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Abstract

Bayesian VAR (BVAR) models offer a practical solution to the parameter
proliferation concerns as they allow to introduce a priori information on
seasonality and persistence of inflation in a multivariate framework. We
investigate alternative prior specifications in the case of time series with a clear
seasonal pattern. In the empirical part we forecast the monthly headline inflation
in the Polish economy over the period 2011-2014 employing two popular BVAR
frameworks: a steady-state reduced-form BVAR and just-identified structural
BVAR model. To evaluate the forecast performance we use the pseudo real-
time vintages of timely information from consumer and financial markets. We
compare different models in terms of both point and density forecasts. Using
formal testing procedure for density-based scores we provide the empirical
evidence of superiority of the steady-state BVAR specifications with tight
seasonal priors.
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1 Introduction
Consumer prices are continuously under influence of various price factors including
shocks from many markets (food, energy, commodities, and currency, to name the
most important). Many of these price signals are observed within a current month
or a quarter when the forecast is prepared. It is a common practice to take their
persistent role into account by using a multivariate, dynamic framework like a vector
autoregression (VAR) model. We argue that using monthly data in a regular short-
term forecasting requires a careful treatment of their seasonality. Shrinkage of an
autoregressive parameter space is also helpful in addressing the curse of dimensionality
problem (see Bańbura et al., 2010). A prior knowledge on these time-series properties
of inflation brings an important input into both point and interval predictions.
Since Sims (1980) introduced VAR models into macroeconomics it took many years
to develop the framework into a standard tool for a short-term forecasting (for
a historical perspective see Geweke and Whiteman, 2006). The main drawback
of empirical VARs relies in the increased number of parameters that need to
be estimated. The excessive parameter uncertainty brings serious limitations in
producing reliable out-of-sample density forecasts. In a VAR framework with seasonal
time series these limitations become binding very fast. For example, at monthly data
frequency a five-variate VAR model of lag order 12 requires as many as 360 parameters
to be estimated including parameters at seasonal dummies and at lags of each variable.
On the one hand, rich parametrization of seasonal VARs poses in-sample overfitting
concerns and increases the risk of poor out-of-sample forecasting performance. On
the other hand, once a big shock on any of important but omitted variables occurs
then the mean and variance of the forecast could be severely affected.
To make VAR model useful in forecasting researchers introduce restrictions on
parameter space in a Bayesian framework by means of prior distributions. Frequently
the starting point is a reduced-form BVAR model with a system of prior distributions
known as Minnesota-type priors. These ideas directly come from a seminal paper of
Litterman (1979) and were further developed in Doan et al. (1984) and Litterman
(1986). The Minnesota priors on parameters at consecutive lags of the dependent
variables take the form of univariate Gaussian distributions with variances being
combinations of a relatively small number of hyperparameters. The role of these
hyperparameters consists of shrinking the dynamics of multivariate time series around
a priori beliefs on the time-series properties of the data. The shrinkage for each of
the variables is usually centred towards simple univariate stationary autoregressive
(AR) or unit-root random walk (RW) processes.
In the applied research values of the Minnesota hyperparameters in BVAR models
are commonly set by simple rules of thumb or by optimizing some out-of-sample
forecasting criteria, e.g. RMSFE (root mean squared forecast error), in a training
period. The most popular in this conventional approach are the following heuristic
rules: harder shrinkage of VAR parameters towards zero for longer lags, scaling
variances of parameters of other variables by standard deviations of errors from AR

D. Stelmasiak, G. Szafrański
CEJEME 8: 21-42 (2016)

22



Forecasting the Polish Inflation . . .

model and decaying them faster towards zero than for their own lags. Following
Litterman (1979) these priors are often combined with an assumption of a diagonal
error covariance matrix with variances estimated in an ’empirical Bayes’ fashion. Since
then many methodological enhancements and refinements are proposed. Kadiyala and
Karlsson (1993) report small improvements in forecasting accuracy from BVARs with
conjugate normal-diffuse or normal-Wishart priors. The proper treatment of initial
observations and inexact differencing, both using Theil mixed estimation approach,
are also very popular (see Giannone et al., 2014). An up-to-date review of BVAR
methods and their forecasting performance for inflation and GDP in terms of mean
squared error (MSE) is provided by Karlsson (2013).
The issue of Bayesian shrinkage becomes notably apparent while working with large
VAR models. The more variables are included, the tighter priors should be considered
(see Bańbura et al., 2010). Overparameterization might also be mitigated by imposing
ad hoc exclusion restrictions with hierarchical priors as in Bayesian Lasso by Belmonte
et al. (2014) or by means of soft shrinkage as in stochastic search variable selection
method by Koop (2013). If macroeconomic forecasting scenario focuses on a short
term, the impact of possible policy changes is commonly assumed to be negligible. In
the case of long-run analysis, notwithstanding extension of time-varying parameters
(TVP) may be helpful. For a detailed study of TVP-BVAR model with a stochastic
volatility see Primiceri (2005) with corrigendum by del Negro and Primiceri (2015),
Koop (2012) and Koop (2013).
The studies of seasonal time series in a BVAR framework have been under-represented
till 90s of the XXth century (see a short review in the next section). Most of
the inflation forecasting exercises with BVAR models focus on regular (seasonally
adjusted) or annualized inflation rates without much attention to the seasonal
factors. Among not so many BVAR studies for inflation in Central and Eastern
European countries rather simple frameworks are applied (e.g. Simionescu and Bilan,
2013). Some of these studies also include density forecasting (Franta et al., 2014).
Considering seasonal patterns in a BVAR framework is, however, quite important for
obtaining accurate density and interval forecasts of monthly time series.
In this paper we investigate the ability of two popular BVAR specifications to forecast
the monthly inflation in the Polish economy over the period 2011-2014. The selected
approaches are: structural BVAR model with Sims and Zha (1998) prior distributions
and reduced-form BVAR with steady-state assumptions on priors à la Villani (2009).
The research is in line with current empirical studies in inflation forecasting: Giannone
et al. (2015), Carriero et al. (2015), where Bayesian shrinkage is carefully explored
as the cure for a curse of dimensionality.
As our target variable is Consumer Price Index (CPI) in month-over-month terms
we consider different methods of introducing seasonality in these frameworks. To
this end, we simultaneously apply two types of seasonality. The first one involves
monthly seasonal dummies in BVAR model. We examine the role of informative vs
uninformative priors for the seasonal parameters, as well as the priors on conditional
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seasonal means as in Sims and Zha (1998) vs unconditional (steady-state) priors as
in Villani (2009). The second type of seasonality is introduced in both models via
VAR lag order appropriate to the data frequency. The intuition is that these lags
introduce some short-term (transitory) adjustments to a generally stable (long-run)
seasonal pattern.
The selected BVAR models (described in Section 2) differ in many aspects including
the treatment of seasonal factors (conditional vs unconditional means), prior
distributions (more or less informative priors on seasonality in terms of mean and
variance), model identification (structural vs reduced-form VAR), and the degree of
shrinkage in Minnesota-type prior hyperparameters. From a theoretical point of view
these approaches are hard to compare and they are not observationally equivalent.
Technically, there is also an important distinction in terms of time for computing
multi-period forecast distributions. The advantage of Sims and Zha (1998) priors
approach is a closed approximate analytical formula for posterior distributions not like
in Villani (2009) approach. The question is whether there is a forecasting performance
payoff for computational difficulties and model specification burdens between the
two BVAR specifications. We answer these questions in a pseudo real-time data
experiments in Section 3. With data collected in the middle of each month we imitate
the impact of information flowing from domestic consumption and financial markets.
In Section 4 we evaluate the out-of-sample performance of forecasting models for CPI
both in terms of point forecast criteria (RMSFE, MFE and MAFE) and in terms
of density-based predictive scores (log score and CRPS). To show the advantages
of Bayesian shrinkage in forecasting we also provide the comparisons to a simple
benchmark i.e. a conventional VAR estimated by maximum likelihood method and
apply Amisano and Giacomini (2007) test for that purpose. Finally, Section 5 presents
the general conclusions from our forecasting experiments.

2 Forecasting models
The usefulness of VAR analysis in forecasting stems from the convenient features of a
reduced-form model in which several endogenous variables are explained by lags only
(own and of other variables). Firstly, in the case of the stationary time series the
reduced-form VAR models are easy to estimate with standard methods (OLS or ML).
Secondly, they offer a straightforward prescription for making iterated forecasts.
Introducing prior information into VAR model was postulated from the very
beginning by Sims (1980). Bayes theorem is a straightforward way to challenge
expert opinions on macroeconomic data with data themselves. It is a formal method
of combining marginal prior distributions of parameters with likelihood function of
data to obtain joint posterior distribution of parameters. Clearly, with contemporary
simulation methods (MCMC) it is possible to produce multi-period density forecasts
from BVAR models by drawing samples of the dependent variables from posterior
(predictive) distributions (Karlsson, 2013).
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The main question is how to incorporate prior beliefs into a system of unrestricted
equations. Minnesota-type priors in the form of univariate RW for non-stationary
variables or AR for stationary variables are the most popular basis for the informed
beliefs on the time-series dynamics. There are many variations on this system of
priors including different assumptions on distribution of error covariance matrix
(diffuse or Wishart), initial observations or ’sum-of-coefficients’ restrictions (for a
review and in-deep treatment see Karlsson, 2013). The elements of Minnesota priors
are also widely used in two popular BVAR frameworks: in the structural form by
Sims and Zha (1998) and in the steady-state form by Villani (2009). We consider
these specifications in the context of forecasting seasonal time series.
Introducing seasonality in BVAR framework is crucial in short-term inflation
predictions. With predictive distribution at hand it explicitly enables to account
for the part of forecast uncertainty of seasonal origin. Moreover, Bayesian methods
under very general assumptions may produce interval forecasts, which are exact (not
asymptotic) and consistent with a priori beliefs on seasonal properties of the data.
Although VAR framework is well suited for dealing with different types of seasonality
in the data, only few studies follow this line of research. The forecasters (with a
few exceptions) tend to adjust information set in advance and perform modelling on
regular (seasonally adjusted) variables. This approach is also followed in the most
elaborated study of forecasting performance of different BVAR models by Carriero et
al. (2015). There are few important exceptions to the rule. Some of them are quite
out-dated. Canova (1993) models stochastic seasonality with ’sum-of-coefficients’
restrictions motivated by frequency domain approach. Raynauld and Simonato
(1993) consider three types of prior distributions (all in the spirit of Minnesota-type
priors): a prior with a multiplicative seasonal transformation and seasonal decay
factor, RW prior with seasonal dummies, and seasonal RW. They indicate that
a simple specification with seasonal dummies is supported by US macroeconomic
data. This simple approach together with a lag order appropriate for the seasonal
frequency (4 for quarterly data and 12 for monthly data) is repeated in many BVAR
studies for inflation (e.g. Benalal et al., 2004), although for monthly data it leads to
an extensive number of parameters.
We start with a VAR model (1) in a structural form and a system of priors from
Sims and Zha (1998) paper, henceforth S-Z priors or S-Z specification:

y′tA0 =
12∑
l=1

y′t−lAl + s′tD + ε′t for each t = 1, . . . , T (1)

where:

yt – m× 1 vector of endogenous variables,

A0 – m×m full-rank, triangular contemporaneous matrix,

Al – m×m matrices of parameters at yt−l i.e. lags for l = 1, ..., 12,
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st – 12× 1 vector of 12 seasonal dummy variables,

D – 12×m matrices of seasonal parameters in each of m equations,

εt – m×1 vector of m independent shocks from standard Gaussian distributions
N(0, 1).

The model (1) corresponds to a reduced-form VAR after a multiplication by an
inverse of A0 matrix. Cholesky decomposition of reduced-form error covariance
matrix provides an exact identification of the VAR model. Notice that the ordering
of variables in a structural VAR has some effect on the interpretation of seasonal
parameters. It is hard to imagine that there is a precise prior knowledge on
the distribution of seasonal factors of inflation conditional on the realizations of
other variables in the system. Hence, in S-Z specification we order CPI at first
place which enables us to interpret seasonal parameters independently from other
contemporaneous endogenous variables.
To describe the prior distributions we write model (1) in a stacked matrix form:

Y A0 = X+A+ + E,

where Y and E are T ×m matrices of observables and shocks, respectively, X+ is a
T × (12m + 12) matrix of observations on lagged dependent variables and seasonal
dummies, and A+ = (A′1, . . . , A′12, D

′)′ is a stacked (12m + 12) ×m matrix of VAR
parameters.
The formula for a joint posterior distribution, q(a|Y ), of a vectorized stacked
parameters matrix a = vec(A), where A = (A′0, A′+)′, combines a multivariate normal
likelihood function, L(Y |a), with a factorized joint prior distribution:

q(a|Y ) ∝ L(Y |a)× p(a0)× p(a+|a0) (2)

where p(a0) ∝ 1 is an improper prior on a0 = vec(A0), and p(a+|a0) is a normal prior
for right-hand side VAR parameters with a mean ã+ = vec(A0,0) and a diagonal
covariance matrix Ψ̃. Both, prior means, being conditional on diagonal elements
of A0, and prior variances govern the shrinkage of VAR towards univariate random
walks. Variances in Ψ̃ of parameters at lags l of variable yit in equation j, ψ̃al,i,j ,
and at seasonal dummies st, ψ̃s, are calculated from hyperparameters λ0, λ1, λ3, λ5
according to:

ψ̃al,i,j =
(
λ0λ1

σilλ3

)2
and ψ̃s = (λ0λ5)2. (3)

The elements of Ψ̃ are common in every equation which facilitates the posterior
inference. Prior variances differ between dependent variables yit by a scaling factor σi
which we set equal to the pre-sample standard deviations of variables in the system.
Note that a prior dependence on the data of this type is a common property in
applied modelling (see Karlsson, 2013). A priori we also give a preference to rather
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slow, harmonic decay of variance with lags (l = 1, . . . , p) of dependent variables λ3 = 1
as in Sims and Zha (1998). We set the following values of other hyperparameters:
λ0 = 0.2 for overall tightness, λ1 = 0.9 for a relative tightness around the random
walk prior, and λ5 = 1.2 > λ1, giving relatively less informative prior on dispersion
of seasonal factors. In a sensitivity check we also ask whether loose (less informative)
priors on seasonal factors are as successful as informative (tight) priors.
With this set of S-Z priors under a triangular A0 matrix we simulate draws from the
marginal posterior of Φ = A0A

′
0 using Wishart distribution and then we generate

draws of A+ conditional on A0. Next we calculate reduced-form VAR parameters
A+A

−1
0 and recursively produce density forecasts simulating primitive shocks from

zero-mean multivariate normal distribution with a covariance Φ−1. For a detailed
treatment and discussion we refer the reader to Karlsson (2013), section 4.
As a second approach we consider a stationary reduced-form BVAR of Villani (2009)
defined for deviations from seasonal (unconditional) means:

A(L)(yt − Ξst) = εt, (4)

where:

yt – m× 1 vector of endogenous variables,

st – 12× 1 vector of seasonal dummies,

Ξ – m× 12 matrices of seasonal means for each of m variables,

A(L) – lag polynomial of deviations from seasonal means,

εt – m × 1 vector of error terms having multivariate normal distribution
(εt ∼ N (0,Σ)), possibly correlated between equations but not in time.

Independent prior structure is assumed as in Villani (2009):

p(Γ,Ξ,Σ) = p(vec(Γ))p(vec(Ξ))p(Σ) (5)

where:

p(vec(Γ)) is a normal prior distribution of stacked VAR parameters
Γ′ = (A′

1, . . . , A
′

p),

p(vec(Ξ)) is a normal prior on steady-state seasonal factors,

p(Σ) is an inverse Wishart for the error covariance matrix.

A priori we assume the mean of Ξ equal to seasonal factors calculated from the
pre-sample data (for inflation) or zeros (for other variables). Because a prior on the
steady state is supposed to be reasonably informative we set a common tightness
hyperparameter on every seasonal factor in Ξ, ξ = 0.0005. What is more, tight priors
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on steady-state are reported to be notably successful in out-of-sample forecasting
experiments (see Wright, 2013). The prior similar to the Minnesota prior concept is
used for Γ as in Villani (2009). We centre our beliefs on VAR parameters around
OLS estimates of VAR(12) on a pre-sample data as the usual random-walk prior is
inconsistent with the steady-state prior assumption. Prior variances at the VAR
parameters, κAl , which are responsible for the shrinkage, are of a reduced and
symmetric Minnesota form: κal =

(
κ1
lκ3

)2. At first we set these hyperparameters
in a loose prior fashion to κ1 = 0.1 and κ3 = 1 (harmonic decay) and check the
sensitivity of forecasting results in respect to their variation.
As there is no closed formula for joint posterior distribution of non-linear model
described by Equation (4), we use three-blocks Gibbs sampler to draw each of the three
groups of model parameters Γ,Ξ,Σ conditional on the other two groups as described
by Villani (2009). To forecast we draw 50 thousand realizations of parameters
from their conditional posteriors including 10 thousand as burn-in subsample. It
is well documented that tight priors for steady-state parameters are necessary for the
convergence of Gibbs sampler for Villani model – see Villani (2009), Wright (2013).
Nevertheless, we have performed carefully all convergence univariate diagnostics tests
available in CODA package (Plummer et al., 2006). There are no significant signs
of any convergence problems in MCMC chains. Additionally, up to 250 thousand
draws have been tested, however, as long as we are interested in average forecast
performance, the differences are negligible.
These simulation methods are quite time consuming in five-equation seasonal
BVAR(12) we apply. That was probably one of the important reasons to omit
the Villani steady-state specification from the most elaborated exercise of BVAR
specifications by Carriero et al. (2015). The empirical question whether there are
any gains from steady-state assumptions on seasonal pattern, which justify these
computational costs, is an important value added of this research.
It is worth noting that models (1) and (4) may be observationally equivalent if neither
persistence nor seasonality is present in the data under consideration. If both features
are observed then these approaches determine a different co-dependence of both
elements in the corresponding VAR models. S-Z prior system leads to a standard
linear VAR model but at the cost of difficulties in introducing conditional seasonality
(conditional on any of right-hand side variables). While in S-Z approach unconditional
(long-run) seasonal means are non-linear functions of other model parameters, in
Villani approach they are explicitly inferred from the prior distribution but the
corresponding forecasting model is non-linear in respect of the parameters. In a
consequence sampling from a posterior conditional distributions with a three-block
Gibbs sampler in Villani BVAR increases the computation costs of inference but it
facilitates the way of introducing seasonal beliefs compared to VAR with S-Z priors.
In forecasting experiment performed in this paper we compare the aforementioned
approaches of S-Z and Villani with a benchmark frequentist VAR model. The
benchmark VAR model with seasonal dummies is of the same lag order and it is
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estimated with the maximum likelihood method.
The code for estimating S-Z model is based on Brandt and Davis (2014) MSBVAR:
Markov-Switching, Bayesian, Vector Autoregression Models and it is invoked in R
(CRAN). Gibbs sampling routine of the steady-state BVAR uses Armadillo library
(C++) and it is developed from O’Hara (2014) package Bayesian Macroeconometrics
in R. In order to include prior structures on seasonal factors properly, all of the
original routines are modified by Damian Stelmasiak.

3 Data and forecasting exercise
We use a real-time dataset to forecast monthly index of consumer inflation in Poland
from November 2011 to October 2014, which we call verification period (while the
initial estimation period is from January 1999 till October 2011). Over both periods,
the headline CPI inflation index in month-over-month terms reveals clear but non-
deterministic seasonal pattern, which according to SARIMA model decomposition
accounts for one third of overall inflation variance (see Figure 1). Hence seasonally
adjusted CPI is a covariance stationary time series with quite persistent autoregressive
pattern, it is straightforward to apply multivariate VAR frameworks with seasonal
terms described in Section 2.
The other endogenous variables selected in the BVAR specifications are prices from
representative consumption markets and from financial market. The prices are
transformed to log monthly changes or yields, respectively. These are:

1. fuel prices (weekly data collected by e-petrol.pl) – 95 octane fuel (averaged
over gas stations),

2. food prices (weekly data from the Common Agriculture Policy reports of
the Polish Ministry of Agriculture and Rural Development) – represented by
pasteurized milk price (averaged over products with different fat content),

3. daily data on nominal exchange rates (PLN/EUR),

4. and daily interest rates on 2Y bonds (log yields in annual terms).

The changes in these prices directly and indirectly translate into changes in the
prices of other goods that constitute substantial part of consumer basket. These
prices are also observed with higher frequency than inflation. Weekly and daily data
releases are used as a source of timely information about current consumption market
conditions and its future expectations (observed at financial markets). We apply the
following approach to the mixed frequency dataset in pseudo real-time experiments.
We produce monthly forecasts in the middle of the month (just after monthly CPI
releases), when we already have some observations on current month market prices.
We simply average over available daily or weekly observations from current month
to obtain pseudo-monthly data. After the end of the month we substitute it with
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Figure 1: The headline inflation index (month over month) in Poland over the period
Jan1999-Sep2014. The black solid line shows a sample average for each month

a proper monthly averages. Hence, the last market price observations in each of 36
vintages of real-time dataset are pseudo-monthly data.
To produce out-of-sample forecasts ŷt+h for h = 1, 2, . . . , 12 months ahead the vertical
alignment is performed. Because CPI is released in the middle of next month when we
already have some current information on prices from consumer and financial markets,
we put the data according to their publication date. It means that last vintage of
data from mid October 2014 consists of CPI till September 2014 and pseudo-monthly
prices till mid of October 2014. Real-time dataset also includes CPI revisions for
January published in March when new consumer basket weights are released based
on households expenditures survey from the previous year.

4 Forecast evaluation
Maximizing the precision of out-of-sample forecasts is formally not possible before
observing the forecast realizations. In this section we analyse the forecast performance
of different BVAR specifications in pseudo out-of-sample real-time exercises to shed
some light on the usefulness of various assumptions behind them. Using the training
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sample (evaluation period) may, however, result in model over-fitting (see Bańbura
et al., 2010). The problem is specifically pronounced when researchers use only the
measures of quality for the mean of forecast distribution (i.e. RMSFE, MAFE and
MFE) and the distribution departs from normality. When the policy makers are
explicitly interested in forecast uncertainty in terms of interval forecasts (commonly
named fan charts) density-based measures are of a particular interest.
Hence our goal is to evaluate marginal density of out-of-sample forecasts, we provide
a short review of density-based error measures (scores) for continuous random
variables. Between many possible measures logarithmic score (log score, LS) and
Continuous Ranked Probability Score (CRPS) are the most popular local scoring
rules corresponding with MSFE and MAFE criteria, respectively. LS and CRPS also
belong to the group of strictly proper rules. It means that for a given forecast density
they minimize the expected loss at observed forecast realizations if the density is true
(for technical details see Gneiting and Raftery, 2007). For comparability with other
point forecast errors we define log scores as negatively oriented penalties (see Gneiting
and Ranjan, 2011):

LS = −log(pi(xo)), (6)

where p(xo) is a value of predictive density function of variable X at observed forecast
realization xo.
Log scores for analytical distribution do not give rise to difficulties and have interesting
statistical interpretation as components of Bayes factor. Albeit, the measures from
Monte Carlo simulation are reported to be sensitive to the choice of prior distribution
in small samples (see Geweke and Amisano, 2010) and density approximation method
(see Carriero et al., 2015). Hence, log score applications are more popular for financial
market forecasts when the number of events is relatively vast (see Weigend and Shi,
2000). Obviously, logarithmic transformation is severe for low probability events
(Gneiting and Raftery, 2007). In the case of inflation forecasting approximation
problems may occur when inflation rate is very low or exceptionally high.
Accordingly, alternative density-based score is considered. Let F (x) denote a
cumulative distribution function (CDF) of a density forecast. CRPS measures a
squared departure of forecast CDF from empirical CDF. For a single observed value
xo CRPS is defined with the use of an indicator function 1{xo≤x}:

CRPS (F, xo) =
∫ +∞

−∞

[
F (x)− 1{xo≤x}

]2
dx. (7)

To avoid numerical integration, we consider a closed form proposed in [15]:

CRPS = E|X − xo| − 1
2E|X − X̃|, (8)

where X ∼ F and X̃ ∼ F denote independent random draws from the same forecast
CDF.
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Equation (8) describes how to approximate CRPS at x0 by simulating from the
known forecast CDF F . Both CRPS and log score offer a symmetric loss function
interpretation (Gneiting and Ranjan, 2011) but CRPS relatively rewards forecast
realizations close to the middle of the forecast density. CRPS unlike the log score
always takes positive and finite values. It is also reported to be less sensitive to
outliers (see Gneiting and Raftery, 2007).
To compare forecasts from alternative VAR specifications we use traditional point
forecasting performance measures (RMSFE, MAFE, MFE) and two density-based
scores: LS and CRPS, averaged over 24 months. The evaluation of models with all
analysed forecast errors defined as negatively oriented measures is straightforward
then. The lower these scores are the more adequate forecast density is.
In terms of RMSFE, the best scores in our empirical study are obtained using the
steady-state prior-structure à la Villani (see Equation (4)). For h = 1 (nowcasting)
the most accurate specification is the one with variances harmonically decaying at
consecutive lags (κ3 = 1) and tight prior distribution for seasonals (ξ = 0.0005). Also
for longer horizons the Villani-type priors do a good job in shrinking the parameter
space. In this case faster decaying variances (κ3 = 2) produce smaller forecast errors
(see Figure 2(a) and Table 1). Nevertheless, Villani prior specifications outperforms
(in terms of RMSFE) not only the benchmark, but also the S-Z specifications.

Table 1: RMSFE values for selected horizons
Model Specification Forecast horizon (months)

(prior type) ξ κ1 κ3 h=1 h=3 h=6 h=9 h=12

Villani

0.0005 0.1 1 0.1592 0.1627 0.1631 0.1786 0.1678
0.0005 0.1 0.1 0.1702 0.1860 0.1898 0.2070 0.1988
0.01 0.1 1 0.2029 0.2006 0.1843 0.2030 0.1907
0.0005 0.001 1 0.1661 0.1608 0.1598 0.1612 0.1612
0.0005 0.1 2 0.1659 0.1582 0.1500 0.1607 0.1591
1.2 (ZoS) 0.1 1 0.2942 0.2763 0.2495 0.2699 0.2594
1 0.1 1 0.2866 0.2677 0.2536 0.2619 0.2507
0.0001 0.1 1 0.1597 0.1610 0.1653 0.1776 0.1699
0.0005 (ZoS) 0.1 1 0.2028 0.1855 0.1859 0.1921 0.1888

Sims-Zha

λ1 λ3 λ5
0.9 1 1.2 0.1759 0.2144 0.1911 0.2121 0.2028
0.45 1 1.2 0.1889 0.1936 0.1901 0.2052 0.1987
0.9 3 1.2 0.1801 0.2035 0.1866 0.1986 0.1942
0.9 1 0.5 0.1880 0.2226 0.1871 0.2086 0.1988
0.9 0.5 1.2 0.1817 0.2271 0.2051 0.2196 0.2071

benchmark frequentist VAR 0.2284 0.2950 0.3170 0.3212 0.3012
The best score at each horizon is bolded; ZoS stands for zeros on seasonal parameters. Overall tightness
from S-Z specification λ0 = 0.2 preserved for comparison.
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Figure 2: Forecast performance comparison among the models, for horizons
h = 1, 2, . . . , 12 months
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(a) Root mean squared forecast errors
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(b) Logarithmic scores
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(c) Continuous Ranked Probability Scores
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Evaluating forecast density performance with log scores the Villani specification is
preferred, too (see Figure 2(b) and Table 2). For h = 1 the set of hyperparameters
ξ = 0.0005, κ1 = 0.1, κ3 = 0.1 (slow-decaying) produces the best results, while for
longer horizons a triad ξ = 0.0001, κ1 = 0.1, κ3 = 1 performs better. Please note, that
even a totally misspecified prior structure in the Villani framework (e.g. very loose
prior on seasonals, like ξ = 1) outperforms the benchmark and Sims-Zha approach
for longer horizons.

Table 2: Log scores for selected horizons

Model Specification Forecast horizon (months)
(prior type) ξ κ1 κ3 h=1 h=3 h=6 h=9 h=12

Villani

0.0005 0.1 1 -0.1321 -0.0867 -0.0689 -0.0293 -0.0258
0.0005 0.1 0.1 -0.1741 -0.1083 -0.0861 -0.0327 -0.0256
0.01 0.1 1 -0.0549 -0.0169 -0.0432 0.0010 -0.0119
0.0005 0.001 1 -0.0094 0.0163 0.0217 0.0289 0.0348
0.0005 0.1 2 -0.0611 -0.0113 -0.0136 0.0098 0.0170
1.2 (ZoS) 0.1 1 0.1872 0.1526 0.1093 0.1544 0.1379
1 0.1 1 0.1683 0.1383 0.1216 0.1386 0.1248
0.0001 0.1 1 -0.1504 -0.1147 -0.0890 -0.0513 -0.0487
0.0005 (ZoS) 0.1 1 0.0060 0.0382 0.0524 0.0785 0.0890

Sims-Zha

λ1 λ3 λ5
0.9 1 1.2 -0.1601 0.0668 0.1841 0.3894 0.3926
0.45 1 1.2 -0.0535 0.1737 0.3225 0.4841 0.5162
0.9 3 1.2 -0.1039 0.1091 0.2185 0.3152 0.3315
0.9 1 0.5 -0.0905 0.0950 0.2012 0.4151 0.4392
0.9 0.5 1.2 -0.1651 0.0672 0.1807 0.3903 0.4115

benchmark frequentist VAR -0.0016 0.2033 0.3022 0.3665 0.3697
The best score at each horizon is bolded; ZoS stands for zeros on seasonal parameters. Overall tightness
from S-Z specification λ0 = 0.2 preserved for comparison.

Negative MFE values correspond to downward trend in CPI inflation at evaluation
period. Thus, in terms of mean errors, almost all of the models overestimate CPI
(see Table 3). Again, Villani priors stand out, clearly outperforming the benchmark
(specifically for longer horizons). These remarks are also valid for MAFE criterion.
Applying the Villani steady-state priors decreases MAFE up to 50% in relation to the
benchmark (see Table 4). Only in nowcasting (h = 1) MAFE does not differentiate
between Villani, Sims-Zha and benchmark. In terms of CRPS, the advantage of
Villani framework is less pronounced (40% improvement over the benchmark, see
Table 5) but the conclusions are similar to MAFE results. It seems that in the
BVAR model steady-state assumptions on seasonal factors are more appropriate for
modelling Polish inflation than the conditional mean assumptions as in S-Z approach.
Forecasting performance based on Villani prior exhibits a greater sensitivity to the
hyperparameter ξ, which represents a priori beliefs on seasonal factors tightness.
Very loose prior (ξ = 1) results in a poor forecasting performance (see Figure 3).
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Starting calibration with ξ = 1 and gradually decreasing the ξ decreases forecast errors
considerably. Nonetheless, this procedure is limited since optimal hyperparameter
value (i.e. minimizing scores) is achieved around 1×10−4 (see Figure 3). The process
of calibrating hyperparameters may be time-consuming, but as shown in Tables 1-5,
with reasonably chosen triad ξ, κ1, κ3 the Villani specification is able to outperform
not only the frequentist VAR, but also the Sims-Zha BVAR.

Table 3: Mean forecast errors for selected horizons
Model Specification Forecast horizon (months)

(prior type) ξ κ1 κ3 h=1 h=3 h=6 h=9 h=12

Villani

0.0005 0.1 1 -0.0280 -0.0406 -0.0510 -0.0576 -0.0531
0.0005 0.1 0.1 -0.0571 -0.0733 -0.0874 -0.0991 -0.1008
0.01 0.1 1 -0.0295 -0.0477 -0.0435 -0.0557 -0.0501
0.0005 0.001 1 0.0110 0.0192 0.0201 0.0196 0.0211
0.0005 0.1 2 -0.0038 0.0007 -0.0013 -0.0010 0.0053
1.2 (ZoS) 0.1 1 -0.0608 -0.0842 -0.0740 -0.0848 -0.0821
1 0.1 1 -0.0644 -0.0764 -0.0837 -0.0911 -0.0862
0.0001 0.1 1 -0.0287 -0.0380 -0.0518 -0.0578 -0.0555
0.0005 (ZoS) 0.1 1 -0.0287 -0.0392 -0.0489 -0.0530 -0.0502

Sims-Zha

λ1 λ3 λ5
0.9 1 1.2 -0.0561 -0.1060 -0.1042 -0.1045 -0.1136
0.45 1 1.2 -0.0409 -0.0823 -0.0978 -0.0982 -0.1081
0.9 3 1.2 -0.0473 -0.0831 -0.0922 -0.0907 -0.0962
0.9 1 0.5 -0.0571 -0.0981 -0.0874 -0.0856 -0.0957
0.9 0.5 1.2 -0.0640 -0.1202 -0.1182 -0.1192 -0.1184

benchmark frequentist VAR -0.0487 -0.1683 -0.2206 -0.2227 -0.2195
The best score at each horizon is bolded; ZoS stands for zeros on seasonal parameters. Overall tightness
from S-Z specification λ0 = 0.2 preserved for comparison.

In opposition to Villani approach, calibrating hyperparameters in S-Z framework is
more straightforward. Firstly, an estimation of S-Z model is faster what gives a
possibility to check large number of hyperparameters combinations in a short time.
Secondly, results of such a grid search procedure lead to conclusion that forecast error
measures are not very sensitive to the hyperparameters choice. In terms of RMSFE
criterion in nowcasting (h = 1), we find λ1 and λ5 set to the value of around one (or
more) a reasonable combination (see Figure 4). While hyperparameters decreasing
towards zero, RMSFE rises significantly faster in the case of λ5 than λ1. In practice,
however, a setting with lambdas lower than one is not really very misspecified. In
terms of e.g. CRPS, all of the specifications perform very similarly (see Table 5).
Log scores reveal greater discrepancies, although in general BVAR models with S-Z
priors show weakness here, being outperformed by both, Villani specifications and
benchmark model for longer horizons (see Table 2).
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Table 4: MAFE values for selected horizons
Model Specification Forecast horizon (months)

(prior type) ξ κ1 κ3 h=1 h=3 h=6 h=9 h=12

Villani

0.0005 0.1 1 0.1337 0.1333 0.1349 0.1477 0.1420
0.0005 0.1 0.1 0.1423 0.1536 0.1550 0.1686 0.1680
0.01 0.1 1 0.1755 0.1671 0.1545 0.1723 0.1639
0.0005 0.001 1 0.1368 0.1273 0.1269 0.1284 0.1281
0.0005 0.1 2 0.1409 0.1234 0.1201 0.1267 0.1255
1.2 (ZoS) 0.1 1 0.2372 0.2177 0.2037 0.2194 0.2143
1 0.1 1 0.2422 0.2176 0.2015 0.2112 0.2083
0.0001 0.1 1 0.1349 0.1285 0.1354 0.1467 0.1427
0.0005 (ZoS) 0.1 1 0.1646 0.1471 0.1499 0.1565 0.1533

Sims-Zha

λ1 λ3 λ5
0.9 1 1.2 0.1287 0.1706 0.1593 0.1668 0.1696
0.45 1 1.2 0.1533 0.1600 0.1566 0.1702 0.1670
0.9 3 1.2 0.1442 0.1666 0.1547 0.1634 0.1637
0.9 1 0.5 0.1296 0.1719 0.1481 0.1718 0.1613
0.9 0.5 1.2 0.1292 0.1834 0.1672 0.1742 0.1739

benchmark frequentist VAR 0.1604 0.2290 0.2648 0.2648 0.2614
The best score at each horizon is bolded; ZoS stands for zeros on seasonal parameters. Overall tightness
from S-Z specification λ0 = 0.2 preserved for comparison.

Table 5: CRPS values for selected horizons
Model Specification Forecast horizon (months)

(prior type) ξ κ1 κ3 h=1 h=3 h=6 h=9 h=12

Villani

0.0005 0.1 1 0.1027 0.1062 0.1074 0.1141 0.1114
0.0005 0.1 0.1 0.1036 0.1116 0.1144 0.1225 0.1202
0.01 0.1 1 0.1212 0.1220 0.1156 0.1239 0.1191
0.0005 0.001 1 0.1124 0.1129 0.1129 0.1138 0.1140
0.0005 0.1 2 0.1091 0.1101 0.1084 0.1124 0.1125
1.2 (ZoS) 0.1 1 0.1673 0.1576 0.1459 0.1559 0.1510
1 0.1 1 0.1650 0.1543 0.1475 0.1517 0.1474
0.0001 0.1 1 0.1018 0.1039 0.1068 0.1125 0.1105
0.0005 (ZoS) 0.1 1 0.1235 0.1208 0.1220 0.1253 0.1253

Sims-Zha

λ1 λ3 λ5
0.9 1 1.2 0.1041 0.1306 0.1334 0.1592 0.1590
0.45 1 1.2 0.1151 0.1328 0.1471 0.1693 0.1724
0.9 3 1.2 0.1092 0.1306 0.1357 0.1481 0.1491
0.9 1 0.5 0.1098 0.1349 0.1342 0.1620 0.1626
0.9 0.5 1.2 0.1053 0.1350 0.1364 0.1612 0.1608

benchmark frequentist VAR 0.1265 0.1660 0.1831 0.1877 0.1812
The best score at each horizon is bolded; ZoS stands for zeros on seasonal parameters. Overall tightness
from S-Z specification λ0 = 0.2 preserved for comparison.
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Figure 3: Log scores of Villani prior-structure model dependent on seasonal tightness
hyperparameter ξ given κ1 = 0.1, κ3 = 1
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Figure 4: Root mean squared forecast error as a function of hyperparameters λ5 and
λ1 in S-Z BVAR model given λ0 = 0.2 and λ3 = 1. Forecast horizon h = 1
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In order to confirm the results in a statistical manner, the test of Amisano-Giacomini
(Amisano and Giacomini, 2007) is performed on log scores and CRPS, separately.
Null hypothesis states that average scores, S̄A and S̄B , obtained in pair of models A
and B are equal. It is tested against an alternative hypothesis of forecasting advantage
of model B over A with the following test statistics:

tAG = S̄A − S̄B
σ̂

√
n (9)

where σ̂ is calculated as in Gneiting and Ranjan (2011) and n is a number of forecasts.
Statistics tAG is asymptotically standard normal under the null. All the scores
investigated in this paper are negatively oriented, thus we reject the null in favour of
model B if tAG exceeds one-tailed critical value.
We consider the following three pairs of model specifications to be tested: (1) S-Z
vs Villani, (2) benchmark vs Villani, (3) benchmark vs S-Z. Possibly best prior
specifications of S-Z and Villani specifications are used. The detailed results are
given in Table 6 (at significance level of 0.1).
The best model with Villani prior system performs better than S-Z BVAR (see results
for pair (1) in Table 6) and benchmark (see pair (2), respectively) for all horizons
except for nowcasting (h = 1). In the case of pair (3), we cannot reject the null of
average scores equality measured by log scores (for any horizon), while CRPS from
S-Z approach are significantly lower for longer horizons (see Table 6). The conclusion
is, Villani outperforms the benchmark and S-Z for any horizon except for one month,
while S-Z superiority to the benchmark is questionable in terms of Amisano-Giacomini
test at significance level of 0.1.
Summing up, longer horizon forecasting performance of Villani BVAR is well
shown with all of the point- and density-based error measures (see Figure 2).
However, nowcasting performance from among: Villani, benchmark and Sims-Zha
specifications, is quite indistinguishable in terms of MFE, MAFE and CRPS. Only
RMSFE and log score show some clear differences in favour of Villani.

5 Final remarks
Undoubtedly, among the examined specifications BVAR model with steady-state prior
structure offers the potential to produce superior pseudo out-of-sample forecasts of the
Polish inflation in the examined period. However, what should be highlighted, BVAR
model with Sims-Zha priors, being less complex in structure, provides comparable
inflation forecasts even with quite uninformative prior assumptions on seasonal
factors. It also outperforms frequentist VAR in terms of CRPS. Therefore, we regard
Sims-Zha BVAR as a useful tool for forecasting inflation in Poland, too.
The type of prior distribution used in steady-state Villani approach produces
predictions that are generally superior to Sims-Zha approach and to a benchmark
frequentist VAR both in terms of point forecasts (RMSFE, MFE, and MAFE) and
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Table 6: Results of Amisano-Giacomini tests of forecast performance equality. ’1’
indicates a rejection of the null hypothesis in favour of the second model in pair,
while ’0’ implies forecasting performance equality

Models compared Horizon Log score CRPS
Pair (1): h=1 0 0

h=3 1 1
S-Z (λ0 = 0.2, λ1 = 0.9, λ3 = 1, λ5 = 1.2) h=6 1 1
vs Villani (ξ = 0.0005, κ1 = 0.1, κ3 = 1) h=9 1 1

h=12 1 1

Pair (2): h=1 0 0
h=3 1 1

benchmark (freqVAR) h=6 1 1
vs Villani (ξ = 0.0005, κ1 = 0.1, κ3 = 1) h=9 1 1

h=12 1 1

Pair (3): h=1 0 0
h=3 0 1

benchmark (freqVAR) h=6 0 1
vs S-Z (λ0 = 0.2, λ1 = 0.9, λ3 = 1, λ5 = 1.2) h=9 0 1

h=12 0 1
Significance level at 0.1, forecast horizon in months.

density forecasts (significant differences in log score and CRPS). BVAR models
with Sims-Zha priors are second best choice being generally less sensitive to the
hyperparameters choice and seasonality beliefs than Villani approach. With more
than 350 parameters to be estimated in the selected five-variate VAR(12) models
tight and informative priors are necessary to produce forecasts with a precision
superior to VAR estimated with ML method. There are however some limits to
the Minnesota-type shrinkage in both BVAR frameworks. The research supports a
view that moderate values of Minnesota-type hyperparameters is the most successful
in producing adequate point and density forecasts. Following this approach gains are
considerably smaller in nowcasting than in forecasting for longer horizons, namely up
to 12 months ahead.
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