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Abstract. In the present paper, we investigate a multi-server queueing system with heterogeneous servers, unlimited memory space, and 
non-homogeneous customers. The arriving customers appear according to a stationary Poisson process. Service time distribution functions 
may be different for every server. Customers are additionally characterized by some random volume. On every server, the service time of the 
customer depends on their volume. The number of customers distribution function is obtained in the classical model of the system. In the model 
with non-homogeneous customers, the stationary total volume distribution function is determined in the term of Laplace–Stieltjes transform. 
The stationary first and second moments of a total customers volume are calculated. An analysis of some special cases of the model and some 
numerical examples are also included.
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tems with non-homogeneous customers and the main purpose, 
in this case, is to obtain the total volume characteristics or loss 
characteristics, at least in stationary mode. The results con-
nected with M/G/n/0 queueing system with identical servers 
and non-homogeneous customers are presented in [11].

The present paper aims to analyze a M/G
→
/n/0 queueing 

system with heterogeneous servers and non-homogeneous cus-
tomers. The rest of this paper is organized as follows. Section 2 
contains the analysis of the classical M/G

→
/n/0 queueing system 

with heterogeneous servers. The main purpose of this part is to 
obtain the number of customers distribution functions in the sta-
tionary mode. Section 3 contains an analysis of a non-classical 
M/G

→
/n/0 queueing system with non-homogeneous customers. 

In this section, we obtain the total volume distribution charac-
teristics in stationary mode. Section 4 will investigate some 
special cases of the model analyzed in Section 3 and it will 
show that the character of the service time and customer volume 
dependency has an influence on the total volume characteristics. 
Finally, Section 5 contains some concluding remarks.

2. The classical model analysis

This section will investigate the modification of the classical 
M/G/n/0 queueing system in which the service time character-
istics may differ for each server. The customers choose free serv-
ers in a random way, which means that an arriving customer will 
be serviced by one of the l free servers with probability 1/l. Our 
purpose is to obtain the number of customers distribution func-
tions in the stationary mode. To do this, we will use the general-
ized method of the auxiliary variable [2]. In the analyzed model, 
the number of customers is limited by value n and all present 
customers in the system are being serviced (i.e. there is no queue).

We denote the parameter of an entrance Poisson flow as a; 
the service time distribution function for j-th server as Bj(t); 

1. Introduction

The first analysis of the classical M/M/n/0 queueing system 
was made by Erlang in [3] and [4]. In this model, the author 
assumes that the investigated system is composed of n identical 
servers. More precisely, service time is exponentially distributed 
with the same parameter μ for every server. In addition, cus-
tomers arrive at the system with Poisson entrance flow, which 
means that the time intervals between successive customers’ 
arrivals are exponentially distributed with the same parameter a. 
There is no queue in this system, so an arriving customer is lost 
if they find that the system is full (i.e. every server is busy). The 
main characteristic obtained during the analysis of this system 
is the number of customers distributions in the stationary mode 
pk. It can be easily proven [11] that the obtained formulae also 
remain valid for a more universal M/G/n/0 queueing system 
with identical servers if we replace the constant μ by 1/β1, where 
β1 is the mean value of service time. On the other hand, queue-
ing systems with heterogeneous servers are rarely analyzed. 
The first investigations of M/M

→
/n/0 queueing systems with 

heterogeneous servers appeared in [6, 7], and [8]. Interesting 
analyses of M/M

→
/n/0 queueing system with heterogeneous 

servers may also be found in [10] and [12]. Meanwhile, some 
investigations of M/G

→
/n/0 systems with heterogeneous servers 

may be found in [5] and [9].
If we additionally assume that arriving customers have some 

random volume, then we obtain a very interesting new area of 
research that is connected with the concept of total volume, 
which is the sum of the volumes of all of the customers present 
in the system. These queueing systems are called queueing sys-
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and its first moment as βj, j = 1, n. Let η(t) be the number of 
customers present in the system at time instant t. In addition, 
we assume that there exist service time densities bj(t). This as-
sumption is technical because it allows us to use, during system 
behavior analysis, the service intensity function that is defined 
for j-th server by the formula μj(x) =  bj(x)

1 ¡ Bj(x)
, although we may 

obtain the same results without this assumption. Let A(t) be 
the set of busy servers at time instant t. We denote the length 
of the time interval from the beginning of the service of the 
customer (that is still serviced by j-th server at time t) to time t 
as ξj

¤(t), j 2 A(t).
It is easy to prove that process

 (η(t), A(t), ξj
¤(t), j 2 A(t)) (1)

is a Markovian process that describes the behavior of the sys-
tem. In the case of empty system (η(t) = 0), the process re-
duces to η(t).

Now we introduce the following functions:

 Pk(t) = P{η(t) = k}, k = 0, n ; (2)

 
Pk

{i1, i2, …, ik}(t) = P{η(t) = k, A(t) = {i1, i2, …, ik}},

k = 1, n;
 (3)

 

Gk
{i1, i2, …, ik}(x1, …, xk, t)dx1 … dxk = 

= P{η(t) = k, A(t) = {i1, i2, …, ik},

ξj
¤(t) 2 [xj, xj + dxj), j 2 A(t)}, k = 1, n .

 (4)

If η(t) = n, then the function described in (4) may be de-
noted simply as Gn(x1, …, xn, t).

In the stationary mode (which exists if aβj < 1, j = 1, n) 
we can introduce analogies that are independent of the time 
variable t:

 pk = lim
t!1

Pk(t), k = 0, n ; (5)

 pk
{i1, i2, …, ik} = lim

t!1
Pk

{i1, i2, …, ik}(t), k = 1, n; (6)

 
gk

{i1, i2, …, ik}(x1, …, xk) = lim
t!1

Gk
{i1, i2, …, ik}(x1, …, xk, t),

k = 1, n.
 (7)

If k = n, then we may simply denote gn(x1, …, xn) instead of 
gn

{i1, i2, …, in}(x1, …, xn).
The functions introduced in (4) and (7) are not symmetric 

considering all of the permutations of the variables xj, j 2 A(t), 
as it is in classical M/G/n/0 Erlang system with identical 
servers.

It is clear that

 
pk

{i1, i2, …, ik} = 
Z

0

1
…
Z

0

1
gk

{i1, i2, …, ik}(x1, …, xk)dx1 … dxk,

k = 1, n .
 (8)

If we analyze, for simplicity, the system behavior in the 
special case (M/G

→
/2/0 system), then we can write down the 

following equations:

P0(t + ∆t) = P0(t)(1 ¡ a∆t) + ∆t
µZ

0

t
G1

{1}
(x, t)μ1(x)dx +

P0(t + ∆t) + 
Z

0

t
G1

{2}
(x, t)μ2(x)dx

¶
 + o(∆t);

 (9)

G1
{1}

(x + ∆t, t + ∆t) = G1
{1}

(x, t)[1 ¡ (a + μ1(x))∆t ] +

+ ∆t
Z

0

t
G2(x, u, t)μ2(u)du + o(∆t);

 (10)

G1
{2}

(x + ∆t, t + ∆t) = G1
{2}

(x, t)[1 ¡ (a + μ2(x))∆t ] +

+ ∆t
Z

0

t
G2(u, x, t)μ1(u)du + o(∆t);

 (11)

 
G2(x1 + ∆t, x2 + ∆t, t + ∆t) = 

= G2(x1, x2, t)[1 ¡ (μ1(x1) + μ2(x2))∆t ] + o(∆t);
 (12)

 Z

0

∆t
G1

{1}
(u, t + ∆t)du = a2 P0(t)∆(t) + o(∆t); (13)

 Z

0

∆t
G1

{2}
(u, t + ∆t)du = a2 P0(t)∆(t) + o(∆t); (14)

 Z

0

∆t
G2(x + ∆t, u, t + ∆t)du = aG1

{1}
(x, t)∆t + o(∆t); (15)

 Z

0

∆t
G2(u, x + ∆t, t + ∆t)du = aG1

{2}
(x, t)∆t + o(∆t). (16)

If ∆t ! 0 then from equations (9–16) we obtain the fol-
lowing equations:

 

dP0(t)
dt

 = ¡aP0(t) + 
Z

0

t
G1

{1}
(x, t)μ1(x)dx + 

+ 
Z

0

t
G1

{2}
(x, t)μ2(x)dx;

 (17)

 

∂G1
{1}

(x, t)
∂t

 + ∂G1
{1}

(x, t)
∂x

 = ¡(a + μ1(x))G1
{1}

(x, t) + 

+ 
Z

0

t
G2(x, u, t)μ2(u)du;

 (18)

 

∂G1
{2}

(x, t)
∂t

 + ∂G1
{2}

(x, t)
∂x

 = ¡(a + μ2(x))G1
{2}

(x, t) +

+ 
Z

0

t
G2(u, x, t)μ1(u)du;

 (19)
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∂G2(x1, x2, t)

∂t
 + ∂G2(x1, x2, t)

∂x1
 + ∂G2(x1, x2, t)

∂x2
 = 

= ¡(μ1(x1) + μ2(x2))G2(x1, x2, t);
 (20)

G1
{1}

(0, t) = a
2 P0(t); (21)

G1
{2}

(0, t) = a
2 P0(t); (22)

G2(x, 0, t) = aG1
{1}

(x, t); (23)

G2(0, x, t) = aG1
{2}

(x, t). (24)

In the stationary mode (t ! 1) from (17–24), we easily 
obtain:

0 = ¡ap0 + 
Z

0

1 
g1

{1}
(x)μ1(x)dx + 

Z

0

1 
g1

{2}
(x)μ2(x)dx; (25)

∂g1
{1}

(x)
∂x

 = ¡(a + μ1(x))g1
{1}

(x) + 
Z

0

1
g2(x, u)μ2(u)du; (26)

∂g1
{2}

(x)
∂x

 = ¡(a + μ2(x))g1
{2}

(x) + 
Z

0

1
g2(u, x)μ1(u)du; (27)

∂g2(x1, x2)

∂x1
 + ∂g2(x1, x2)

∂x2
 = ¡(μ1(x1) + μ2(x2))g2(x1, x2); (28)

g1
{1}

(0) = a
2 p0; (29)

g1
{2}

(0) = a
2 p0; (30)

g2(x, 0) = ag1
{1}

(x); (31)

g2(0, x) = ag1
{2}

(x). (32)

Now we add the normalization condition:

 
p0 + 

Z

0

1 
g1

{1}
(x)dx + 

Z

0

1 
g1

{2}
(x)dx +

+ 
Z

0

1 Z

0

1 
g2(x1, x2)dx1dx2 = 1.

 (33)

By direct substitution, we can check that the solutions of 
equations (25–32) have the form:

 g1
{1}

(x) =  ap0

2
(1 ¡ B1(x)); (34)

 g1
{2}

(x) =  ap0

2
(1 ¡ B2(x)); (35)

 g2(x1, x2) = a
2p0

2
(1 ¡ B1(x1))(1 ¡ B2(x2)). (36)

Using (8) and the well-known formula βj = ∫0
1[1 ¡ Bj(u)]du,  

we finally obtain:

 p1
{1} = 

Z

0

1 ap0

2
(1 ¡ B1(x))dx =  aβ1p0

2
; (37)

 p1
{2} = 

Z

0

1 ap0

2
(1 ¡ B2(x))dx =  aβ2p0

2
; (38)

 p1 = p1
{1} + p1

{2} =  ap0

2
(β1 + β2); (39)

p2 = 
Z

0

1Z

0

1a2p0

2
(1 ¡ B1(x1))(1 ¡ B2(x2))dx1dx2 =

= a2p0

2

Z

0

1
(1 ¡ B1(x1))dx1 ¢ 

Z

0

1
(1 ¡ B2(x2))dx2 =

=  a2p0β1β2

2
.

 (40)

And by the help of (33):

 p0 = 
∙
1 +  a

2 (β1 + β2) +  a2

2 β1β2

¸–1
. (41)

In the same way, we can analyze the M/G
→
/n/0 system with 

heterogeneous servers for the arbitrary n. The problem is that 
the number of equations describing the system behavior in-
creases exponentially together with the increasing value of n, 
so in this case we use some set notations. Let {Ck

n} denote the 
set of all of the k-element combinations of the n-element set. 
The equations in the stationary mode can be presented in the 
following form:

 0 = ¡ap0 + 
j = 1

n

∑
Z

0

1
g1

{ j}
(x)μj(x)dx; (42)

j2{i1, …, ik}
∑ ∂gk

{i1, …, ik}(x1, …, xk)

∂xj
 =

= ¡(a + 
j2{i1, …, ik}

∑ μj(xj))gk
{i1, …, ik}(x1, …, xk) +

+ 
j2/{i1, …, ik}

∑
Z

0

1
g{i1, …, ik, j}

k + 1 (x1, …, xj¡1, u, xj, …, xk)μj(u)du,

{i1, …, ik} 2 {Ck
n}, k = 1, n ¡ 1;

 (43)

 
j = 1

n

∑ ∂gn
{i1, …, in}(x1, …, xn)

∂xj
 = ¡

j = 1

n

∑ μj(xj)g{i1, …, in}
n (x1, …, xn); (44)
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 g1
{ j}

(0) =  a
n p0,  j = 1, n; (45)

g{i1, …, ik}
k (x1, …, xj¡1, 0, xj+1, …, xk) = 

=  a
n ¡ k + 1

g{i1, …, ij¡1, ij+1, …, ik}
k¡1 (x1, …, xj¡1, xj+1, …, xk),

j = 1, k ,  k = 2, n .

 (46)

By direct substitution, we may obtain the solutions in the 
following form:

 
g{i1, i2, …, ik}

k (x1, x2, …, xk) = 

=  ak(n ¡ k)!p0

n! j2{i1, …, ik}
∏ (1 ¡ Bj(xj));  k = 1, n .

 (47)

Using (8) in an analogous way to (40), we obtain:

 p{i1, …, ik}
k  =  ak(n ¡ k)!p0

n! j2{i1, …, ik}
∏ βj,  k = 1, n ; (48)

Thus:

 pk =  ak(n ¡ k)!p0

n! i2{Ck
n}

∑
j2 i
∏ βj,  k = 1, n . (49)

From the normalization condition, we obtain:

 p0 = 
∙
1 +  1

n! k =1

n

∑ ak(n ¡ k)!
i2{Ck

n}
∑

j2 i
∏ βj

¸–1
. (50)

If we introduce the notation: yj = aβj then formulae (48–50) 
take the form:

 p{i1, …, ik}
k  =  (n ¡ k)!p0

n! j2{i1, …, ik}
∏ yj,  k = 1, n ; (51)

 pk =  (n ¡ k)!p0

n! i2{Ck
n}

∑
j2 i
∏ yj,  k = 1, n ; (52)

 p0 = 
∙
1 +  1

n! k =1

n

∑(n ¡ k)!
i2{Ck

n}
∑

j2 i
∏ yj

¸–1
. (53)

As was investigated, the number of customers distribution 
function in the stationary mode depends only on the first mo-
ments of functions Bj(x) and does not depend on the formulae 
that define them. Formulae (51–53) are interesting not only 
from the theoretical point of view. On the basis of (52) and 
(53), we can calculate some very practical characteristics, in-
cluding the mean value of the number of customers present in 
the system in the stationary mode (Eη = ∑n

k =0kpk) and the loss 
probability (pn). On the other hand, we may also investigate 
the usage of each server. For example, if the analyzed system 

is composed of three servers, then we may compute the usage 
of each server qi, i = 1, 3  as follows:

q1 = p1
{1} + p2

{1, 2} + p2
{1, 3} + p3

{1, 2, 3}.

q2 = p1
{2} + p2

{1, 2} + p2
{2, 3} + p3

{1, 2, 3}.

q3 = p1
{3} + p2

{1, 3} + p2
{2, 3} + p3

{1, 2, 3}.

Let us now consider the following numerical example. As-
sume that we deal with M/G

→
/3/0 queueing system with hetero-

geneous servers. The main values of service time on each server 
are equal to: β1 = 2, β2 = 3, β3 = 4 consequently and a = 2. 
Then, by using (51–53), we may obtain the numerical results 
connected with the number of customers distribution function. 
We present them in the first column of Table 1, together with the 
results obtained by simulation for three distributions of service 
time. In the next columns, we present the results for exponential 
distribution (service time is exponentially distributed for each 
server with parameters μ1 = 1/2, μ2 = 1/3, μ3 = 1/4), uniform dis-
tribution (on the interval [1, 3] for first server, [2, 4] for second 
server and [3, 5] for third server), and constant distribution (ser-
vice time is constant for each server with parameters t1 = 2, 
t2 = 3, t3 = 4). The results show that the number of customers 
distribution function depends only on the mean values of ser-
vice time on each server, and does not depend on the formulae 
of the service time distribution functions.

Table 1
The number of customers distribution function in the M/G

→
/3/0 system

pk theoret. sim.-exponential sim.-uniform sim.-constant

p0 0.017751 0.017652 0.017674 0.017685

p1 0.106509 0.106639 0.106439 0.106212

p2 0.307692 0.307517 0.307813 0.307646

p3 0.568047 0.568192 0.568074 0.568458

3. The model with non-homogeneous customers

This section will analyze the modification of the classical 
M/G

→
/n/0 queueing system with heterogeneous servers 

in which the arriving customers additionally have, inde-
pendently of the other customers, some random volume ζ that 
is a non-negative random variable. In general, service time on 
j-th server ξj depends on customer volume ζ. In other words, 
for each server we have the following distribution function: 
Fj(x, t) = P{ζ < x, ξj < t}, j = 1, n. The aim of our investiga-
tion is to obtain the characteristics of the total volume σ(t), 
which is the sum of the volumes of all customers present in 
the system in time instant t. In the steady state, the process 
σ(t) converges to a random variable σ. We assume that the total 
volume is unlimited.

Let us introduce the following notations: D(x) = P{σ < x} is 
the total volume distribution function in the steady state; δ(s) = 



63

M/G
→

/n/0 Erlang queueing system with heterogeneous servers and non-homogeneous customers

Bull.  Pol.  Ac.:  Tech.  66(1)  2018

= ∫0
1e–sxdD(x) is the Laplace–Stieltjes transform of the random 

variable σ; δi is its i-th moment; αj(s, q) = ∫0
1

∫0
1e–sx ¡ qtdFj(x, t), 

j = 1, n denotes the double Laplace–Stieltjes transform of the 
random vector (ζ, ξj); and αj

lk is the mixed moment of the 
(l + k)-th order of this vector.

To obtain the characteristics of the total volume distribution 
function in the steady state, we introduce some conditional dis-
tribution functions of the total volume, and we then use the total 
probability theorem. We introduce the conditional total volume 
distribution function as follows:

 

H {i1, …, ik}
k (x, y1, …, yk) = P{σ < xjη = k, 

A = {i1, …, ik},  ξi1
¤ = y1, …, ξik

¤ = yk},

{i1, …, ik} 2 {Ck
n},  k = 1, n ,

 (54)

where η is the number of customers present in the system in sta-
tionary mode, A is the set of busy servers, and ξj

¤, j 2 {i1, …, ik} 
are the stationary analogies of the functions ξj

¤(t) (which were 
introduced in Section 2).

By using the total probability theorem, we obtain the fol-
lowing formula:

D(x) = p0 + 
k = 1

n

∑
{i1, …, ik} 2 {Ck

n}
∑

Z

0

1
…
Z

0

1
g{i1, …, ik}

k (y1, …, yk)£

£H {i1, …, ik}
k (x, y1, …, yk)dy1 … dyk.

 (55)

Now we use Laplace–Stieltjes to transform to both sides of (55), 
obtaining:

δ(s) = p0 + 
k = 1

n

∑
{i1, …, ik} 2 {Ck

n}
∑

Z

0

1
…
Z

0

1
g{i1, …, ik}

k (y1, …, yk)£

£h{i1, …, ik}
k (s, y1, …, yk)dy1 … dyk.

 (56)

where 

h{i1, …, ik}
k (s, y1, …, yk) = 

Z

0

1
e–sxdH{i1, …, ik}

k (x, y1, …, yk)

is the Laplace–Stieltjes transform of the distribution function 
that was defined in (54).

Now we find the formula for h{i1, …, ik}
k (s, y1, …, yk). We de-

note as χj, j 2 A – the volume of the customers serviced by j-th 
server. Let Ej(x) = P{χj < xjξj

¤ = yj}, j 2 A be the conditional 
distribution function of the random variable χj under assumption 
that its service lasts yj time units.

Now we use well-known formula [11]:

 dEj(x) = [1 ¡ Bj(yj)]
–1
Z 1

u = yj

dFj(x, u). (57)

If we introduce the Laplace–Stieltjes transform ej(s) = ∫0
1e–sxdEj(x),  

then transformation of (57) leads to the following result:

 ej(s) = [1 ¡ Bj(yj)]
–1
Z 1

x = 0
e–sx

Z 1

u = yj

dFj(x, u). (58)

It is rather clear that if A = {i1, …, ik} then total volume σ is 
the sum of the independent random variables χj, j 2 A. The 
conditional distribution function H{i1, …, ik}

k (x, y1, …, yk) is the 
convolution of the distributions Ej(x), namely:

 H {i1, …, ik}
k (x, y1, …, yk) = Ei1¤Ei2

¤… ¤Eik
(x). (59)

On the basis of the properties of the Laplace–Stieltjes trans-
form, we quickly obtain:

 h{i1, …, ik}
k (s, y1, …, yk) = 

j2{i1, …, ik}
∏ ej(s). (60)

From (56, 58, 60), and (47) we finally obtain:

 
δ(s) = p0 + 

k = 1

n

∑
i2{Ck

n}
∑ ak(n ¡ k)!p0

n!
£

£
Z

0

1
…
Z

0

1∙

j2 i
∏

Z 1

x = 0
e–sx

Z 1

u = yj

dFj(x, u)

¸
dy1 … dyk .

 (61)

Given that k-dimensional integral present in (61) may be pre-
sented in the form of product of k one-dimensional integrals, 
then formula (61) may be rewritten in a simple form:

 
δ(s) = p0 + 

k = 1

n

∑
i2{Ck

n}
∑ ak(n ¡ k)!p0

n!
£

£
j2 i
∏
∙Z 1

x = 0
e–sx

Z 1

z = 0
dz
Z 1

u = z
dFj(x, u)

¸
.
 (62)

Now we compute the integral in (62):

 

Z 1

x = 0
e–sx

Z 1

z = 0
dz
Z 1

u = z
dFj(x, u) =

= 
Z 1

x = 0

Z 1

u = 0
e–sxdFj(x, u)

Z u

z = 0
dz  =

= 
Z

0

1Z

0

1
ue–sxdFj(x, u) = 

∂αj(s, q)

∂q jq = 0.

 (63)

Finally, using (63), we obtain the following result:

	δ(s) = p0(1 +  1
n! k = 1

n

∑(n ¡ k)!
i2{Ck

n}
∑

j2 i
∏¡a

∂αj(s, q)

∂q jq = 0). (64)

The obtained formula let us compute the first two moments 
δ1 = Eδ, δ2 = Eδ2 of the total volume in stationary mode. We 
use the well-known formulae that are connected with the La-
place–Stieltjes transform properties: δ1 = –δ0(0), δ2 = δ00(0). 
On the other hand, the mix moments of the (l + k)-th order of 
the random vector (ζ, ξj) can be computed using the properties 
of the double Laplace–Stieltjes transform αj(s, q):

	 αj
lk = E(ζ lξj

k) = (–1)l + k ∂
l + kαj(s, q)

∂sl∂qk js = 0, q = 0. (65)
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By using the above properties of single and double Laplace–
Stieltjes transforms, and (64) we finally obtain:

	δ1 = –δ0(0) = p0( 1
n! k = 1

n

∑ αk(n ¡ k)!
i2{Ck

n}
∑

j2 i
∏αj

11

l2 in{ j}
∏ βl). (66)

 
δ2 = δ00(0) = p0( 1

n! k = 1

n

∑ αk(n ¡ k)!£

£
i2{Ck

n}
∑
∙

j2 i
∑αj

21

l2 in{ j}
∏ βl + 2

{ j, m}½i
∑ αj

11αm
11

l2 in{ j, m}
∏ βl

¸
).

 (67)

If the set of indexes of the sum or product symbol is empty, 
then we omit these sums or products in computation. In the pro-
cess of computing formulae (66) and (67), we use the following 
properties of the derivatives:

 (
i = 1

n

∏ fi(x))
0
 = 

i = 1

n

∑ fi0(x)
l2{1, …, n}n{i}

∏ fl(x). (68)

 
(

i = 1

n

∏ fi(x))
00
 = 

i = 1

n

∑ fi00(x)
l2{1, …, n}n{i}

∏ fl(x) + 

+ 2
{i, j}½{1, …, n}

∏ fi0(x) fj0(x)
l2{1, …, n}n{i, j}

∏ fl(x).
 (69)

The obtained results can be used to design computer or 
communication systems of the analogous type but with limited 
memory space. For example, we can consider a more practical 
system M/G

→
/n/(0, V) in which the volume of all customers is 

limited by the V value. This means that the arriving customer 
may also be lost when there are free servers in the system but 
their volume is too high (i.e. the sum of the volume of ar-
riving customer and the volumes of other customers that are 
served is bigger than V value). This limitation leads to addi-
tional losses of customers. In the process of designing a com-
puter system, we may choose the V value in such a way that 
minimizes these additional losses. Then, we use the (66, 67) 
formulae and, for example, choose the value of V from the in-
terval [δ1 ¡ mδ, δ1 + mδ], where δ =  δ2 ¡ δ1

2  is the standard 
deviation of total customers volume in the stationary mode, and 
m constant, m = (1, 2, 3, …) may be chosen by the computer 
system designer. This choice has an influence on the loss prob-
ability in the M/G

→
/n/(0, V) system. From the practical point 

of view, it is best to choose the following value: V = δ1 + 3δ .

4. Special case analysis

This section will investigate two practical special cases of the 
analyzed model. In the first case, customer volume and service 
times for j-th server, j = 1, n are independent. The second case 
presents a situation in which service time for j-th server is pro-
portional to customer volume with coefficient cj i.e. ξj = cjζ. 
For these special cases, we obtain the formulae for the total 

volume distribution function in stationary mode and for its first 
two moments.

4.1. Service time and customer volume are independent. 
Assume that customer volume and service time are independent 
for every server. More precisely, every pair (ζ, ξj), j = 1, n pres-
ent two independent random variables. Let L(x) = P{ζ < x} 
and Bj(t) = P{ξj < t} be the distribution functions of the ran-
dom variables ζ and ξj. We denote the first two moments of 
the random variable ζ as φ1 and φ2. In this case, we have the 
obvious formula:

	 αj(s, q) = φ(s)βj(q), (70)

where φ(s) = ∫0
1e–sxdL(x) and βj(q) = ∫0

1e–qtdBj(t) are the La-
place–Stieltjes transforms of the random variables ζ and ξj, re-
spectively. Then, we have the equality:

 
∂αj(s, q)

∂q jq = 0 = –φ(s)βj. (71)

Now we substitute the obtained formula into (64) and we then 
obtain the following:

	 δ(s) = p0(1 +  1
n! k = 1

n

∑(n ¡ k)!(aφ(s))k

i2{Ck
n}

∑
j2 i
∏ βj) . (72)

Thus:

	 δ1 = p0φ1( 1
n! k = 1

n

∑kak(n ¡ k)!
i2{Ck

n}
∑

j2 i
∏ βj); (73)

	δ2 = p0( 1
n! k = 1

n

∑kak(n ¡ k)![φ2 + (k ¡ 1)φ1
2]

i2{Ck
n}

∑
j2 i
∏ βj). (74)

Also assume that customer volume is exponentially distributed 
with parameter f and the service times on each of n servers are 
also exponentially distributed with parameters μ1, …, μn. Then, 
we obtain the following formula:

	 δ(s) = p0(1 +  1
n! k = 1

n

∑( af
f + s)

k
(n ¡ k)!

i2{Ck
n}

∑
j2 i
∏ 1

μj ). (75)

The formulae for first two moments can be obtained from (73) 
and (74) by making substitutions: φ1 = 1/f , φ2 = 2/f 2, βj = 1/μj. 
Using the Laplace transform inversion of the function δ(s)/s , 
with the help of computer algebra systems [1], we may obtain 
formula for total volume distribution function in a form:

 

D(x) = p0(1 +  1
n! k = 1

n

∑ak(n ¡ k)!£

£
∙
1 ¡ e– f x

l = 0

k – 1

∑ ( f x)l

l!

¸

i2{Ck
n}

∑
j2 i
∏ 1

μj ).
 (76)

The total volume distribution function is a linear combina-
tion of Erlang distributions with parameter f.
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4.2. Service time is proportional to the customer volume. 
Assume now that the service time on j-th server is proportional 
to the customer volume with coefficient cj, j = 1, n i.e ξj = cjζ. 
In this case, we obtain the formula:

	 αj(s, q) = φ(s + cjq). (77)

Thus:

 
∂αj(s, q)

∂q jq = 0 = cjφ0(s). (78)

If we substitute this formula into (64), we obtain:

	 δ(s) = p0(1 +  1
n! k = 1

n

∑ (–aφ0(s))k
(n ¡ k)!

i2{Ck
n}

∑
j2 i
∏ cj) . (79)

The first two moments may be computed basing on the follow-
ing formulae:

δ1 = ap0φ2( 1
n! k = 1

n

∑ k(n ¡ k)!(aφ1)
k¡1

i2{Ck
n}

∑
j2 i
∏cj); (80)

 

δ2 = p0( 1
n! k = 1

n

∑ kakφ1
k¡2(n ¡ k)!£

£ [φ3φ1 + (k ¡ 1)φ2
2]

i2{Ck
n}

∑
j2 i
∏cj),

 (81)

where φ3 is the third moment of the customer volume.
Also assume that customer volume is exponentially distrib-

uted with parameter f and the service times on each of n servers 
are proportional to their volumes with coefficients cj. Then, the 
service times are also exponentially distributed with parameters 
f/c1, …,  f/cn. Then, we obtain the following formula:

	 δ(s) = p0(1 +  1
n! k = 1

n

∑ (af )k

( f + s)2k (n ¡ k)!
i2{Ck

n}
∑

j2 i
∏ cj). (82)

The formulae for the first two moments can be obtained from 
(80) and (81) by making substitutions: φ1 = 1/f , φ2 = 2/f 2, 
φ3 = 6/f 3. Using the Laplace transform inversion, we finally 
obtain the total volume distribution function in a form:

 
D(x) = p0(1 +  1

n! k = 1

n

∑ak(n ¡ k)!£

£
∙
1 ¡ e– f x

l = 0

2k –1

∑ ( f x)l

l!

¸

i2{Ck
n}

∑
j2 i
∏ cj).

 (83)

This formula is similar to (76) but here we have more Erlang 
distributions in the sum. This means that even if we choose 
coefficients in such a way that from the classical point of view 
time service distribution functions are the same in these two 
situations then characteristics of the total volume distribution 
vary even on the level of first two moments. So, the character of 
the analyzed dependency has an influence on the total volume 
characteristics.

In fact, if in the first model we substitute μj = f/cj , j = 1, n, 
then from the classical point of view two models are equivalent; 
that is, we have, for example, the same service times distribu-
tion functions but the characteristics of total volume distribution 
are not the same. In the first model, after rather easy computa-
tions, we obtain:

	 δ1 =  p0

f ( 1
n! k = 1

n

∑ k(n ¡ k)!(a
f )

k

i2{Ck
n}

∑
j2 i
∏ cj); (84)

	 δ2 =  p0

f 2 ( 1
n! k = 1

n

∑ k(k + 1)(n ¡ k)!(a
f )

k

i2{Ck
n}

∑
j2 i
∏ cj). (85)

In the second model, we obtain:

	 δ1 =  2p0

f ( 1
n! k = 1

n

∑ k(n ¡ k)!(a
f )

k

i2{Ck
n}

∑
j2 i
∏ cj); (86)

	 δ2 =  2p0

f 2 ( 1
n! k = 1

n

∑ k(2k + 1)(n ¡ k)!(a
f )

k

i2{Ck
n}

∑
j2 i
∏ cj). (87)

Comparing the above formulae, we notice that the value of first 
moment is exactly two times greater in the second model and 
the value of the second moment is also greater in the second 
model but in this case the coefficient is not constant and de-
pends on the number of servers.

We will now illustrate the theoretical results with some nu-
merical examples. Let us consider M/G

→
/3/0 queueing system 

in two versions M1 and M2. In the first version of the system, 
service times are exponentially distributed with parameters 
μ1 = 1/2, μ2 = 1/3, μ3 = 1/4. Service times and customer volumes 
are independent and the customer volumes are exponentially 
distributed with parameter f  = 1. In the second version, the cus-
tomer volumes are also exponentially distributed with the same 
parameter f  = 1 but service times are proportional to customer 
volumes with coefficients c1 = 2, c2 = 3, c3 = 4. In Table 2, we 
present the results connected with the first two moments of the 
summary volume in stationary mode obtained using (84–87), 
together with the results obtained by simulation that confirm 
the theoretical results.

Table 2 
Moments of the summary volume in M/G

→
/3/0 system

M1-theoret. M1-sim. M2-theoret. M2-sim.

δ1 2.426036 2.424834 34.851368 34.852071

δ2 8.875740 8.886603 30.650888 30.658217

5. Conclusions

In the present paper, we have investigated the modification 
of a M/G/n/0 queueing system with heterogeneous servers 
and non-homogeneous customers. In the beginning, we obtain 
a number of customers distribution functions in the stationary 
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mode for the classical queueing system M/G
→
/n/0 in which 

service time characteristics may be different for every server. 
Both the theoretical and the simulation results show that the 
number of customers distribution function does not depend on 
the form of the service time distributions, but on their mean 
values. Later on, we analyzed a non-classical M/G

→
/n/0 queue-

ing system with non-homogeneous customers in which service 
times and customer volumes are dependent and the total vol-
ume is unlimited. For this system, we obtain the formulae for 
the Laplace–Stieltjes transform of the total volume distribution 
function and its first two moments. Then, we investigate two 
special cases in which we obtain the formulae for the total vol-
ume distribution function in exact form. We then show that 
the character of the dependency of service time and customer 
volume has an influence on the total volume characteristics. 
Our simulation results also confirm this finding.
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