 ti¤ = jbi ¡ ai
Tx¤j, i = 1, 2, …, n, (11)

then we have y = 
µ

t¤
x¤

¶
 ¸ 0,

where t¤ = (t1
¤, t2
¤, …, tn¤), x¤ = (x1

¤, x2
¤, …, xn

¤),

 By¤ = 
µ

t¤ Ax¤

t¤ ¡Ax¤

¶
 ¸ 

µ
b
¡b

¶
, (12)

which means y¤ satisfies (8) and g(y¤) = ∑n
i=1ti¤ = ∑n

i=1jbi ¡ ai
Tx¤j  

= f (x¤). Again because t0 satisfies (10) and f (x¤) < f (x0), we 
have g(y¤) = f (x¤) < f (x0) = ∑n

i=1jbi ¡ ai
Tx0j < ∑n

i=1ti0 = g(y0),  
which is contradict to the fact that y0 is the solution of (8).

In the sequel, we shall prove

 ti0 = jbi ¡ ai
Tx0j, i = 1, 2, …, n. (13)

If (13) doesn’t holds for all i = 1, 2, …, n from (10), we can 
deduce that g(y0) = ∑n

i=1ti0 = ∑n
i=1jbi ¡ ai

Tx0j > f (x0), then 
similar to the former proof, we derive a contradiction that 
y0 is the solution of (8), then we have (13) holds, i.e. g(y0)  
= ∑n

i=1ti0 = ∑n
i=1jbi ¡ ai

Tx0j = f (x0), which completes the proof.

3. Positivity

This section mainly studies the characterization of positivity 
of system (1).

Lemma 3 (Equivalent system). Assume matrix (λE ¡ A) is 
regular, P := E ̂ DE ̂  and A– = E ̂ DA ̂ , Im (P) is the image of matrix 
P, then system (1) is equivalent to the following system (14).

 
x(k + 1) = A– x(k)
x(0) 2 Im(P).

 (14)

Proof. From the definition of the projector matrix P = E ̂ DE ̂ , 
A– = E ̂ DA ̂ , it has the following properties: (1) P is idempotent or 
a projector (i.e. P2 = P), (2) PA– = A– P = A– , (3). For any solu-
tion x(k) to systems (1), these properties has been proved in 
[22] for linear continuous time system, it is the same for the 
discrete time case.

Multiply matrix (λE ¡ A)–1 to the left on both sides of (1), and 
then multiply E ̂ D to the left on both sides, so we have E ̂ DE ̂ x(k + 1) 
= Px(k) = E ̂ DA ̂ x(k) = A ̂ x(k), i.e., Px(k + 1) = A– x(k), multiply 
matrix P to the left on both sides, from the properties above, and 
the proof is completed.

Lemma 4 [18, 25]. A discrete system

 x(k + 1) = Ax(k), k 2 N (15)

is positive if and only if A ¸ 0.

For a standard linear discrete systems, the positivity of the 
systems for the given positive initial state x(0) can be checked by 
the nonnegativity of state matrix A. For more details refer to [25].

Lemma 5 [23]. Let M, N 2 Rn×n be matrices with approximate 
sizes, x 2 Rn. The following statements are equivalent:
1) Mx ¸ 0 implies that Nx ¸ 0.
2) There exists H ¸ 0 satisfying the matrix equation N = HM.

Lemma 6. For systems (1) and (14), the following statements 
are equivalent.
1) Systems (1) (or (14)) is positive for the set of nonnegative 

admissible initial conditions S = Im(P) \ Rn
+.

2) There exists a matrix H that satisfies the following condi-
tions

 H ¸ 0
A–  = HP.

 (16)

Proof. Proof of Lemma 6 can be obtained from lemma 4 and 
lemma 5. Also it can be found in [23], we use the same conclu-
sion in [23] to derive our method in this paper.

Remark 1. If the set of nonnegative admissible initial con-
ditions S = Im(P) \ Rn

+ has only one point 0 2 Rn, statement 
(2) also holds, but system (1) or (14) will only have a trivial 
solution. In Section 5, example 4 illustrates this fact. But [23] 
does not talk about this fact.

Theorem 2. Under the assumption that matrix pencil λE ¡ A is 
nonsingular, the nonnegative admissible initial set S = Im(P) \ Rn

+, 
is nonempty and nontrivial, the following statements are equiv-
alent.
1) System (1) (or (14)) is positive.\\
2) The following optimization problem has at least one non-

negative solution Hp.
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which means y∗ satisfies (8) and g(y∗) =
n
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i x∗| = f (x∗). Again because t0 satisfies (10)
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is contradict to the fact that y0 is the solution of (8).

In the sequel, we shall prove
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i = |bi −aT

i x0|, i = 1,2, · · · ,n. (13)
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can deduce that g(y0) =
n
∑
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i =
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similar to the former proof, we derive a contradiction that y0

is the solution of (8), then we have (13) holds, i.e.
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t0
i =

n
∑

i=1
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i x0| = f (x0), which completes the

proof.

3. Positivity
This section mainly studies the characterization of positivity
of system (1).

Lemma 3(Equivalent system) Assume matrix (λE −A) is
regular, P := ÊDÊ and Ā = ÊDÂ, Im(P) is the image of matrix
P, then system (1) is equivalent to the following system (14).

x(k+1) = Āx(k)

x(0) ∈ Im(P).
(14)

Proof. From the definition of the projector matrix
P = ÊDÊ,A = ÊDÂ, it has the following properties: (1)
P is idempotent or a projector (i.e. P2 = P), (2) PA = AP = A,
(3)For any solution x(k) to systems (1), these properties has
been proved in [22] for linear continuous time system, it is the
same for the discrete time case.

Multiply matrix (λE − A)−1 to the left on both sides
of (1), and then multiply ÊD to the left on both sides, so
we have ÊDÊx(k + 1) = Px(k) = ÊDÂx(k) = Āx(k) , i.e.,
Px(k+1) = Ax(k), multiply matrix P to the left on both sides,
from the properties above, and the proof is completed.

Lemma 4 [18][25] A discrete system

x(k+1) = Ax(k),k ∈ N (15)

is positive if and only if A ≥ 0.

For a standard linear discrete systems, the positivity of the
systems for the given positive initial state x(0) can be checked
by the nonnegativity of state matrix A. For more details refer
to [25].

Lemma 5 [23] Let M,N ∈ Rn×n be matrices with approxi-
mate sizes, x ∈ Rn. The following statements are equivalent:

(1) Mx ≥ 0 implies that Nx ≥ 0. (2) There exists H ≥ 0
satisfying the matrix equation N = HM.

Lemma 6 For systems (1) and (14), the following state-
ments are equivalent.

(1) Systems (1) (or (14)) is positive for the set of nonnega-
tive admissible initial conditions S = Im(P)

⋂
R+

n .
(2) There exists a matrix H that satisfies the following condi-
tions {

H ≥ 0,
Ā = HP.

(16)

Proof. Proof of Lemma 6 can be obtained from lemma 4
and lemma 5. Also it can be found in [23], we use the same
conclusion in [23] to derive our method in this paper.

Remark 1. If the set of nonnegative admissible initial con-
ditions S = Im(P)

⋂
R+

n has only one point 0∈ Rn, statement
(2) also holds, but system (1) or (14) will only have a trivial
solution. In Section 5, example 4 illustrates this fact. But [23]
does not talk about this fact.

Theorem 2 Under the assumption that matrix pencil
λE −A is nonsingular, the nonnegative admissible initial set
S = Im(P)

⋂
R+

n , is nonempty and nontrivial, the following
statements are equivalent.

(1) System (1) (or (14)) is positive.

(2) The following optimization problem has at least one non-
negative solution Hp.

mingp(y) =
n2

∑
i=1

ti

s.t.




Bp

(
t

vec(H)

)
≥

(
vec(Ā)
−vec(Ā)

)

(
t

vec(H)

)
≥ 0

(17)

where

Bp =

(
I PT ⊗ I
I −PT ⊗ I

)
.

Proof. According to lemma 3, systems (1) (or (14)) is positive
is equivalent to Ā ≥ 0 and lemma 4. By the Lemma 5, the Ma-
trix equation of Ā = HP,H ≥ 0 can be transformed into linear
equation

[PT ⊗ I]vec(H) = vec(Ā). (18)

Then, from Lemma 2, we transform the problem of non-
negative solution of linear system of equations (18) into an
optimization problem. Thus, we obtain the statement (2) of
Theorem 2.
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which means y∗ satisfies (8) and g(y∗) =
n
∑

i=1
t∗i =

n
∑

i=1
|bi − aT

i x∗| = f (x∗). Again because t0 satisfies (10)

and f (x∗)< f (x0), we have

g(y∗) = f (x∗ < f (x0 =
n
∑

i=1
|bi − aT

i x0| <
n
∑

i=1
t0
i = g(y0), which

is contradict to the fact that y0 is the solution of (8).

In the sequel, we shall prove

t0
i = |bi −aT

i x0|, i = 1,2, · · · ,n. (13)

If (13) doesn’t holds for all i = 1,2, · · · ,n, from (10), we

can deduce that g(y0) =
n
∑

i=1
t0
i =

n
∑

i=1
|bi − aT

i x0| > f (x0), then

similar to the former proof, we derive a contradiction that y0

is the solution of (8), then we have (13) holds, i.e.

g(y0) =
n
∑

i=1
t0
i =

n
∑

i=1
|bi − aT

i x0| = f (x0), which completes the

proof.

3. Positivity
This section mainly studies the characterization of positivity
of system (1).

Lemma 3(Equivalent system) Assume matrix (λE −A) is
regular, P := ÊDÊ and Ā = ÊDÂ, Im(P) is the image of matrix
P, then system (1) is equivalent to the following system (14).

x(k+1) = Āx(k)

x(0) ∈ Im(P).
(14)

Proof. From the definition of the projector matrix
P = ÊDÊ,A = ÊDÂ, it has the following properties: (1)
P is idempotent or a projector (i.e. P2 = P), (2) PA = AP = A,
(3)For any solution x(k) to systems (1), these properties has
been proved in [22] for linear continuous time system, it is the
same for the discrete time case.

Multiply matrix (λE − A)−1 to the left on both sides
of (1), and then multiply ÊD to the left on both sides, so
we have ÊDÊx(k + 1) = Px(k) = ÊDÂx(k) = Āx(k) , i.e.,
Px(k+1) = Ax(k), multiply matrix P to the left on both sides,
from the properties above, and the proof is completed.

Lemma 4 [18][25] A discrete system

x(k+1) = Ax(k),k ∈ N (15)

is positive if and only if A ≥ 0.

For a standard linear discrete systems, the positivity of the
systems for the given positive initial state x(0) can be checked
by the nonnegativity of state matrix A. For more details refer
to [25].

Lemma 5 [23] Let M,N ∈ Rn×n be matrices with approxi-
mate sizes, x ∈ Rn. The following statements are equivalent:

(1) Mx ≥ 0 implies that Nx ≥ 0. (2) There exists H ≥ 0
satisfying the matrix equation N = HM.

Lemma 6 For systems (1) and (14), the following state-
ments are equivalent.

(1) Systems (1) (or (14)) is positive for the set of nonnega-
tive admissible initial conditions S = Im(P)

⋂
R+

n .
(2) There exists a matrix H that satisfies the following condi-
tions {

H ≥ 0,
Ā = HP.

(16)

Proof. Proof of Lemma 6 can be obtained from lemma 4
and lemma 5. Also it can be found in [23], we use the same
conclusion in [23] to derive our method in this paper.

Remark 1. If the set of nonnegative admissible initial con-
ditions S = Im(P)

⋂
R+

n has only one point 0∈ Rn, statement
(2) also holds, but system (1) or (14) will only have a trivial
solution. In Section 5, example 4 illustrates this fact. But [23]
does not talk about this fact.

Theorem 2 Under the assumption that matrix pencil
λE −A is nonsingular, the nonnegative admissible initial set
S = Im(P)

⋂
R+

n , is nonempty and nontrivial, the following
statements are equivalent.

(1) System (1) (or (14)) is positive.

(2) The following optimization problem has at least one non-
negative solution Hp.

mingp(y) =
n2

∑
i=1

ti

s.t.




Bp

(
t

vec(H)

)
≥

(
vec(Ā)
−vec(Ā)

)

(
t

vec(H)

)
≥ 0

(17)

where

Bp =

(
I PT ⊗ I
I −PT ⊗ I

)
.

Proof. According to lemma 3, systems (1) (or (14)) is positive
is equivalent to Ā ≥ 0 and lemma 4. By the Lemma 5, the Ma-
trix equation of Ā = HP,H ≥ 0 can be transformed into linear
equation

[PT ⊗ I]vec(H) = vec(Ā). (18)

Then, from Lemma 2, we transform the problem of non-
negative solution of linear system of equations (18) into an
optimization problem. Thus, we obtain the statement (2) of
Theorem 2.
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where
Bp = 

µ
I pT   I
I ¡pT   I

¶
.

Proof. According to lemma 3, systems (1) (or (14)) is positive 
is equivalent to A–  ¸ 0 and lemma 4. By the Lemma 5, the Ma-
trix equation of A–  = HP, H ¸ 0 can be transformed into linear 
equation

 
∙

PT   I
¸ 

vec(H ) = vec(A–). (18)
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Then, from Lemma 2, we transform the problem of non-nega-
tive solution of linear system of equations (18) into an optimi-
zation problem. Thus, we obtain the statement (2) of Theorem 2.

4. Stability

Definition 4. System (1) is said to be stable if for any initial 
condition x(0) = x0 > 0, we have that x(k) goes to zero as k 
goes to infinity.

Theorem 3 [22]. Let N be a nonnegative matrix and consider 
the following standard linear system

 x(k + 1) = Nx(k). (19)

Then the following statements are equivalent.
1) N is Schur, or equivalently, the system (18) is stable for any 

initial condition.
2) There exists x(0) = x0 > 0 such that

lim
k!1

Nkx0 = 0.

3)  (N ¡ I )–1 exists and (N ¡ I )–1 < 0.

Theorem 4. Under the assumption that matrix I ¡ A is nonsin-
gular, the following statements are equivalent.
1) System (1) (or (14)) is stable.
2) The following optimization problem has at least one non-

negative solution Hs.

 
Q ¸ 0
(I ¡ A– )Q = I.

 (20)

3) There exists a matrix Q that satisfies the following condi-
tions

 

4. Stability
Definition 4 System (1) is said to be stable if for any initial
condition x(0) = x0 > 0, we have that x(k) goes to zero as k
goes to infinity.

Theorem 3 [22] Let N be a nonnegative matrix and consider
the following standard linear system

x(k+1) = Nx(k). (19)

Then the following statements are equivalent.
(1) N is Schur, or equivalently, the system (18) is stable for any
initial condition.
(2) There exists x(0) = x0 > 0 such that

lim
k→∞

Nkx0 = 0.

(3) (N − I)−1 exists and (N − I)−1 < 0.

Theorem 4 Under the assumption that matrix I − A is
nonsingular, the following statements are equivalent.

(1) System (1) (or (14)) is stable.

(2) The following optimization problem has at least one non-
negative solution Hs.{

Q ≥ 0
(I − Ā)Q = I.

(20)

(3) There exists a matrix Q that satisfies the following con-
ditions

mings(y) =
n2

∑
i=1

ti

s.t.




Bs

(
t

vec(Q)

)
≥

(
vec(I)
−vec(I)

)

(
t

vec(Q)

)
≥ 0

(21)

where

Bs =

(
I I ⊗ (I − Ā)
I −I⊗(I − Ā)

)
.

Proof. From Theorem 3(3), matrix I − A is invertible is
equivalent to the fact that there exists a matrix Q such that
(I −A)Q = I, and Q ≥ 0, so the proof of (2) is finished, proof
of (3) can be finished from Theorem 2.

5. Examples
In order to illustrate the proposed methods, we use examples
in the references.

Example 1 (Example 1 in [26]) Let (1) be given by

E =




1.875 0 −1.625
−0.250 0 0.750
−0.875 0 0.625


 ,A =




6.75 −1 −6.25
−0.5 0 1.5
−3.75 1 3.25


 .

We choose λ = 0 (regularity can be satisfied). By some cal-
culation, we have

Â =



−1.0000 0 0

0 −1.0000 0
0 0 −1.0000




Ê =



−0.2500 0 −0.2500
−0.3333 0 0.3333
0.0833 0 −0.5833


 , ÊD =



−3.5 0 1.5
−3 0 3
−0.5 0 1.5


 ,

P =




1.0000 0 0
1.0000 0 −1.0000
0.0000 0 1.0000


 ,

Ā =




3.5000 0 −1.5000
3.0000 0 −3.0000
0.5000 0 1.5000


 .

Utilizing toolbox in Matlab, the optimization problem can be
solved efficiently. We obtain gp(y) = 1.0942×10−12, and

Hp =




0.9421 2.5579 1.0579
0.0000 3.0000 0.0000
0.2410 0.2590 1.7590


≥ 0.

By Theorem 2, it is easy to see that the system is positive.
By Theorem 4, The stability of this systems can be checked
by finding the solution matrix of the following optimization
problem, we obtained

Qs =




−0.2500 −0.0000 −0.7500
−1.5000 1.0000 1.5000
0.2500 −0.0000 −1.2500


 .

It is easy to determine that this systems is unstable.

Example 2 (Example 4.8 in [23]) Let Leontief model
[5,Example1] with no inputs(i.e.,d(k) = 0) be given by the
matrices

C =




0.3 0.4 0.45
0 0 0

0.6 0.8 0.9


 ,

L =




0.3 0.3 0.3
0.4 0.1 0.5
0.3 0.5 0.2


 .
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equivalent to the fact that there exists a matrix Q such that
(I −A)Q = I, and Q ≥ 0, so the proof of (2) is finished, proof
of (3) can be finished from Theorem 2.

5. Examples
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in the references.

Example 1 (Example 1 in [26]) Let (1) be given by

E =




1.875 0 −1.625
−0.250 0 0.750
−0.875 0 0.625
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−0.5 0 1.5
−3.75 1 3.25


 .
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Â =



−1.0000 0 0

0 −1.0000 0
0 0 −1.0000
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 ,

P =




1.0000 0 0
1.0000 0 −1.0000
0.0000 0 1.0000


 ,

Ā =




3.5000 0 −1.5000
3.0000 0 −3.0000
0.5000 0 1.5000


 .

Utilizing toolbox in Matlab, the optimization problem can be
solved efficiently. We obtain gp(y) = 1.0942×10−12, and

Hp =




0.9421 2.5579 1.0579
0.0000 3.0000 0.0000
0.2410 0.2590 1.7590


≥ 0.

By Theorem 2, it is easy to see that the system is positive.
By Theorem 4, The stability of this systems can be checked
by finding the solution matrix of the following optimization
problem, we obtained

Qs =




−0.2500 −0.0000 −0.7500
−1.5000 1.0000 1.5000
0.2500 −0.0000 −1.2500


 .

It is easy to determine that this systems is unstable.

Example 2 (Example 4.8 in [23]) Let Leontief model
[5,Example1] with no inputs(i.e.,d(k) = 0) be given by the
matrices

C =




0.3 0.4 0.45
0 0 0

0.6 0.8 0.9


 ,

L =




0.3 0.3 0.3
0.4 0.1 0.5
0.3 0.5 0.2
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 (21)

where

Bs = 
µ

I I   (I ¡ A–)
I ¡I   (I ¡ A–)

¶
.

Proof. From Theorem 3(3), matrix I ¡ A–  is invertible is equiva-
lent to the fact that there exists a matrix Q such that (I ¡ A–)Q = I,  
and Q ¸ 0, so the proof of (2) is finished, proof of (3) can be 
finished from Theorem 2.

5. Examples

In order to illustrate the proposed methods, we use examples 
in the references.

Example 1 (Example 1 in [26]). Let (1) be given by

E = 
¡1.875 0 ¡1.625
¡0.250 0 ¡0.750
¡0.875 0 ¡0.625

, A = 
¡6.75 ¡1 ¡6.25
¡0.5 ¡0 ¡1.5
¡3.75 ¡1 ¡3.25

.

We choose λ = 0 (regularity can be satisfied). By some cal-
culation, we have

A ̂  = 
¡1.0000 0 ¡0
¡1.0 ¡1.0000 ¡0
¡1.0 0 ¡¡1.0000

, 

E ̂  = 
¡0.2500 0 ¡1.2500
¡0.3333 0 ¡0.3333
¡0.0833 0 ¡0.5833

, E ̂ D = 
¡3.5 0 1.5
¡3 0 3
¡0.5 0 1.5

,

P = 
1.0000 0 ¡1.0
1.0000 0 ¡1.0000
0.0000 0 ¡1.0000

, 

A–  = 
3.5000 0 ¡1.5000
3.0000 0 ¡3.0000
0.5000 0 ¡1.5000

. 

Utilizing toolbox in Matlab, the  optimization problem can be 
solved efficiently. We obtain gp(y) = 1.0942£10–12, and

Hp = 
0.9421 2.5579 1.0579
0.0000 3.0000 0.0000
0.2410 0.2590 1.7590

 ¸ 0. 

By Theorem 2, it is easy to see that the system is positive.
By Theorem 4, The stability of this systems can be checked 
by finding the solution matrix of the following optimization 
problem, we obtained

Qs = 
¡0.2500 ¡0.0000 ¡0.7500
¡1.5000 ¡1.0000 ¡1.5000
¡0.2500 ¡0.0000 ¡1.2500

. 

It is easy to determine that this systems is unstable.

Example 2 (Example 4.8 in [23]). Let Leontief model [5, Ex-
ample 1] with no inputs (i.e., d(k) = 0) be given by the matrices

C = 
 0.3 0.4 0.45
 0 0 0
 0.6 0.8 0.9

,  L = 
 0.3 0.3 0.3
 0.4 0.1 0.5
 0.3 0.5 0.2

.



27

Nonnegativity, stability analysis of linear discrete-time positive descriptor systems: an optimization approach

Bull.  Pol.  Ac.:  Tech.  66(1)  2018

This model is suitable for our framework by considering system 
(1) with E = C and A = C ¡ L + I. Since A is invertible, we can 
select λ = 0. By some calculation, we have A ̂  = ¡I,

E ̂ D = C ̂ D = ¡
0.2347 0.3129 0.3520
0.2526 0.3368 0.3789
0.2669 0.3559 0.4044

, 

A–  = ¡C ̂ D = 
0.2485 0.3313 0.3727
0.2674 0.3566 0.4011
0.2826 0.3768 0.423

 > 0. 

From Theorem 2, we obtained that

Hp = 
0.3362 0.3186 0.3074
0.0020 0.3432 0.6471
0.3854 0.3624 0.3471

 ¸ 0. 

By Theorem 2, we know that this systems are positive. By 
Theorem 4, we obtained gs(y) = 1.2609,

Qs = 
¡7.6032 ¡11.4709 ¡12.9048
¡9.2599 ¡11.3465 ¡13.8899
¡9.7853 ¡13.0471 ¡13.6779

 < 0. 

By Theorem 4, it is easy to see that the system is unstable.

Example 3 (Example 2 in [26]). Let (1) be given by

E = 
 1.5 0.15 ¡0.75
 0 1 0
 1 0.3 ¡0.5

, A = 
 0.1 ¡0.09 0.45
 0 0.3 0
 ¡0.6 ¡0.2 1.3

.

Hs = 
0.4000 0.0000 0.0000
0.0000 0.3000 0.0000
0.1963 0.0389 0.1056

 ¸ 0. 

We choose λ = 0. By some calculation, we have

A ̂  = ¡
1 0 0
0 0 0
0 0 0

, 

 E ̂  =  E ̂ D = 
 ¡3.75 ¡0.375 1.8750
 0 ¡3.3333 0
¡2.5 ¡0.9167 1.25

,

 I ¡  A–  = 
 ¡2.75 ¡0.3750 1.8760
 0 ¡2.3333 0
¡2.5 ¡0.9167 2.2500

.

From Theorem 2, we obtained

Hp = 
0.4000 0.0000 0.0000
0.0000 0.3000 0.0000
0.1963 0.0389 0.1056

 ¸ 0, 

So this system is positive. From Theorem 4, We obtained

Qs = 
 2.0000 0.1000 ¡0.5000
 0 1.4286 0
 0.6667 0.1524 0.6667

. 

By Theorem 4, the system is unstable. But using the other 
methods, we know that this system is stable. So our method is 
invalid. The reason is that the eigenvalues of A–  are not all real 
number, so under this case, our method is invalid.

Example 4 (Example 3.4 in [23]). Let (1) be given by

E = 
µ
¡1 1
¡1 ¡1

¶
, A = 

µ
1 0
0 1

¶
.

We choose λ = 0 (regularity can be satisfied). By some calcu-
lation, we have

E = 
µ
¡1 1
¡1 ¡1

¶µ
¡2 0
¡0 0

¶µ
¡0.5 0.5
¡0.5 0.5

¶
,

E ̂  = 
µ
¡1 ¡1
¡1 ¡1

¶
, A ̂  = 

µ
¡1 0
¡0 ¡1

¶
, E ̂ D = 

µ
¡0.25 ¡0.25
¡0.25 0.25

¶
,

P = 
µ
¡0.5 ¡0.5
¡0.5 0.5

¶
, A ̂  = 

µ
¡1 0
¡0 ¡1

¶
.

Then, by Theorem 2, the positivity of this systems can be 
checked by solving the following optimization problem
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This model is suitable for our framework by considering sys-
tem (1) with E = C and A = C−L+ I. Since A is invertible,
we can select λ = 0. By some calculation, we have Â =−I,

ÊD = ĈD =−




0.2347 0.3129 0.3520
0.2526 0.3368 0.3789
0.2669 0.3559 0.4044




Ā =−ĈD =




0.2485 0.3313 0.3727
0.2674 0.3566 0.4011
0.2826 0.3768 0.423


> 0

From Theorem 2, we obtained that

Hp =




0.3362 0.3186 0.3074
0.0020 0.3432 0.6471
0.3854 0.3624 0.3471


≥ 0,

By Theorem 2, we know that this systems are positive. By
Theorem 4, we obtained
gs(y) = 1.2609,

Qs =



−7.6032 −11.4709 −12.9048
−9.2599 −11.3465 −13.8899
−9.7853 −13.0471 −13.6779


< 0.

By Theorem 4, it is easy to see that the system is unstable.

Example 3 (Example 2 in [26]) Let (1) be given by

E =




1.5 0.15 −0.75
0 1 0
1 0.3 −0.5


 ,A =




0.1 −0.09 0.45
0 0.3 0

−0.6 −0.2 1.3


 .

Hs =




0.4000 0.0000 0.0000
0.0000 0.3000 0.0000
0.1963 0.0389 0.1056


≥ 0, We choose λ = 0.

By some calculation, we have

Â =−




1 0 0
0 1 0
0 0 1




Ê = ÊD =



−3.75 −0.375 1.8750

0 −3.3333 0
−2.5 −0.9167 1.25


 ,

I − Ā =



−2.75 −0.3750 1.8760

0 −2.3333 0
−2.5 −0.9167 2.2500


 .

From Theorem 2, we obtained

Hp =




0.4000 0.0000 0.0000
0.0000 0.3000 0.0000
0.1963 0.0389 0.1056


≥ 0,

So this system is positive. From Theorem 4, We obtained

Qs =




2.0000 0.1000 −0.5000
0 1.4286 0

0.6667 0.1524 0.6667


 .

By Theorem 4, the system is unstable. But using the other
methods, we know that this system is stable. So our method is
invalid. The reason is that the eigenvalues of A are not all real
number, so under this case, our method is invalid.

Example 4 (Example 3.4 in [23]) Let (1) be given by

E =

(
−1 1
1 −1

)
,A =

(
1 0
0 1

)
,

We choose λ = 0 (regularity can be satisfied). By some calcu-
lation, we have

E =

(
−1 1
1 1

)(
−2 0
0 0

)(
−0.5 0.5
0.5 0.5

)
,

Ê =

(
1 −1
−1 1

)
, Â =

(
−1 0
0 −1

)
, ÊD =

(
0.25 −0.25
−0.25 0.25

)

P =

(
0.5 −0.5
−0.5 0.5

)
, Â =

(
−1 0
0 −1

)

Then, by Theorem 2, the positivity of this systems can be
checked by solving the following optimization problem

mingp(y) =
4

∑
i=1

ti

s.t.




Bp =

(
t

vec(H)

)
≥

(
vec(Ā)
−vec(Ā)

)

(
t

vec(H)

)
≥ 0

(22)

where

Bp =

(
I PT ⊗ I
I −PT ⊗ I

)
.

We obtained that gp(y) = 8.2399×1013, and

Hp =

(
100.6132 101.1132
101.1132 100.6132

)
.

As Hp is nonnegative, then it is easy to see that the system is
positive by Theorem 2, this conclusion is the same as that in
[23].
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Â =−
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Ê = ÊD =
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I − Ā =



−2.75 −0.3750 1.8760

0 −2.3333 0
−2.5 −0.9167 2.2500


 .

From Theorem 2, we obtained

Hp =




0.4000 0.0000 0.0000
0.0000 0.3000 0.0000
0.1963 0.0389 0.1056


≥ 0,

So this system is positive. From Theorem 4, We obtained

Qs =




2.0000 0.1000 −0.5000
0 1.4286 0

0.6667 0.1524 0.6667


 .

By Theorem 4, the system is unstable. But using the other
methods, we know that this system is stable. So our method is
invalid. The reason is that the eigenvalues of A are not all real
number, so under this case, our method is invalid.

Example 4 (Example 3.4 in [23]) Let (1) be given by

E =

(
−1 1
1 −1

)
,A =

(
1 0
0 1

)
,

We choose λ = 0 (regularity can be satisfied). By some calcu-
lation, we have

E =

(
−1 1
1 1

)(
−2 0
0 0

)(
−0.5 0.5
0.5 0.5

)
,

Ê =

(
1 −1
−1 1

)
, Â =

(
−1 0
0 −1

)
, ÊD =

(
0.25 −0.25
−0.25 0.25

)

P =

(
0.5 −0.5
−0.5 0.5

)
, Â =

(
−1 0
0 −1

)

Then, by Theorem 2, the positivity of this systems can be
checked by solving the following optimization problem

mingp(y) =
4

∑
i=1

ti

s.t.




Bp =

(
t

vec(H)

)
≥

(
vec(Ā)
−vec(Ā)

)

(
t

vec(H)

)
≥ 0

(22)

where

Bp =

(
I PT ⊗ I
I −PT ⊗ I

)
.

We obtained that gp(y) = 8.2399×1013, and

Hp =

(
100.6132 101.1132
101.1132 100.6132

)
.

As Hp is nonnegative, then it is easy to see that the system is
positive by Theorem 2, this conclusion is the same as that in
[23].
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where

Bp = 
µ

I PT   I
I ¡PT   I

¶
.

We obtained that gp(y) = 8.2399£1013, and

Hp = 
µ

100.6132 101.1132
101.1132 100.6132

¶
.
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As Hp is nonnegative, then it is easy to see that the system 
is positive by Theorem 2, this conclusion is the same as that 
in [23].

By Theorem 4, The stability of this systems can be checked 
by finding the solution matrix of the following optimization 
problem,

 

By Theorem 4, The stability of this systems can be checked
by finding the solution matrix of the following optimization
problem,

mings(y) =
4

∑
i=1

ti

s.t.





Bs

(
t

vec(Q)

)
≥

(
vec(I)
−vec(I)

)

(
t

vec(Q)

)
≥ 0

(23)

where

Bs =

(
I I ⊗ (I − Ā)
I −I⊗(I − Ā)

)
.

We obtained the matrix Q by using any mathemat-
ical toolbox such as Matlab, in this problem,matrix

Qs =

(
0.8333 0.1667
0.1667 0.8333

)
> 0, from Theorem 4, we

know that this descriptor positive systems are stable which is
that same conclusion as that obtained by other methods.

Remark 2. In this example, the set of nonnegative admis-
sible initial conditions S = Im(P)

⋂
R+

n has only one point
0∈ Rn, even statement (2) in Lemma 6 holds, the system in
this example has only 0 solution, i.e. the trajectory of this
system is degenerate.

6. Conclusion
We have presented an efficient approach to analysis the pos-
itivity and stability of discrete descriptor system in this pa-
per. Our main project is to convert the necessary and sufficient
condition of characterizing positivity and stability into an op-
timization problem, the positivity and the stability of the de-
scriptor systems can be checked by solving the corresponding
optimization problem. Compared with the traditional methods,
the approach we proposed in this paper is less theoretical and
easily checked in the reason that the optimization problem is a
linear programming. Numerical examples are given to validate
our results. The weakness of our approach is that when the
Drazin inverse of the matrix E is an complex matrix, lemma 5
and lemma 6 don’t hold any more, so our approach will not be
suitable, this is the same as that in [23]. But [23] didn’t show
the fact.
Corresponding author:
Maoxian Zhao, sdzmx66@163.com.
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0∈ Rn, even statement (2) in Lemma 6 holds, the system in
this example has only 0 solution, i.e. the trajectory of this
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timization problem, the positivity and the stability of the de-
scriptor systems can be checked by solving the corresponding
optimization problem. Compared with the traditional methods,
the approach we proposed in this paper is less theoretical and
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 (23)

where

Bs = 
µ

I I   (I ¡ A–)
I ¡I   (I ¡ A–)

¶
.

We obtained the matrix Q by using any mathematical toolbox 
such as Matlab, in this problem, matrix 

Qs = 
µ

0.8333 0.1667
0.1667 0.8333

¶
 > 0, 

from Theorem 4, we know that this descriptor positive systems 
are stable which is that same conclusion as that obtained by 
other methods.

Remark 2. In this example, the set of nonnegative admissible 
initial conditions S = Im(P) \ Rn

+ has only one point 0 2 Rn, 
even statement (2) in Lemma 6 holds, the system in this ex-
ample has only 0 solution, i.e. the trajectory of this system is 
degenerate.

6. Conclusion

We have presented an efficient approach to analysis the posi-
tivity and stability of discrete descriptor system in this paper. 
Our main project is to convert the necessary and sufficient 
condition of characterizing positivity and stability into an op-
timization problem, the positivity and the stability of the de-
scriptor systems can be checked by solving the corresponding 
optimization problem. Compared with the traditional methods, 
the approach we proposed in this paper is less theoretical and 
easily checked in the reason that the optimization problem is 
a linear programming. Numerical examples are given to vali-
date our results. The weakness of our approach is that when the 
Drazin inverse of the matrix E is a complex matrix, Lemma 5 
and Lemma 6 do not hold any more, so our approach will not 
be suitable, similarly to that [23]. However, this could not have 
been concluded from [23].
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