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Abstract. It is shown that the convex linear combination of the Hurwitz polynomials of positive linear systems is also the Hurwitz polyno-
mial. The Kharitonov theorem is extended to the positive interval linear systems. It is also shown that the interval positive linear system 
described by state equation x  ̇  = Ax, A 2 ℜn×n, A1 ∙ A ∙ A2 is asymptotically stable if and only if the matrices Ak = 1, 2 are Hurwitz Metzler 
matrices.
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in Section 4, the stability of interval positive linear systems 
described by the state equation is presented in Section 4 and 
the concluding remarks are given in Section 5.

The following notations will be used: ℜ – the set of real 
numbers, ℜ+

n×m – the set of n×m real matrices, ℜ+
n×m – the set 

of n×m real matrices with nonnegative entries and ℜ+
n = ℜ+

n×1, 
Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n×n identity matrix, for 
A = [aij] 2 ℜn×n and B = [bij] 2 ℜn×n inequality A ̧  B means 
aij ¸ bij for i, j = 1, 2, …, n.

2.	 Preliminaries

Consider the autonomous continuous-time linear system

	 x ̇ (t) = Ax(t), t ¸ 0,� (1)

where x(t) 2 ℜn is the state vector and A 2 ℜn×n.

Definition 1. [2, 21] The system (1) is called positive if 
x(t) 2 ℜ+

n, t ¸ 0 for any initial conditions x0 = x(0) 2 ℜ+
n.

Theorem 1. [2, 21] The system (1) is positive if and only if its 
matrix A is the Metzler matrix (off-diagonal entries are non-
negative).

Definition 2. [2, 21] The positive system (1) is called asymp-
totically stable if

lim
t!1

x(t) = 0 for all x(0) 2 ℜ+
n.

Theorem 2. [2, 21, 22] The positive system (1) is asymptot-
ically stable if and only if one of the equivalent conditions is 
satisfied:
1)	 All coefficient of the characteristic polynomial

	 det[Ins ¡ A] = sn + an ¡ 1sn ¡ 1 + … + a1s + a0� (2)

are positive, i.e. ak > 0 for k = 0, 1, …, n ¡ 1.

1.	 Introduction

A dynamical system is called positive if its state variables 
take nonnegative values for all nonnegative inputs and non-
negative initial conditions. The positive linear systems have 
been investigated in [1, 2] and positive nonlinear systems in 
[3‒7]. Examples of positive systems are industrial processes 
involving chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water and 
atmospheric pollution models. A variety of models having pos-
itive linear behavior can be found in engineering, management 
science, economics, social sciences, biology and medicine, etc.

Positive linear systems with different fractional orders have 
been addressed in [8‒13]. Descriptor (singular) linear systems 
have been analyzed in [1, 5, 14] and the stability of a class of 
nonlinear fractional-order systems in [3, 13]. Application of 
Drazin inverse to analysis of descriptor fractional discrete-time 
linear systems has been presented in [15] and stability of dis-
crete-time switched systems with unstable subsystems in [16]. 
The robust stabilization of discrete-time positive switched sys-
tems with uncertainties has been addressed in [17]. Comparison 
of three method of analysis of the descriptor fractional systems 
has been presented in [18]. Stability of linear fractional order 
systems with delays has been analyzed in [19] and simple con-
ditions for practical stability of positive fractional systems have 
been proposed in [20].

In this paper the asymptotic stability of interval positive 
continuous-time linear systems will be investigated.

The paper is organized as follows. In Section 2 some basic 
definitions and theorems concerning positive linear systems and 
polynomials with interval coefficients are recalled. The convex 
linear combination of Hurwitz polynomials of positive linear 
systems is addressed in Section 3. An extension of the Khari-
tonov theorem to positive interval linear systems is presented 
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2)	 All principal minors M–i, i = 1, …, n of the matrix ¡A are 
positive, i.e.

M–1 = j¡a11j > 0, M–1 = j¡a11� ¡a12
¡a21� ¡a22j > 0, …,

M–n = det[¡A] > 0.
� (3)

3)	 There exists strictly positive vector λT = [λ1, …, λn]
T, 

λk > 0, k = 1, …, n such that

	 Aλ < 0 or ATλ < 0.� (4)

If det A  6= 0 then we may choose λ = ¡A¡1c, where c 2 ℜn 
is any strictly positive vector.

Consider the set (family) of the n-degree polynomials

	 pn(s) := ansn + an ¡ 1sn ¡ 1 + … + a1s + a0� (5a)

with the interval coefficients

	 ai ∙ ai ∙ ai, i = 0, 1, …, n.� (5b)

Using (5) we define the following four polynomials:

	

p1n(s) := a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + …

p2n(s) := a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + …

p3n(s) := a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + …

p4n(s) := a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + …

� (6)

Kharitonov theorem: The set of polynomials (5) is asymptot-
ically stable if and only if the four polynomials (6) are asymp-
totically stable.

Proof is given in [24, 25].

3.	 Convex linear combination of Hurwitz 
polynomials of positive linear systems

The polynomial 

	 p(s) := sn + an ¡ 1sn ¡ 1 + … + a1s + a0 � (7)

is called Hurwitz if its zeros si, i = 1, …, n satisfy the condition 
Re si < 0 for i = 1, …, n.

Definition 3. The polynomial

p(s) := (1 ¡ k)p1(s) + kp2(s) for k 2 [0, 1]� (8)

is called convex linear combination of the polynomials

	
p1(s) = sn + an ¡ 1sn ¡ 1 + … + a1s + a0

p2(s) = sn + bn ¡ 1sn ¡ 1 + … + b1s + b0.
� (9)

Theorem 3. The convex linear combination (8) of the Hurwitz 
polynomials (9) of the positive linear system is also a Hurwitz 
polynomial.

Proof. By Theorem 2 the polynomials (9) are Hurwitz if and 
only if

	 ai > 0 and bi > 0 for i = 0, 1, …, n ¡ 1.� (10)

The convex linear combination (8) of the Hurwitz polynomials 
(9) is a Hurwitz polynomial if and only if

	
(1 ¡ k)ai + kbi > 0 for k 2 [0, 1]
and i = 0, 1, …, n ¡ 1.

� (11)

Note that the conditions (10) are always satisfied if (11) holds. 
Therefore, the convex linear combination (8) of the Hurwitz 
polynomials (9) of the positive linear system is always the Hur-
witz polynomial. □

Example 1. Consider the convex linear combination (8) of the 
Hurwitz polynomials

	
p1(s) = s2 + 5s + 2
p2(s) = s2 + 3s + 4.

� (12)

The convex linear combination (8) of the polynomials (12) 
is a Hurwitz polynomial since

	
(1 ¡ k)5 + 3k = 5 ¡ 2k > 0 and 
(1 ¡ k)2 + 4k = 2 + 2k > 0 for k 2 [0, 1].

� (13)

The above considerations for two polynomials (9) of the same 
order n can be extended to two polynomials of different orders 
as follows.
The convex linear combination of two polynomials of different 
orders

	

p1(s) = sn + an ¡ 1sn ¡ 1 + … + a1s + a0

p2(s) = sn ¡ j + an ¡ j ¡ 1sn ¡ j ¡ 1 + … + a1s + a0.
j = 0, 1, …, n ¡ 1

� (14)

is defined by

	

p(s) = (1 ¡ k)sn + (1 ¡ k)an ¡ j + 1sn ¡ j + 1 +
p(s) = (1 ¡ k)an ¡ j sn ¡ j + ksn ¡ j + … +
p(s) = (1 ¡ k)a1s + ka1s + (1 ¡ k)a0 + ka0

p(s) = (1 ¡ k)a1s + ka1s + (1 ¡ k)a0 + ka0

p(s) for 0 ∙ k < 1.

� (15)

Theorem 3'. The convex linear combination (15) of the Hur-
witz polynomials (14) of the positive linear system is also 
a Hurwitz polynomial.
Proof is similar to the proof of Theorem 3.
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Example 2. Consider the convex linear combination (15) of the 
Hurwitz polynomials

	
p1(s) = s3 + 3s2 + 2s + 1
p2(s) = s2 + 2s + 3.

� (16)

The convex linear combination (15) of the Hurwitz polyno-
mials (16)

	
p(s) = (1 ¡ k)s3 + (1 ¡ k)3s2 + ks2 + (1 ¡ k)2s +

p(s) + k2s + (1 ¡ k) + 3k for 0 ∙ k < 1
� (17)

is also Hurwitz polynomial since its all coefficients are positive 
(Theorem 2).

4.	 Extension of Kharitonov theorem to positive 
interval linear systems

Consider the set of positive interval linear continuous-time sys-
tems with the characteristic polynomials

	 p(s) = pnsn + pn ¡ 1sn ¡ 1 + … + p1s + p0� (18a)

where

	 0 <  pi ∙ pi ∙ pi, i = 0, 1, …, n .� (18b)

Theorem 4. The positive interval linear system with the char-
acteristic polynomial (18a) is asymptotically stable if and only 
if the conditions (18b) are satisfied.

Proof. By Kharitonov theorem the set of polynomials (18) is 
asymptotically stable if and only if the polynomials (6) are 
asymptotically stable. Note that the coefficients of polynomials 
(6) are positive if the conditions (18b) are satisfied. Therefore, 
by Theorem 2 the positive interval linear system with the char-
acteristic polynomials (18a) is asymptotically stable if and only 
if the conditions (18b) are satisfied. □

Example 3. Consider the positive linear system with the char-
acteristic polynomial

	 p(s) = a3s3 + a2s2a1s + a0� (19a)

with the interval coefficients

	
0.5 ∙ a3 ∙ 2, 1 ∙ a2 ∙ 3,
0.4 ∙ a1 ∙ 1.5, 0.3 ∙ a0 ∙ 4.

� (19b)

By Theorem 4 the interval positive linear system with (19) is 
asymptotically stable since the coefficients ak, k = 0, 1, 2, 3 
of the polynomial (19a) are positive, i.e. the lower and upper 
bounds are positive.

Consider the interval positive linear continuous-time system

	 x ̇  = Ax� (20)

where x = x(t) 2 ℜn is the state vector and the matrix A 2 Mn 
is defined by

	 A1 ∙ A ∙ A2 or equivalently A 2 [A1, A2].� (21)

Definition 4. The interval positive system (20) is called as-
ymptotically stable if the system is asymptotically stable for 
all matrices A 2 Mn satisfying the condition (21).

By condition (4) of Theorem 2 the positive system (20) 
is asymptotically stable if there exists strictly positive vector 
λ > 0 such that the condition (4) is satisfied.

For two positive linear systems

	 x ̇ 1 = A1x1, A1 2 Mn� (22a)

and

	 x ̇ 2 = A2x2, A2 2 Mn� (22b)

there exists a strictly positive vector λ 2 ℜ+
n such that 

	 A1λ < 0 and A2λ < 0� (23)

if and only if the systems (22) are asymptotically stable.

Example 4. Consider the positive linear continuous-time sys-
tems (22) with the matrices

	 A1 = 
∙
¡0.6� 0.3
¡0.4� ¡0.4

¸
, A2 = 

∙
¡0.6� 0.3
¡0.3� ¡0.4

¸
.� (24)

It is easy to verify that for λT = [0.8 1] we have

	

A1λ = 
∙
¡0.6� 0.3
¡0.4� ¡0.4

¸∙
0.8
1

¸
 = 
∙
¡0.18
¡0.18

¸
 < 0

A2λ = 
∙
¡0.6� 0.3
¡0.3� ¡0.4

¸∙
0.8
1

¸
 = 
∙
¡0.18
¡0.16

¸
 < 0.

� (25)

Therefore, by the condition (4) of Theorem 2 the positive sys-
tems are asymptotically stable.

Theorem 5. If the matrices A1 and A2 of positive systems (22) 
are asymptotically stable then their convex linear combina-
tion

	 A = (1 ¡ k)A1 + kA2 for 0 ∙ k < 1� (26)

is also asymptotically stable.
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Proof. By condition (4) of Theorem 2 if the positive linear 
systems (22) are asymptotically stable then there exists strictly 
positive vector λ 2 ℜ+

n such that

	 A1λ < 0 and A2λ < 0.� (27)

Using (26) and (27) we obtain

	
Aλ = [(1 ¡ k)A1 + kA2]λ = (1 ¡ k)A1λ +
Aλ + kA2λ < 0 for 0 ∙ k < 1.

� (28)

Therefore, if the positive linear systems (22) are asymptotically 
stable and (27) hold then their convex linear combination is also 
asymptotically stable. □

If Ak 2 Mn, k = 1, 2 are Hurwitz and A1A2 = A2A1 then 
λ 2 ℜ+

n satisfying Akλ < 0, k = 1, 2 can be chosen in the form 
λ = A1A2c, where c 2 ℜ+

n is strictly positive (see Lemma A1 in 
Appendix).

Theorem 6. The interval positive system (22) are asymptoti-
cally stable if and only if the positive linear systems (22) are 
asymptotically stable.

Proof. By condition (4) of Theorem 2 if the matrices A1 2 Mn, 
A2 2 Mn are asymptotically stable then there exists a strictly posi-
tive vector λ 2 ℜ+

n such that (27) holds. The convex linear combi-
nation (26) satisfies the condition Aλ < 0 if and only if (27) holds. 
Therefore, the interval system (20) is asymptotically stable if and 
only if the positive linear system are asymptotically stable. □

Example 5. Consider the interval positive linear continu-
ous-time systems (20) with the matrices

	 A1 = 
∙
¡2� 1
¡2� ¡3

¸
, A2 = 

∙
¡3� 2
¡4� ¡4

¸
.� (29)

Using the condition (4) of Theorem 2 are choose for A1 (given 
by (29)) λ1 = [1 1]T and we obtain

	 A1λ1 = 
∙
¡2� 1
¡2� ¡3

¸∙
1
1

¸
 = 
∙
¡1
¡1

¸
 < 0,� (30a)

and for A2, λ2 = [0.8 1]T

	 A2λ2 = 
∙
¡3� 2
¡4� ¡4

¸∙
0.8
1

¸
 = 
∙
¡0.4
¡0.8

¸
 < 0,� (30b)

Therefore, the matrices (29) are Hurwitz.
Note that

	 A1λ2 = 
∙
¡2� 1
¡2� ¡3

¸∙
0.8
1

¸
 = 
∙
¡0.6
¡1.4

¸
 < 0,� (31)

Therefore, for both matrices (29) we may choose 
λ = λ1 = λ2 = [0.8 1]T and by Theorem 6 the interval positive 
system (20) with (29) is asymptotically stable.

5.	 Concluding remarks

The asymptotic stability of interval positive linear continu-
ous-time systems has been investigated. It has been shown that 
the convex linear combination of the Hurwitz polynomial of 
positive linear systems is also the Hurwitz polynomial (Theo-
rems 3 and 3'). The Kharitonov theorem has been extended to 
positive interval linear systems (Theorem 4). The asymptotic 
stability of interval positive systems described by the state 
equation (20) has been also analyzed. It has been shown that 
the interval positive systems (20) is asymptotically stable if 
and only if the positive systems (22) are asymptotically stable 
(Theorem 6). The considerations have been illustrated by nu-
merical examples.

The above considerations can be extended to positive linear 
discrete-time systems and to fractional linear systems. An open 
problem is an extension of these considerations to standard 
(nonpositive) linear systems.
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6.	 Appendix

Lemma A.1. If Ak 2 Mn, k = 1, 2 are Hurwitz and

	 A1A2 = A2A1� (A.1)

then the strictly positive vector λ 2 ℜ+
n satisfying Akλ < 0, 

k = 1, 2 has the form

	 λ = A1
¡ 1A2

¡ 1c, c 2 ℜ+
n strictly positive.� (A.2)

Proof. Using (A.1) it is easy to prove that

	 A1
¡ 1A2

¡ 1 = A2
¡ 1A1

¡ 1.� (A.3)

It is well-known [11] that if Ak 2 Mn, k = 1, 2 are Hurwitz, 
then ¡Ak

¡1 2 ℜ+
n×n for k = 1, 2 and λ defined by (A.2) is strictly 

positive.
Using (A.2) and (A.3) we obtain

	
A1λ = A1A1

¡ 1A2
¡ 1c = ¡A2

¡ 1c < 0 and

A2λ = A2A1
¡ 1A2

¡ 1c = A2A2
¡ 1A1

¡ 1c = ¡A1
¡ 1c < 0

� (A.4)

c 2 ℜ+
n is strictly positive. □


