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A general unified approach to chaos synchronization
in continuous-time systems

(with or without equilibrium points)
as well as in discrete-time systems

GIUSEPPE GRASSI, ADEL OUANNAS and VIET-THANH PHAM

By analyzing the issue of chaos synchronization, it can be noticed the lack of a general

approach, which would enable any type of synchronization to be achieved. Similarly, there is the
lack of a unified method for synchronizing both continuous-time and discrete-time systems via
a scalar signal. This paper aims to bridge all these gaps by presenting a novel general unified

framework to synchronize chaotic (hyperchaotic) systems via a scalar signal. By exploiting
nonlinear observer design, the approach enables any type of synchronization defined to date
to be achieved for both continuous-time and discrete-time systems. Referring to discrete-time
systems, the method assures any type of dead beat synchronization (i.e., exact synchronization
in finite time), thus providing additional value to the conceived framework. Finally, the topic of
synchronizing special type of systems, such as those characterized by the absence of equilibrium
points, is also discussed.

Key words: chaos synchronization and control, scalar synchronizing signal, continuous-
time system (with or without equilibrium points), discrete-time systems, observer-based syn-
chronization, dead beat control, synchronization in finite time

1. Introduction

Chaotic phenomena are strange random aggregates of responses to internal
and external stimuli in dynamical systems [1, 2]. Being highly sensitive to ini-
tial conditions, chaotic systems are characterized by trajectories that separate
exponentially in the course of the time, even when they start from two nearby
initial states. As a result, chaotic systems seem to intrinsically defy synchroniza-
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tion. The setting of some collective (synchronized) behavior in coupled chaotic
systems has therefore a great importance and interest. To this purpose, theories
and methods developed for controlling nonlinear systems could be utilized for
synchronizing of chaotic systems. Chaos synchronization was first observed in
1991, when it was proved that a drive system and a driven (response) system
achieve synchronized dynamics, provided that the Lyapunov exponents of the
driven system are negative (identical synchronization) [2]. From then on, several
typical synchronization phenomena have been identified, including those where
a scalar signal is exploited for synchronizing chaotic (hyperchaotic) systems
[3–8]. Among the different types of synchronization for both continuous-time
and discrete-time systems [9–17], projective synchronization is characterized by
response system states that are scaled replicas of the drive system states [11–
13]. The projective synchronization turns into the anti-phase synchronization
[13] when the scaling factor equals −1. On the other hand, when the scaling
factors are different for each state variable (i.e., when the scaling matrix is a di-
agonal one) the full state hybrid projective synchronization is obtained, for both
continuous- and discrete-time systems [14–18]. These approaches, when applied
to discrete-time systems, may include the exact synchronization in finite time
(the so-called dead-beat synchronization) [18].

Despite of a considerable amount of chaotic and hyperchaotic systems intro-
duced in literature, very recently there has been an increasing interest in study-
ing special chaotic systems, characterized by the absence of equilibrium points
[19, 20]. They are called “chaotic systems with hidden attractors”, since the ab-
sence of equilibria makes the location of the attractors very challenging [19].
Note that the topic of synchronizing these special chaotic systems is almost un-
explored, due to the fact that the discovery of these systems without equilibrium
points is very recent [19, 20].

By summarizing the considerations expressed above, it can be stated that the
synchronization issue in literature is characterized by the presence of a “variety
of synchronization types for a variety of continuous-time and discrete-time sys-
tems”. However, it can be noticed that these varieties (of synchronization types
and systems) have not yet grouped in a systematic framework. In other words, in
literature there is the lack of a general approach, which would enable any type
of synchronization defined to date to be achieved. Similarly, there is the lack of
a unified method for synchronizing both continuous-time and discrete-time sys-
tems via a scalar signal. Additionally, the topic of synchronizing chaotic systems
characterized by the absence of equilibrium points is almost unexplored, due to
the recent discovery of these systems. Based on these considerations, this paper
aims to bridge all these gaps by presenting a novel general unified approach to
synchronize chaotic (hyperchaotic) systems via a scalar signal. The framework,
based on the concept of observer, enables any type of synchronization defined
to date to be achieved for both continuous-time and discrete-time systems via
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a scalar signal. Referring to continuous-time systems, both with equilibria or
without equilibria, the proposed observer-based synchronization framework is
based on a structural condition related to the uncontrollable eigenvalues of the
error system. Referring to discrete-time systems, the proposed observer-based
synchronization framework exploits a structural condition related to the control-
lability matrix of the error system. This condition assures any type of dead beat
synchronization to be achieved, thus providing additional value to the conceived
framework.

The paper is organized as follows. Sections 2 and 3 illustrate the proposed
general unified synchronization framework. Referring to continuous-time sys-
tems (with or without equilibria) as well as discrete-time systems, two proposi-
tions are developed, which enable each drive system variable to be synchronized
with any linear combination of response system variables, for any scaling ma-
trix. A remarkable feature is that any type of synchronization defined to date
is achievable (via a scalar signal) for wide classes of dynamical systems. Note
that these classes comprise most of the chaotic (hyperchaotic) circuits, systems
and maps discovered so far, including a number of recently introduced chaotic
systems without equilibrium points. Referring to discrete-time systems, the pro-
posed framework presents an additional features, i.e., it enables exact synchro-
nization to be achieved in finite time (dead-beat synchronization). In Section 4
the advantages of the conceived framework are illustrated in detail, using a Table
that summarizes the main steps to get synchronized dynamics in a systematic
way. Finally, Sections 5 and 6 present examples of different types of synchro-
nization for both continuous-time and discrete-time systems, including a chaotic
system without equilibrium point that presents the feature of having one vari-
able with the freedom of offset boosting [19]. The considered examples include
some generalizations of the full state hybrid projective synchronization, the dis-
located synchronization, the identical (complete) synchronization, the projective
synchronization and the anti-phase synchronization.

2. General unified framework for synchronization: continuous-time systems

(with or without equilibria)

This Section introduces the part of the framework related to continuous-time
systems, with or without equilibrium points. Specifically, this Section focuses
on the class of drive systems defined by the following continuous-time state and
output equations, respectively:

ẋxx(t) = AAAxxx(t)+bbb f (xxx(t))+ ccc , (1)

y(t) = f (xxx(t))+ kkkxxx(t), (2)
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where xxx(t) ∈ ℜn×1 is the state vector, AAA ∈ ℜn×n, bbb ∈ ℜn×1 and ccc ∈ ℜn×1 are
constant matrices, f : ℜn → ℜ is a scalar nonlinear function, y(t) is a scalar syn-
chronizing output and kkk ∈ ℜ1×n is a gain vector to be determined. As pointed
out in [5], the class described by (1) includes several well-known chaotic (hy-
perchaotic) systems (Chua’s circuit, Rössler’s system, the Matsumoto-Chua-
Kobayashi circuit, the higher dimensional Chua’s circuit and the hyperchaotic
oscillator implemented in [8]). All these systems are characterized by the pres-
ence of one or more unstable equilibrium points. However, the class (1) also
includes a number of special chaotic systems without equilibrium points, known
as “chaotic systems with hidden attractor” [19, 20].

Now a general type of synchronization error is defined, which holds for any
type of synchronization defined to date. Namely, the drive system (1) and the n-
dimensional state vector x̂xx(t), describing the response system dynamics, are said
to be synchronized (according to the proposed general sense) when it results:

‖ei(t)‖=
∥∥∥∥∥

(
xi(t)−

n

∑
j=1

αi jx̂ j(t)

)∥∥∥∥∥→ 0 ast → ∞, i = 1,2, . . .n, (3)

where αi j (i = 1, 2, . . . , n, j = 1, 2, . . . , n) represent the elements of a scal-
ing matrix and, consequently, the weights of the linear combination in (3).
The general definition of synchronization error proposed herein, i.e. ei(t) =(

xi(t)−
n

∑
j=1

αi jx̂ j(t)

)
, includes any type of synchronization defined so far.

Namely, when α11 = α22 = . . . = αnn = 1 and αi j = 0, i 6= j, the condition (3)
represents the identical (complete) synchronization, whereas for α11 = α22 =
. . . = αnn = −1 and αi j = 0, i 6= j, it represents the anti-phase synchroniza-
tion. Moreover, when α11 = α22 = . . . = αnn = α and αi j = 0, i 6= j, the
projective synchronization as proposed in [11–13] is obtained. On the other
hand, when α11 6= α22 6= . . . 6= αnn and αi j = 0, i 6= j, the condition (3) rep-
resents the full state hybrid projective synchronization as defined in [14–16],
whereas for α11 = α22 = . . . = αnn = 0 and αi j 6= 0, i 6= j it describes the dis-
located synchronization [21]. Finally, when α11 6= α22 6= . . . 6= αnn and αi j 6= 0,
i 6= j, a more general type of synchronization can be obtained (more general
than the types reported in [14–16]). Since in this case each drive system vari-
able xi(t) synchronizes with a linear combination of response system variables
(αi1x̂1(t)+αi2x̂2(t)+ . . . αinx̂n(t)), this synchronization type has been recently
referred as arbitrary full state hybrid projective synchronization [22].

Given the drive system (1), the observed-based approach [5] enables the state
xxx(t) to be reconstructed by a response system (described by state vector x̂xx(t))
via a scalar function of the states y(t) and its prediction ŷ(t). The following
proposition is now given.
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Proposition 1 Given the drive system (1)–(2), let

˙̂xxx(t) = ααα−1AAAααα x̂xx(t)+ααα−1bbb f (x̂xx(t))+ααα−1ccc+ααα−1bbb(y(t)− ŷ(t)), (4)

ŷ(t) = f (x̂xx(t))+ kkkααα x̂xx(t) (5)

be the response system in the observer form, where ααα = [αi j], i = 1, . . . n,
j = 1, . . . n is the n-th order invertible matrix derived from (3). The response sys-
tem (4)–(5) and the drive system (1)–(2) achieve synchronization for any scaling
matrix ααα = [αi j], provided that all the uncontrollable eigenvalues of the synchro-
nization error system, if any, have negative real parts.

Proof By exploiting the scaling matrix ααα = [αi j], the condition (3) can be written
in matrix form as

‖eee(t)‖= ‖(xxx(t)−ααα x̂xx(t))‖ . (6)

By taking into account the drive system (1)–(2) and response system (4)–(5), the
synchronization error can be written as:

ėee(t) =
(
ẋxx(t)−ααα ˙̂xxx(t)

)

= AAAxxx(t)+bbb f (xxx(t))+ ccc−AAAααα x̂xx(t)−bbb f (x̂xx(t))− ccc−bbb(y(t)− ŷ(t))

= AAA(xxx(t)−ααα x̂xx(t))+bbb f (xxx(t))−bbb f (x̂xx(t))

−bbb( f (xxx(t))+ kkk xxx(t)− f (x̂xx(t))− kkkααα x̂xx(t))

= AAA(xxx(t)−ααα x̂xx(t))−bbbkkk (xxx(t)−ααα x̂xx(t)) = AAAeee(t)−bbbkkk eee(t). (7)

Thus, the error dynamics is described by the linear time invariant system

ėee(t) = AAAeee(t)+bbbu(t), (8)

where u(t) =−kkk eee(t) plays the role of a state feedback. The error system (8) can
be stabilized at the origin by properly computing the gain vector kkk ∈ ℜ1×n. To
this purpose, note that for (8) a coordinate transformation eee = [TTT 1 TTT 2]eee can be
found [5], where TTT 1 and TTT 2 generate the controllable-state and uncontrollable-
state subspaces, respectively. By defining AAAc = TTT T

1 AAATTT 1, AAA12 = TTT T
1 AAATTT 2, AAAnc =

TTT T
2 AAATTT 2 and bbbc = TTT T

1 bbb, system (8) can be transformed to the Kalman controllable
canonical form [5]:

[
ėeec(t)

ėeenc(t)

]
=

[
AAAc AAA12

0 AAAnc

][
eeec(t)

eeenc(t)

]
+

[
bbbc

0

]
u(t), (9)

where the eigenvalues of AAAc are controllable, i.e., they can be placed anywhere by
state feedback u(t) =−kkkeee(t), whereas the eigenvalues of AAAnc are uncontrollable,



140 G. GRASSI, A. OUANNAS, V.-T. PHAM

i.e., they are not affected by the introduction of any state feedback. Therefore,
system (9) can globally asymptotically stabilized by suitable k, provided that
the eigenvalues of AAAnc lie in the left half plane [5]. Since ‖eee(t)‖ → 0 implies
‖eee(t)‖→ 0, this means that the response system (4) and the drive system (1) are
synchronized for any weight matrix ααα via the scalar synchronizing signal (2).

Now the applicability of the approach is discussed. As pointed out ear-
lier, the class (1) includes several well-known chaotic (hyperchaotic) systems
with equilibrium points (Chua’s circuit, Rössler’s system, the Matsumoto-Chua-
Kobayashi circuit, the oscillator in [8]) as well as a number of chaotic systems
without equilibrium points [19]. By considering, for each of these systems, the
matrices A and b in (1), and by computing the matrices

[
AAAc AAA12

0 AAAnc

]
(10)

it can be readily shown that AAAnc is the null matrix for each of these systems. As
a consequence, the eigenvalues of the error system (9) are all controllable, i.e.,
they can be placed anywhere by suitable kkk. This clearly indicates the wide appli-
cability of the approach, which can be successfully applied to several chaotic and
hyperchaotic systems, with or without equilibrium points (see also the examples
in Section 5).

3. General unified framework for synchronization: discrete-time systems

This Section describes the part of the framework related to the synchro-
nization of discrete-time systems. Similarly to the previous Section, the starting
point is a general definition of synchronization error. To this purpose, given the
discrete-time drive and response systems described by the n-dimensional state
vectors xxx(k) and x̂xx(k), respectively, those two systems are said to be synchro-
nized when, for an initial condition x̂xx(0), it results

‖ei(k)‖=
∥∥∥∥∥

(
xi(k)−

n

∑
j=1

αi jx̂ j(k)

)∥∥∥∥∥→ 0 as k → ∞, i = 1,2, . . . ,n. (11)

where αi j (i = 1, 2, . . . , n, j = 1, 2, . . . , n) represent the weights of the linear
combination in (11). Similarly to the previous Section, a remarkable advantage
of the general definition of synchronization error provided herein, i.e. ei(k) =(

xi(k)−
n

∑
j=1

αi jx̂ j(k)

)
, consists in the fact that it includes any type of synchro-
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nization defined so far, i.e., identical (complete) synchronization, anti-phase syn-
chronization, projective synchronization, full state hybrid projective synchroniza-
tion and dislocated synchronization. Finally, when α11 6= α22 6= . . . 6= αnn and
αi j 6= 0, i 6= j, a more general type of synchronization can be obtained, where
each drive system variable xi(k) synchronizes with a linear combination of re-
sponse system variables (αi1x̂1(k)+αi2x̂2(k)+ . . .αinx̂n(k)), i = 1, 2, . . . , n. In
discrete-time systems this synchronization type has been recently referred as ar-
bitrary full state hybrid projective synchronization [23].

Referring to the systems to be synchronized, this Section focuses on the class
of discrete-time systems defined by the following state and output equations,
respectively:

xxx(k+1) = AAAxxx(k)+bbb f (xxx(k))+ ccc, (12)

y(k) = f (xxx(k))+ kkkxxx(k), (13)

where xxx(k) ∈ ℜn×1, AAA ∈ ℜn×n, bbb ∈ ℜn×1, ccc ∈ ℜn×1, f : ℜn → ℜ, y(k) is a
scalar synchronizing output, and kkk ∈ ℜ1×n is a gain vector to be determined. The
class described by (12) includes several chaotic and hyperchaotic discrete-time
systems, that is, the logistic map, the cubic map, the Duffing map, the Gauss
map, the Lozi map and the generalized Henon map [24]. The class (12) also
includes the so-called Grassi-Miller map [16], the gingerbreadman map [18] and
the double scroll map [25].

In order to obtained a unified framework for synchronization (i.e., applicable
to both continuous-time and discrete-time systems), this Section will exploit an
observer-based approach similar to that developed in the previous Section.

Proposition 2 Given the matrices A and b in (12), if the matrix
[
bbb AAAbbb AAA2bbb . . . AAAn−1bbb

]
(14)

is full rank, then the following response system in the observer form

x̂xx(k+1) = ααα−1AAAααα x̂xx(k)+ααα−1bbb f (x̂xx(k))+ααα−1ccc+ααα−1bbb(y(k)− ŷ(k)) , (15)

ŷ(k) = f (x̂xx(k))+ kkkααα x̂xx(k) (16)

and the drive system (12)–(13) achieve dead-beat synchronization for any in-
vertible scaling matrix ααα =

[
αi j

]
, i = 1, . . . n, j = 1, . . . n, provided that the

eigenvalues of [AAA−bbbkkk] are placed at zero by suitable kkk.

Proof First of all, it is worth noting that the condition (11), applied to drive and
response systems, can be written in matrix form as

‖eee(k)‖= ‖(xxx(k)−ααα x̂xx(k))‖ . (17)
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By taking into account equations (12)–(13) and (15)–(16), it follows that the
error dynamics is described by:

eee(k+1) = (xxx(k+1)−ααα x̂xx(k+1))

= AAAxxx(k)+bbb f (xxx(k))+ ccc−AAAααα x̂xx(k)−bbb f (x̂xx(k))− ccc−bbb(y(k)− ŷ(k))

= AAA(xxx(k)−ααα x̂xx(k))−bbbkkk (xxx(k)−ααα x̂xx(k))

= AAAeee(k)−bbbkkk eee(k). (18)

The error dynamics (18) can be written as

eee(k+1) = AAAeee(k)+bbbu(k) (19)

with u(k) = −kkkeee(k). Since the matrix (14), which represents the controllability
matrix of the linear time-invariant error system (19), is full rank by assumption,
all the eigenvalues of (19) can be placed at the origin by suitable kkk, indicating that
dead beat control is achieved [26]. Thus, the error dynamics will reach exactly
zero in n steps. This means that drive and response systems will exactly syn-
chronize for any scaling matrix ααα , confirming that any type of synchronization
is achievable in n steps.

Referring to the applicability of the method, it can be readily verified that the
matrix (14) is full rank for several well-known chaotic (hyperchaotic) discrete-
time systems. Specifically, all the maps mentioned at the beginning of this Sec-
tion satisfy the condition that the matrix (14) is full rank. According to Proposi-
tion 2, all these chaotic (hyperchaotic) discrete-time systems achieve dead beat
synchronization for any scaling matrix ααα , confirming the wide applicability of
the conceived technique.

4. Comments on the proposed general unified framework for synchronization

The aim of this Section is to show that the proposed observer-based approach
represents a general unified framework for synchronizing chaotic (hyperchaotic)
systems via a scalar signal. By “general” it is meant that any type of synchro-
nization defined to date is achievable using the proposed scheme. By “unified”
it is meant that the framework holds for both continuous-time systems (with or
without equilibrium points) as well as discrete-time systems.

In order to summarize the main features of the proposed framework, a Table
has been built (see Table 1).

By looking at Table 1, it should be clear that the proposed observer-based
approach truly represents a unified framework for achieving any type of syn-
chronization defined to date. The most important advantages of the framework
can be summarized as follows:
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i) it can be applied to several chaotic (hyperchaotic) continuous-time sys-
tems, including those without equilibria;

ii) it can be applied to several chaotic (hyperchaotic) maps;

iii) it enables any type of synchronization defined to date to be achievable;

iv) it adopts a scalar synchronizing signal only;

v) it represents a rigorous approach to synchronization (being the method
based on two propositions);

vi) it represents a systematic approach to synchronization (being the technique
based on some specified steps, see Table 1);

vii) it can be readily applied, since the only design parameter is k (to be com-
puted according to Table 1).

As a final remark, we would pointed that, regardless of the fact that a system
has equilibrium or not, the control problem remains the same. Consequently,
through the paper we do not claim that we are introducing “for the first time
chaos synchronization in systems without equilibria”. Rather than this, we are
applying the proposed design tool to systems without equilibria, showing that
synchronization can be effectively achieved in these systems, provided that the
uncontrollable eigenvalues of the error system, if any, have negative real parts.

5. Examples of different types of synchronization: continuous-time systems

with and without equilibria

This Section illustrates some examples of different types of synchronization
that can be achieved in continuous-time systems with equilibrium points as well
as without equilibrium points.

5.1. Systems with equilibria: generalization of full state hybrid projective

synchronization and dislocated synchronization

The 4-D hyperchaotic Rössler’s system [5] is a well-known example of
continuous-time system characterized by (unstable) equilibrium points. Its hy-
perchaotic dynamics are represented in the form (1) as:




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


=




0 −1 −1 0
1 0.25 0 1
0 0 0 0
0 0 −0.5 0.05







x1(t)

x2(t)

x3(t)

x4(t)


+




0
0
1
0


x1(t)x3(t)+




0
0
3
0


. (20)
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Given the matrices A and b in (20), it can be readily shown that AAAnc is the null
matrix. As a consequence, all the eigenvalues of the error system (9) are control-
lable, i.e., they can be placed anywhere by suitable k. By placing them at -1, the
output of (12) becomes the scalar signal

y(t) = x1(t)x3(t)+ [−3.3712 −0.9561 4.3 −5.8126]

× [x1(t) x2(t) x3(t) x4(t)]
T , (21)

whereas the dynamics of the observer (4) are described by




˙̂x1(t)
˙̂x2(t)
˙̂x3(t)
˙̂x4(t)


= ααα−1




0 −1 −1 0
1 0.25 0 1
0 0 0 0
0 0 −0.5 0.05


ααα




x̂1(t)

x̂2(t)

x̂3(t)

x̂4(t)




+ααα−1




0
0
1
0


x1(t)x3(t)+ααα−1




0
0
3
0


+ααα−1




0
0
1
0


(y(t)− ŷ(t)), (22)

ŷ(t) = x̂1(t)x̂3(t)+ [−3.3712 −0.9561 4.3 −5.8126]

×ααα [x̂1(t) x̂2(t) x̂3(t) x̂4(t)]
T , (23)

where ααα is any invertible fourth-order scaling matrix whereas (23) is the observer
prediction of the output (21). Proposition 1 guarantees that the response system
(22) and the drive system (20) achieve any type of synchronization via the scalar
control signal (21).

In order to show the effectiveness of the approach, simulations have been
carried out by choosing the following scaling matrix:

ααα =




1 3 0 4
0 2 0 0
0 5 1 3
0 0 0 2


 . (24)

Figure 1 depicts the attractor of the drive system (20) in the (x1,x2)-plane (left)
and the attractor of the response system (22) in the (x̂1, x̂2)-plane (right). Ac-
cording to (24), the variable x1(t) is synchronized with the linear combination
of response system variables given by x̂1(t)+3x̂2(t)+4x̂4(t), whereas the vari-
able x2(t) is synchronized with 2x̂2(t). Clearly, the shape of the response system
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attractor in the (x̂1, x̂2)-plane is completely different from the shape of the drive
system attractor in the (x1,x2)-plane, although the two systems achieve synchro-
nized dynamics via the scalar signal (21). This type of synchronization represents
a generalization of the full state hybrid projective synchronization (recently re-
ferred as arbitrary full state hybrid projective synchronization [22]).

Figure 1: Generalization of the full state hybrid projective synchronization: attractor of
the drive system (20) in the (x1,x2)-plane (left) and attractor of the response system (22)
in the (x̂1, x̂2)-plane (right). Note that the shapes of the attractors in the two plots are
completely different

Now an example of dislocated synchronization [21] is shown. Simulations
have been carried out by considering the drive system (20)–(21) and by taking
the response system (22)–(23) with the following scaling matrix:

ααα =




0 2 0 3

4 0 0 0

0 5 0 0

−2 −4 −6 1


 . (25)

By looking at (25), it is clear that the drive variables x1(t), x2(t) and x3(t) are
allowed to synchronize with all the response system variables except x̂1(t), x̂2(t)
and x̂3(t), respectively.

From (25) it follows that x2(t) is synchronized with 4x̂1(t), whereas the vari-
able x3(t) is synchronized with 5x̂2(t). Figure 2 plots the drive system attrac-
tor in the (x2,x3)-plane (left) and the response system attractor in the (x̂2, x̂3)-
plane (right).
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Figure 2: Dislocated synchronization: drive system attractor in the (x2,x3)-plane (left)
and response system attractor in the (x̂2, x̂3)-plane (right)

5.2. Systems without equilibria: identical (complete) synchronization

In recent years, there has been an increasing interest in special chaotic sys-
tems without equilibrium points [19–20]. They are called “chaotic systems with
hidden attractors”, since the absence of equilibria makes difficult to identify the
location of the attractors [19–20]. Herein, attention is focused on a recently re-
ported system, which presents the additional feature of having one variable with
the freedom of offset boosting [19]. The system dynamics can be written in the
form (1) as:




ẋ1(t)
ẋ2(t)
ẋ3(t)


=




0 1 0
−1 0 1
0 0 0






x1(t)
x2(t)
x3(t)




+




0
0
1


(−0.8(x1(t))

2+(x3(t))
2)+




a

0
2


. (26)

It can be readily shown that system (26) has no equilibrium point for any positive
value of a. Moreover, note that the variable x2(t) can be boosted [19] by varying
the parameter a. Despite the absence of equilibria, system (26) possesses chaotic
attractors for any positive value of a, as shown in reference [19].

Since the field of synchronizing chaotic systems without equilibrium points
is almost unexplored, now it will be shown that the conceived tool can be also
applied to these systems. By choosing a = 1, it can be readily shown that the
matrix AAAnc derived from (26) is the null matrix, indicating that all the eigenvalues
of the error system (9) are controllable. By placing them at [−1 −2 −3], the
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output of (26) becomes the scalar control signal

y(t) = (−0.8(x1(t))
2+(x3(t))

2)+ [0 10 6] [x1(t) x2(t) x3(t)]
T . (27)

The observer of (26) can be written in the form (4) as




˙̂x1(t)
˙̂x2(t)
˙̂x3(t)


= ααα−1




0 1 0
−1 0 1
0 0 0


ααα




x̂1(t)
x̂2(t)
x̂3(t)


+ααα−1




0
0
1


(−0.8(x1(t))

2+(x3(t))
2)

+ ααα−1




1
0
2


+ααα−1




0
0
1


(y(t)− ŷ(t)), (28)

ŷ(t) =
(
−0.8(x̂1(t))

2+(x̂3(t))
2)+[0 10 6]ααα[x̂1(t) x̂2(t) x̂3(t)]

T , (29)

where equation (29) represents the observer prediction of the control signal (27).
Although ααα can be any invertible third-order scaling matrix, herein the identity
matrix is selected:

ααα =




1 0 0
0 1 0
0 0 1


 (30)

with the aim to show that identical (complete) synchronization can be readily
achieved. To this purpose, Figure 3 (left) displays the time-behavior of the vari-
ables x1(t) and x̂1(t), whereas Figure 3 (right) plots the time-behavior of the
variables x2(t) and x̂2(t). From these pictures it can be seen that the drive system
variables quickly track the response system variables, indicating that identical
(complete) synchronization is effectively achieved between the drive system (26)
and the response system (28).

Figure 3: Identical (complete) synchronization in chaotic systems without equilibria:
time-behaviors for the variables x1(t) and x̂1(t) (left) and for the variables x2(t) and
x̂2(t) (right). The time-scale has been selected with the aim to show how the drive system
variables track the response system variables
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6. Examples of different types of synchronization:

discrete-time systems

Examples of generalization of full state hybrid projective synchronization as
well as anti-phase synchronization will be illustrated herein. The approach is
applied to a novel piecewise-linear map, which is capable of displaying a hyper-
chaotic attractor referred as “the discrete hyperchaotic double-scroll” [25]. The
system is described by the following difference equations [25]:

[
x1(k+1)
x2(k+1)

]
=

[
1 0
b 0

][
x1(k)

x2(k)

]
+

[ −a

0

]
h(x2(k)), (31)

h(x2(k)) = (2m1x2(k)+(m0−m1)(|x2(k)+1|− |x2(k)−1|))/2, (32)

where a and b are bifurcation parameters whereas (32) is the piecewise linear
function originally introduced in Chua’s circuit. System (31) displays the hy-
perchaotic double scroll (see Fig. 4a) when a = 3.36, b = 1, m0 = −0.43 and
m1 = 0.41. Since the matrix (14) is full rank, the eigenvalues of [AAA− bbbkkk] are
placed at zero by kkk = [−0.2976 0], indicating that the scalar control signal (13)
can be written as:

y(k) = h(x2(k))−0.2976x1(k). (33)

Thus, the nonlinear observer (15)-(16) is described by

[
x̂1(k+1)
x̂2(k+1)

]
= ααα−1

[
1 0
b 0

]
ααα

[
x̂1(k)

x̂2(k)

]
+ααα−1

[ −a

0

]
h(x̂2(k))

+ ααα−1
[ −a

0

]
(y(k)− ŷ(k)) , (34)

ŷ(k) = h(x̂2(k))+ [−0.2976 0]ααα [x̂1(k) x̂2(k)]
T . (35)

According to Proposition 2, any type of dead-beat synchronization is achieved
between systems (31) and (34), that is, the error dynamics will reach exactly zero
after two steps for any choice of the invertible scaling matrix ααα . In order to show
the effectiveness of the approach, some simulations have been carried out for
different scaling matrices. For example, by taking the following full matrix:

ααα =

[
0.5 −1
1 2

]
, (36)

the results are shown in Figure 4, which depicts the hyperchaotic attractor of the
drive system (31) in the (x1,x2)-plane and the attractor of the response system
(34) in the (x̂1, x̂2)-plane. Note that this type of synchronization represents a gen-
eralization of the full state hybrid projective synchronization, where the matrix
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is a diagonal one. This generalization has been recently referred as arbitrary full
state hybrid projective synchronization [23]. The error dynamics for the variable
x1(k) clearly indicate that the error is exactly zero after two steps (see Fig. 4c).

a) b)

c)

Figure 4: Generalization of full state hybrid projective synchronization: a) hyperchaotic
attractor of the drive system (31) in the (x1,x2)-plane; b) attractor of the observer (34) in
the (x̂1, x̂2)-plane (right) for the scaling matrix (36); c) the error e1(k) as a function of k

By properly selecting the matrix ααα , any type of synchronization can be
achieved. For example, by taking (36) as −III, that is:

ααα =

[ −1 0
0 −1

]
, (37)

the anti-phase synchronization is obtained. This synchronization type is dis-
played in Fig. 5, where the variables x1(k) and x̂1(k) are plotted as a function
of the time k. From Fig. 5 it can be observed that, for k = 1, x1(k) and x̂1(k) as-
sume different values, reported in black color and red color, respectively. How-
ever, starting from k = 2, the variable x1(k) assumes values that are the opposite
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of those assumed by the variable x̂1(k) (and vice versa), indicating that the er-
ror is exactly zero after two steps and anti-phase synchronization is effectively
achieved.

Figure 5: Anti-phase synchronization: the values of the variables x1(k) and x̂1(k) are
plotted as a function of k (in black color and red color, respectively). The error is exactly
zero for k =2, indicating that dead-beat anti-phase synchronization is achieved

7. Conclusion

This paper has presented a novel general unified approach to synchronize
chaotic systems via a scalar signal. The framework presented in Table 1 (Sec-
tion 4) is the only one to simultaneously include the following remarkable fea-
tures: i) it can be applied to several chaotic (hyperchaotic) continuous-time sys-
tems, including those without equilibria; ii) it can be applied to several chaotic
(hyperchaotic) maps; iii) it enables any type of synchronization defined to date
to be achievable; iv) it adopts a scalar synchronizing signal only; v) it repre-
sents a rigorous approach to synchronization (being the method based on two
propositions); vi) it represents a systematic approach to synchronization (being
the technique based on some specified steps); vii) it can be readily applied, since
the only design parameter is the gain vector kkk. We would stress that the original
contribution of the present manuscript consists in providing a tool to manage any
synchronization types, for both continuous-time systems (including those with-
out equilibria) and discrete-time systems, in a general unified fashion. Several
synchronization examples have been reported, for continuous-time systems (in-
cluding a chaotic system with no-equilibrium and a variable with the freedom of
offset boosting) as well as for discrete-time systems.
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