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Abstract

News might trigger jump arrivals in financial time series. The "bad" news and
"good" news seem to have distinct impact. In the research, a double exponential
jump distribution is applied to model downward and upward jumps. Bayesian
double exponential jump-diffusion model is proposed. Theorems stated in the
paper enable estimation of the model’s parameters, detection of jumps and
analysis of jump frequency. The methodology, founded upon the idea of latent
variables, is illustrated with simulated data.
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1 Introduction
News concerning the companies, macroeconomic releases, cataclysms or wars has
a huge impact on prices of shares, derivative securities, yields, commodities etc.
(Milgrom 1981). Markets often react in a spontaneous way on flowing news. The
reactions manifest themselves as jumps in time series.
There are models where jumps and small changes of values are considered
simultaneously. Examples of such specifications include the jump-diffusion models
and their discretizations (e.g. Ball and Torous (1983), Honore (1998), Ramezani
and Zeng (1998), Kou (2002), Lin and Huang (2002), Hanson andWestman (2002),
Hanson, Westman, and Zhu (2004), Barndorff-Nielsen and Shephard (2004), Piazzesi
(2005), Barndorff-Nielsen and Shephard (2006b), Barndorff-Nielsen and Shephard
(2006a), Yu (2007), Ramezani and Zeng (2007), Synowiec (2008), Weron (2008), Rifo
and Torres (2009), Ane and Metais (2010), Ait-Sahalia and Jacod (2012), Lee 2012,
Frame and Ramezani (2012), Kostrzewski (2012a), Kostrzewski (2012b), Kostrzewski
(2014a)). One of the best known jump-diffusion model is the Merton model (Merton
(1976)). In the Merton model, the jumps appear at random moments of time governed
by the exponential distribution, whereas the number of jumps and their magnitudes
are driven by the Poisson process and the normal distribution, respectively. The
process of prices is continuous between jumps – just as in the Black-Scholes model
(Black and Scholes (1973)).
It is generally known that the investors’ reaction on "bad" and "good" news is different
(crashophobia, Jackwerth and Rubinstein (1996)). In modelling time series it is a
common way to account for this by employing distinct distributions for the negative
and the positive jumps. An example of such an approach is to apply a double
exponential distribution. In this case the negative and the positive jump distributions
are exponential with some (distinct) parameters. In the Merton model, jump values
are modeled via a normal distribution. However, if we replace the normal distribution
with the double exponential one, we get a specification in which the negative and the
positive jumps are handled separately. In this paper, we concentrate on discrete
version of such constructions. In the jump-diffusion framework, the distribution of
logarithmic returns is given by an infinite mixture of normal distributions. In practice,
estimation of this model’s parameters is conducted for some model approximation
given by finite mixtures. The most famous approximation of the Merton model is the
Bernoulli jump-diffusion model (Ball and Torous (1983)), which allows for at most a
single jump per a unit of time (e.g. a day). The same idea is applied to the jump-
diffusion model with the double exponential jump distribution. Such specification
was considered by Kou (2002) in the context of pricing derivative securities and it is
known as the Kou model. Moreover, it was analysed by Ramezani and Zeng (2007).
This model is a special case of the Pareto-Beta jump-diffusion specification proposed
by Ramezani and Zeng (1998), where two Poisson processes govern the arrival rate of
"bad" and "good" information.
In this paper, we consider discretization of the double exponential jump-
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diffusion model, called the DEJD model. It is equivalent (under an appropriate
parametrizations) to the model considered by Kou (2002), Ramezani and Zeng (2007)
and Frame and Ramezani (2012). Under the DEJD specification, a single Bernoulli
process controls jumps arrivals in returns, whereas the magnitudes of the upward
and the downward jumps are generated by the double exponential distribution.
The aim of the paper is to develop a Bayesian framework for the DEJD model
under (some) proper priors. The idea underlying the statistical model is based on
introducing latent variables. The technique of introducing the latent variables, in
the framework of Bernoulli jump-diffusion model with a normal distribution of jump
value, was proposed by Lin and Huang (2002). Moreover, we give a recipe how to
conduct the Bayesian inference in practice, providing schemes of relevant numerical
algorithms. Frame and Ramezani (2012) proposed the Bayesian specification for the
equivalent mathematical model. They considered non-informative prior specifications
with an exception of the jump intensity parameter. Bayesian framework for models
with normal jump values is considered by Rifo and Torres (2009), Lin and Huang
(2002), Kostrzewski (2012b) and Kostrzewski (2014a). The Merton model, Kou model
and DEJD model are used in portfolio choice, pricing derivative securities and risk
analysis. From a practical point of view, a reliable method for estimation of this model
is of utmost importance. Finally, let us clarify that we are preoccupied with detecting
jumps rather than relating them with, e.g., macroeconomic releases. The latter has
been attempted by, e.g., Piazzesi (2005), Lee (2012) and Błędowska-Sójka (2012).
The remainder of the paper is organized as follows. In Section 2, the theoretical
details of the DEJD model are presented. The Bayesian DEJD model is defined in
Section 3. Moreover, we propose numerical algorithms based on MCMC methods,
which make Bayesian inference possible to apply. In Section 4, computational results
are reported. The paper ends with some brief conclusions. The proofs of the proposed
theorems are provided in the Appendix.

2 The DEJD process
Consider a standard Wiener process W = (Wt)t≥0, a Poisson process N = (Nt)t≥0
with the intensity λ > 0, and independent random variables Λ = (Qj)j≥1 such that
Qj has a double exponential distribution with density

fQj (x) = pDηD exp (ηDx) I(−∞,0) (x) + pU ηU exp (−ηU x) I[0,∞) (x) , (1)

where ηU > 0, ηD > 0, pD > 0, pU > 0, pD +pU = 1. Let us assume that W , N and Λ
are independent. Finally, S = (St)t≥0 denotes the price process of some risky asset.
The logarithm of S is governed by a jump-diffusion process that constitutes the
solution of the equation:

d (ln St) =
(

µ − 1
2

σ2
)

dt + σdWt + d

(
Nt∑
i=1

Qi

)
.
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It might be shown that

St = S0 exp

((
µ − 1

2
σ2
)

t + σWt +
Nt∑
i=1

Qi

)
,

ln
(

St+∆

St

)
=
(

µ − 1
2

σ2
)

∆ + σ (Wt+∆ − Wt) +
Nt+∆∑

i=Nt+1
Qi, ∆ > 0.

The last equation defines the process of the log-returns over a time interval ∆.
The process is built of two components: the (pure) diffusion part,(

µ − 1
2

σ2
)

∆ + σ (Wt+∆ − Wt) ,

represent continuous variations, wheras the (pure) jump component,
Nt+∆∑

i=Nt+1
Qi,

reflects abnormal (extreme) movements in returns. There are three sources of
randomness: W , N and Λ, affecting S. The (continuous) price behaviour between
jumps is described by the geometric Brownian motion, W . The arrival rate of jumps
is described by the Poisson process, N , and the jump magnitudes – by Λ. The process
S depends on six unknown parameters: µ, σ, λ, pU , ηU and ηD.
Before the Bayesian framework for the DEJD model is discussed (see Section 4), we
provide some basics underlying the very specification of the model in question. The
density of logarithmic rates of return, ln

(
St+∆

St

)
, is an infinite mixture:

∞∑
k=0

exp (−λ∆) (λ∆)k

k!
fk (x) , (2)

where {fk}∞
k=0 are densities related to distributions of W and Λ (Ramezani and Zeng

(2007)). Because the series given by (2) is infinite, the density is intractable. Consider
an approximation

∞∑
k=0

exp (−λ∆) (λ∆)k

k!
fk ≈

M∑
k=0

exp (−λ∆) (λ∆)k

k!
fk (3)

for some M > 0. The approximation restricts the number of jumps over any time
interval ∆ to at most M . The case of M = 0 indicates no jumps over interval ∆.
Let us restrict further considerations to the discrete time framework. Time series
(x1, x2,...) for

xi = ln
(

Sti+1

Sti

)
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is observed at (t1, t2, . . . ). Moreover, ∆ ≡ ti+1 −ti > 0 is a fixed time interval between
following observations. Denote the vector of parameters as θ = (µ, σ, λ, pU , ηU , ηD),
where θ ∈ R × (0, ∞) × (0, ∞) × (0, 1) × (0, ∞) × (0, ∞). If we normalize the
approximation given by (3), we obtain the conditional data density (given parameters,
θ, and the number of jumps over any time interval ∆, M):

p (x| θ; M) =
M∑

k=0

wkfk (x) , (4)

where:

wk = (λ∆)k

k!

 M∑
j=0

(λ∆)j

j!

−1

In the remainder of this research we assume M = 1, so that

p (x| θ; M = 1) = 1
1 + λ∆

fX (x) + λ∆
1 + λ∆

fX+Q (x) , (5)

where fX = f0, fX+Q = f1, X =
(
µ − 1

2 σ2)∆ + σ∆Wt, Q ∼ fQ for:

fQ (x) = pDηD exp (ηDx) I(−∞,0) (x) + pU ηU exp (−ηU x) I[0,∞) (x)

The first term on the right-hand side of (5) is referred to as the diffusion component,
whereas the second one - the jump-diffusion component. The model in which
logarithmic rates of return are assumed to follow the distribution given by (5) is
further referred to as the DEJD model.
Note that for the Kou model (Kou (2002)) the density of logarithmic rates of return
is given by:

p (x| θ; M = 1; Kou) = (1 − λ∆) fX (x) + λ∆fX+Q (x) ,

for λ∆ < 1. It is easy to see that

p

(
x

∣∣∣∣(µ, σ,
λ

1 + λ∆
, pU , ηU , ηD

)
; M = 1; Kou

)
= p (x| θ; M = 1) ,

and for λ∆ < 1

p (x| θ; M = 1; Kou) = p

(
x

∣∣∣∣(µ, σ,
λ

1 − λ∆
, pU , ηU , ηD

)
; M = 1

)
.

In other words, these two mathematical structures are equivalent (up to the
parametrization). Ramezani and Zeng (2007) and Frame and Ramezani (2012) assume
that the distribution of logarithmic returns is given by p (x| θ; M = 1; Kou). They
denote such structure by DEJD. Due to the equivalence mentioned above, the process
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and model described in my paper are also called DEJD. Note that the process is only
the discrete version of the jump-diffusion process.
A weight ratio of the jump-diffusion and the diffusion weight:

λ∆
1+λ∆

1
1+λ∆

= λ∆

equals the weight ratio:
exp (−λ∆) λ∆

exp (−λ∆)
= λ∆

in the original model (2). Further considerations are limited only to the DEJD
model. In what follows, for simplicity, density (5) is denoted as p ( ·| θ) rather than
p ( ·| θ; M = 1).

3 The Bayesian DEJD model
A Bayesian statistical model is defined by the joint density:

p (x, θ) = p (x |θ ) p (θ) ,

where x = (x1, . . . , xn) is the observed data, θ is a vector of unknown parameters,
p (x |θ ) is a sampling density and p (θ) is a prior density. The inference rests upon the
posterior density p (θ |x ) of θ given data x (Bernardo and Smith (2002)). If x1, . . . , xn

are mutually independent, then

p (θ |x ) = p (x |θ ) p (θ)
p (x)

=
p (θ)

n∏
i=1

p (xi |θ )∫
Θ p (θ)

n∏
i=1

p (xi |θ ) dθ
.

Given x, p (x |θ ) – as a function of θ – is called the likelihood function, whereas

p (x) =
∫

Θ
p (θ)

n∏
i=1

p (xi |θ ) dθ

is the marginal data density, which is constant with respect to θ, so that

p (θ |x ) ∝ p (θ)
n∏

i=1
p (xi |θ ) .

In the present section we set the DEJD model in the Bayesian framework. To
facilitate the process, we apply the following reparametrization: µ

′ = µ − 1
2 σ2,
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h = 1
σ2 , L = λ∆, so that θ =

(
µ

′
, h, L, pU , ηU , ηD

)
. When one analyses a

time series which is (or, rather, is believed to be) a trajectory of a jump-diffusion
process, then one does not actually know if a given data-point observation has been
generated by the pure diffusion or the jump-diffusion component. In other words,
one cannot determine which component of the series in (5), i.e. fX (x) or fX+Q (x) is
"responsible for" the observation. To manage the problem let us introduce latent
variables ξ = (ξ1, . . . , ξn), where ξi ∈ {−1, 0, 1} and P (ξi = −1| θ) = L

1+L pD,
P (ξi = 0| θ) = 1

1+L , P (ξi = 1| θ) = L
1+L pU . The value ξi = 0 means no jump at

t = i∆. The values ξi = −1 and ξi = 1 mean that jump occurs and its value
is negative or positive, respectively. Moreover, it is convenient to introduce latent
variables J = (J1, . . . , Jn) corresponding to the jump value, where

p (Ji = j |θ, ξi = −1) = ηD exp (ηDj) I(−∞,0) (j) , (6)
p (Ji = j |θ, ξi = 0) = δ0 (j) ,

p (Ji = j |θ, ξi = 1) = ηU exp (−ηU j) I(0,∞) (j) ,

where δ0 (j) =
{

1, j = 0
0, j ̸= 0 is the Kronecker delta. Then, the (2n + 6)-sized vector

of all the unknown quantities is denoted by:

(θ, ξ, J) =
(

µ
′
, h, L, pU , ηU , ηD, ξ1, ..., ξn,J1, ..., Jn

)
.

Moreover,

p (xi |θ, ξi, Ji ) = p (xi |θ, Ji ) = (7)

= 1√
2π

√
h

∆
exp

(
−1

2
h

∆

(
xi − µ

′
∆ − Ji

)2
)

.

The Bayesian model is given by:

p (x, θ, ξ, J) = p (x |θ, ξ, J ) p (θ, ξ, J) =
= p (x |θ, J ) p (θ, ξ, J) .

Let the prior structure for (θ, ξ, J) be defined as:

p (θ, ξ, J) = p
(

µ
′ |h
)

p (h) p (L) p (pU ) p (ηU ) p (ηD) ·

·
n∏

i=1
p (Ji |ξi, ηD, ηU , L )

n∏
i=1

p (ξi |pU , L ),

where

p (h) = pG (h; νh, Ah), where pG (h; a, b) ∝ ha−1 exp (−hb) I(0,∞) (h) is the
density of a gamma distribution,
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p
(

µ
′ |h
)

= ϕ
(

µ
′ ; µ0, (hAµ)−1

)
, where ϕ

(
µ

′ ; m, v
)

is the density of a normal
distribution with mean m and variance v,

p (L) = pχ2(ν) (L), where pχ2(ν) (L) ∝ L
ν
2 −1 exp

(
− L

2
)
I(0,∞) (L) is the density

of a χ2 distribution with ν degrees of freedom,

p (ηU ) = pG

(
ηU ; νU,η, A

U,η

)
, p (ηD) = pG

(
ηD; νD,η, A

D,η

)
,

p (pU ) = pB (pU ; aU , bU ), where pB (pU ; α, β) ∝ pα−1
U (1 − pU )β−1 is the density

of a beta distribution,

P (ξ = (l1, . . . , ln) |θ ) = Πj∈{−1,0,1}w
nj

j ,
where nj = # {i ∈ {1, 2, . . . , n} : li = j}, w−1 = L

1+L pD, w0 = 1
1+L ,

w1 = L
1+L pU ,

p (Ji = xi |θ, ξi = −1) = pG (−xi; 1, ηD) ∝ exp (xiηD) I(−∞,0) (xi),

p (Ji = xi |θ, ξi = 1) = pG (xi; 1, ηU ),

p (Ji = xi |θ, ξi = 0) = δ0.
Posterior characteristics of the unknown quantities are calculated via the Markov
Chain Monte Carlo (MCMC) methods (Gamerman and Lopes (2006)), combining
the Gibbs sampler, the independence and the sequential Metropolis-Hastings
algorithms, as well as the acceptance-rejection sampling (Chib and Greenberg (1995)).
The theorems below make the algorithm ready to use.
Theorem 1 Under the above assumptions:

1. p
(

µ
′
, h
∣∣∣x, θ\{µ′ ,h}, ξ, J

)
∝

pG

h; n/2 + νh,
1
2

ns
∆ + Ah + 1

2

Aµn∆
(

µ0 − x − J

∆

)2

Aµ + n∆

 ·

·ϕ
(

µ
′ ;

µ0Aµ +
(
x − J

)
n

Aµ + n∆
,

1
h (Aµ + n∆)

)

2. p
(
L
∣∣x, θ\L, ξ, J

)
∝ LN+ γL

2 −1 exp
(
− L

2
) 1

(1+L)n ,

where N = n−1 + n1, nj = # {i ∈ {1, 2, ..., n} : li = j}

3. p
(
pU

∣∣x, θ\pU
, ξ, J

)
= pB (pU ; n1 + aU , n−1 + bU )

4. p
(
(ηD, ηU )

∣∣x, θ\(ηD,ηU ), ξ, J
)

∝
pG

(
ηD; (nD,ξ + νD,η) ,

(
A

D,η
− ND,J

))
·

·pG

(
ηU ; (nU,ξ + νU,η) ,

(
AU,η + NU,J

))
,

where ND,J =
∑n

i=1 JiI(−∞,0) (Ji), NU,J =
∑n

i=1 JiI(0,∞) (Ji),
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5. p (ξ, J |x, θ ) =
∏n

i=1 p (Ji |xi, θ, ξi ) p (ξi |xi, θ ), where

(a) P (ξi = 0|xi, θ) = 1
G

1
σ

√
∆

ϕ

(
xi − µ

′∆
σ

√
∆

; 0, 1

)

(b) P (ξi = −1|xi, θ) = 1
G

ηD exp
(

ηDxi − µ
′∆ηD + 1

2 σ2∆η2
D

)
·

·Φ

−
xi −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1

LpD,

where Φ (·; m, v) is the distribution function of a normal distribution with
a mean m and variance v.

(c) P (ξi = 1|xi, θ) = 1
G ηU exp

(
−ηU xi + µ

′∆ηU + 1
2 σ2∆η2

U

)
·

·Φ

xi −
(

µ
′∆ + σ2∆ηU

)
σ

√
∆

; 0, 1

LpU ,

(d) p (Ji = j |xi, θ, ξi = 0) = δ0 (j),

(e) p (Ji = j |xi, θ, ξi = −1) ∝ ϕ
(

j; xi − µ
′∆ + ∆

h ηD, ∆
h

)
I(−∞,0) (j),

(f) p (Ji = j |xi, θ, ξi = 1) ∝ ϕ
(

j; xi − µ
′∆ − ∆

h ηU , ∆
h

)
I(0,∞) (j)

and

G := 1
σ

√
∆

ϕ

(
xi − µ

′∆
σ

√
∆

; 0, 1

)
+ ηD exp

(
ηDxi − µ

′∆ηD + 1
2 σ2∆η2

D

)
·

·Φ

−
xi −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1

 · LpD+

+ηU exp
(

−ηU xi + µ
′∆ηU + 1

2 σ2∆η2
U

)
Φ

xi −
(

µ
′∆ + σ2∆ηU

)
σ

√
∆

; 0, 1

 ·

LpU .

The Gibbs algorithm rests upon sampling from the full conditional distributions.
Since p

(
µ

′
, h
∣∣∣x, θ\{µ′ ,h}, ξ, J

)
, p
(
ηD, ηU

∣∣x, θ\(ηD,ηU ), ξ, J
)

and
p
(
pU

∣∣x, θ\pU
, ξ, J

)
are densities of the gamma-normal, gamma and beta distributions,

sampling µ
′ ,h, pU , ηD and ηU is straightforward. Generating latent variabes ξi for

i = 1, ..., n does not pose a challenge either, as for each i variable ξi (given xi and
θ) has a discrete distribution with probabilities given in Theorem 1. Also generating
Ji under given xi, θ and ξi = −1 or ξi = 1, is easy because the distributions are
truncated normal distributions. Note that if ξi = 0, then Ji ≡ 0. Sampling from
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p
(
L
∣∣x, θ\L, ξ, J

)
is managed according to the following alternative propositions.

Proposition 2 1. The independent Metropolis-Hastings algorithm with the
candidate-generating density (2n + 1) L ∼ χ2

2N+νL

and the transition probability:

min
{

exp
(

n
(

L(m+1) − L(m)
)) [

1 + L(m+1)
]−n [

1 + L(m)
]n

, 1
}

,

from a state L(m) to L(m+1) can be used to sample from p
(
L
∣∣x, θ\L, ξ, J

)
.

2. If n − N − νL

2
> 0, then the acceptance-rejection sampling with a proposition

density of the gamma-gamma distribution (Bernardo and Smith (2002)):

p (L) = pGg

(
L; n − N − νL

2
, 1, N + νL

2

)
,

and the acceptance probability e−L/2 can be used to sample from
p
(
L
∣∣x, θ\L, ξ, J

)
, where

pGg (L; α, β, n) = βα

Γ (α)
Γ (α + n)

Γ (n)
Ln−1

(β + L)α+n I(0,∞) (L)

Γ is the gamma function, α > 0, β > 0, n ∈ {1, 2, ...}.

In practice, the condition n − N − νL

2
> 0 is often satisfied.

4 Examples
In this section, we illustrate the methodology developed above. First, the estimation
results of the DEJD model parameters for a simulated time series are presented.
Subsequently, a few comments on applications of the DEJD structure for the real-
world dataset of logarithmic rates of return are made.
All the calculations are performed in R. Numerical algorithms applied in the research
require monitoring convergence of the generated chain to its limiting stationary
distribution. Convergence of all the MCMC samplers exploited in our research
is confirmed by visual inspection of the ergodic means, standard deviations and
CUMSUM statistics plots (Yu and Mykland (1998)). The results seem to be robust
to the choice of the starting point for the MCMC procedure.
In what follows, two different prior structures are considered, with the
hyperparameters of each being displayed in Table 1. Formally, each prior specification
defines a different Bayesian model, what yields the two DEJDI , DEJDII .
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Table 1: Priors structures

Priors µ
′

Aµ νh Ah aU bU νU,η AU,η νD,η AD,η νL

I 0.1 1 5 1 1 1 2.56 0.00576 2.56 0.00576 10∆
II 0 1 5 1 1 1 0.5 1 0.5 1 10∆

4.1 Simulation case studies
A series of n = 10, 000 data points generated from the DEJD process is under
consideration. Table 2 presents posterior means and standard deviations along with
the true values of the parameters. The presented results are based on 100, 000 MCMC
draws, preceeded by 100, 000 burn-in cycles.

Table 2: Posterior means and standard deviations for simulation data and the true
parameters of the model

Model DEJDI DEJDII True
θ E (·|x) D (·|x) E (·|x) D (·|x) θ

µ 0.3262 0.0973 0.4632 0.0781 0.25
σ 0.3972 0.0043 0.4039 0.0039 0.4

pU 0.4835 0.0666 0.3055 0.0526 0.5
ηD 5.3202 0.2778 5.1647 0.2721 5
ηU 30.6779 3.7369 19.2997 2.6807 30
λ 30.6419 4.8556 21.3400 2.0318 30

The posterior means of DEJDI parameters are close to the true values. The posterior
expectations of µ, ηU and λ, calculated under DEJDII , differ substantially from the
prespecified values. Values E

(
1

ηU
|x
)

and E
(

1
ηD

|x
)

are the posterior means of

negative and positive jumps values, respectively. The value of E
(

1
ηU

|x
)

calculated
under prior II is greater than the one obtained under prior I, so the positive jumps
are (on average) greater under prior II. Note that the probability of positive jumps
pU and the jump intensity λ are greater for DEJDI . Hence, one can expect that
the number of detected positive jumps is lower for prior II, so the role of the jump
component, under the DEJDII framework, is smaller than in the case of prior I. It
seems to be supported by a greater value of the trend parameter, µ, in DEJDII .
Figure 1 displays the marginal posteriors of parameters in the DEJDI model, along
with the prior densities. The prior distributions of ηD and ηU allow for large values
of parameters. The data move the posterior probability to the left of the prior mode
and the posterior means of the parameters stay close to the true values specified for
ηD and ηU .
Figure 2 displays the marginal posteriors of parameters in the DEJDII model, along
with the prior densities. The plots reveal a considerable contribution of the data to
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the shape of marginal posteriors. The prior specifications for ηD and ηU support lower
values of the parameters. However, the data move the posterior distributions to the
right (into the right tails) towards the true values.
Only in the case of prior I, the data were strong enough to move the posteriors of ηD

and ηU close to the true values. We observe the impact of the inverse gamma prior
distribution parameters upon the posterior distribution. The parameter prior impact
on the posterior results was also observed in the case of a normal jump distribution
(the JD(M)J model, Kostrzewski (2014a)).

4.2 Discussion on applications of the DEJD model
Jumps in time series are often defined as the values exceeding some arbitrarily choosen
thresholds. Different thresholds lead to various number of jumps (Weron (2008)).
Thresholds are commonly set symmetrically either around zero or the sample mean,
and are defined as a multiply of the sample standard deviation. If the empirical
distribution of time series features e.g. a negative skewness, then symmetric thresholds
do not seem valid.
The latent variables ξi might be used to identify data points with a jump. Formally, an
event of jump appearance is equivalent to ξi = −1 or ξi = 1. Unfortunately, one does
not observe ξi, but we can assess the posterior probability of a jump: P (ξi ̸= 0 |x )
for each day i = 1, . . . , n. Let us assume that a jump occurs at the i-th period if
probability P (ξi ̸= 0 |x ) exceeds an arbitrarily choosen value of 0.5, which corresponds
to the aforementioned thresholds. However, the problem of asymmetry or symmetry
is not a matter here.
Note that independence of observations is assumed under the DEJD framework. This
assumption is difficult to accept in the case of logarithmic returns of financial data.
Regardless of not fulfilling the assumption the model was applied to a few time
series of logarithmic rates of return for which the independence was rejected. The
following observations and conclusions based on detecting and investigating jumps
correspond to some expectations and intuitions. It was observed that the values found
as jumps were values with the highest absolute values, so they might be treated as
extreme values. The frequency of jumps was low. This observation conforms with the
expectation that (Poisson’s) jumps are sporadic events. Moreover, it was noted that
higher posterior probabilities of jumps went along with higher volatility of the time
series.
A time series of the daily logarithmic growth rates of the KGHM quotations on
the Warsaw Stock Exchange from January 23, 2006 to February 22, 2010 was also
considered. KGHM is a copper producer and one of the largest Polish exporters. In
the case of this series it was noticed that thresholds, which distinguish between "small"
movements and jumps, were symmetric neither around zero nor the sample mean.
There were more negative jumps than the positive ones, which might correspond
with a fatter left-hand side tail of the sample distribution.
Moreover, the series of daily logarithmic rates of return on the S&P100 Index over the
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Figure 1: Marginal posterior (bars) and prior densities (solid line) of parameters in
the DEJDI model
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period from March 5, 1984 through July 8, 1997, and the daily logarithmic rates of
return on the closing prices of the ICE ECX future contracts expiring on 16 December,
2013, over the period 3 January, 2011 through 1 October, 2013 were also considered
(Kostrzewski (2014c)). In both cases periods of no jumps alternated with the ones of
frequent jumps, which hinted at the existence of jump clustering (the same conclusion
was drawn under the JD(M)J specifications in Kostrzewski (2012b), Kostrzewski
(2014c), Kostrzewski (2014b)). The very term "jump clustering" is analogous to the
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Figure 2: Marginal posterior (bars) and prior densities (solid line) of parameters in
the DEJDII model
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one of "volatility clustering" and means that waiting times between two consecutive
jumps tend to cluster.
The results presented above appear quite reasonable and ecourage one to think
about whether they might be acceptable also for dependent observations. If the
assumption of independence of logarithmic returns is rejected, then we can often find
a permutation of the time series for which the hypothesis of independence is not
rejected. Let us assume that we have the series of independent observations which is

M. Kostrzewski
CEJEME 7: 43-70 (2015)

56



Bayesian DEJD Model and Detection...

the permutation of the original time series. Then, we might apply the Bayesian DEJD
model for the new time series according to the theory defined above. We could also
look at the DEJD model as the mixture model defined by (5) and applied for the set
of data rather than the time series. Note that the technique of inference is the same
for any permutation of the data and is a consequence of the commutative property
of multiplication (the likelihood function is the product of densities). Therefore,
formally, the method defined above is able to divide the permuted data into two
main parts which might be labelled as "small" values and "jumps". The "jumps" are
realizations of fX+Q. Then, the "jumps" are further divided into "negative jumps" and
"positive jumps". Finally, if we reorder data to the original order we might observe
clusters of jumps. The mathematical model considered here does not feature any
structure to capture phenomeon of jump clustering explicitly. Nevertheless, the data
still might be strong enough to display this phenomeon.
However, it is crucial to test whether inference on the number, size and asymmetry
of jumps is really robust with regard to different forms of dependence, characterizing
real-world return data and modelled using mainly GARCH or SV processes.
According to the above argumentation, the DEJD structure seems to be still useful
in practice to preliminary investigation of jumps occurence in financial time series.

5 Conclusions

In the paper, the Bayesian DEJD model is developed. To employ the model in
practice, numerical techniques based on the MCMC methods are proposed. The
Bayesian statistics equipped with the MCMC mehods gives us an easy way of
estimating parameters of the DEJD model. The methodology is illustrated with
a simulation experiment. Latent variables enable detection of negative and positive
jumps and analysis of their frequency and distributions. Unfortunately, the results
might hinge on the prior assumptions. This feature is commonly observed in models
based on mixture distributions (Frühwirth-Schnatter (2006), Johannes and Polson
(2010)).
In the Merton model, the JD(M)J model and the Bernoulli jump-diffusion model the
jump value distributions are normal. If a mean of normal distribution is not equal
zero, than the distribution is asymmetric with respect to zero, so the jump-diffusion
model with a double exponential distribution and its discrete approximations, such
as the DEJD model, constitute only alternative tools of modeling asymmetric jumps.
The focus of future research will be placed upon specifications with stochastic jump
intensity, which would enhance the model structure so as to account for jump
clustering explicitly. Moreover, further studies will concentrate on jump clustering
under stochastic volatility framework in order to capture the dependence of observed
returns.
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Appendix
Lemma 3 Under the conditions stated in the paper, the likelihood function is given
by

p (x |θ, ξ, J ) = hn/2 exp

(
−1

2
h

{
ns

∆
+ n∆

(
x − J

∆
− µ

′
)2})

, (8)

where

s = 1
n

n∑
i=1

(
xi − Ji −

(
x − J

))2
,

x = 1
n

n∑
i=1

xi, J = 1
n

n∑
i=1

Ji.

Proof 4 From the independence of xi’s and (7) it may be concluded that

p (x |θ, ξ, J ) =
n∏

i=1

1√
2π

√
h

∆i
exp

(
−1

2
h

∆

(
xi − µ

′
∆ − Ji

)2
)

∝ hn/2 exp

(
−1

2
h

∆

n∑
i=1

(
xi − Ji − µ

′
∆
)2
)

.

Some algebraic calculations lead to the following formula:
n∑

i=1

(
xi − Ji − µ

′
∆
)2

= ns + n
((

x − J
)

− µ
′
∆
)2

.

It follows that
n∏

i=1
p (xi |θ, Ji ) = hn/2 exp

(
−1

2
h

{
ns

∆
+ n∆

(
x − J

∆
− µ

′
)2})

.

Lemma 5 Under the conditions stated in the paper,
1.

Aµ

(
µ0 − µ

′
)2

+ n∆
(

x − J

∆
− µ

′
)2

=
Aµn∆

(
µ0 − x−J

∆

)2

Aµ + n∆
. (9)

2. ∫ ∞

−∞

1
σ

√
∆

ϕ

(
z − µ

′∆
σ

√
∆

; 0, 1

)
ηD exp (ηD (x − z)) I(−∞,0) (x − z) dz = (10)

= ηD exp
(

ηDx − µ
′
∆ηD + 1

2
σ2∆η2

D

)
Φ

−
x −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1

 ,
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where ϕ (·; m, v) and Φ (·; m, v) are the density and the cumulative distribution
of the normal distribution N (m, v), respectively.

3. ∫ ∞

−∞

1
σ

√
∆

ϕ

(
z − µ

′∆
σ

√
∆

; 0, 1

)
ηU exp (−ηU (x − z)) I[0,∞) (x − z) dz = (11)

= ηU exp (−ηU x) exp
(

µ
′
∆ηU + 1

2
σ2∆η2

U

)
Φ
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)
σ

√
∆

; 0, 1
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= C exp
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h

ηD
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where C does not depend on j.

5. √
h

∆
ϕ

(√
h
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(
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′
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= C exp

(
−1

2
h
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[(
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′
∆
)

− ∆
h

ηU

])2
])

I(0,∞) (j) ,

where C does not depend on j.

Proof 6 Tedious, but simple calculations lead to the claims.

Theorem 7 Under the conditions stated in the paper,

1. p
(

µ
′
, h
∣∣∣x, θ\{µ′ ,h}, ξ, J

)
∝
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2. p
(
L
∣∣x, θ\L, ξ, J
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∝ LN+ γL
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1
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where N = n−1 + n1, nj = # {i ∈ {1, 2, ..., n} : li = j}
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where Φ (·; m, v) is the distribution function of a normal distribution with
a mean m and variance v.
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Proof 8 The aim is to calculate the full conditional posteriors of unknown
parameters.

1) By the prior assumptions:

p
(

µ
′
, h
)

= p
(

µ
′
|h
)

p (h)

∝ 1√
2π

√
hAµ exp

(
−1

2
hAµ (µ − µ0)2

)
hνh−1 exp (−hAh)

The full conditional distribution of
(

µ
′
, h
)

is given by:

p
(

µ
′
, h
∣∣∣x, θ\{µ′ ,h}, ξ,J

)
∝ p (x |θ, J ) p

(
µ

′
, h
)

.

From (8) it follows that

p
(

µ
′
, h
∣∣∣x, θ\{µ′ ,h}, ξ,J

)
∝ hn/2+νh−1/2 exp

(
−h

{
1
2

ns

∆
+ Ah

})
· exp

(
−1

2
h

[
Aµ

(
µ0 − µ

′
)2

+ n∆
(

x − J

∆
− µ

′
)2])

.

From (9) it may be concluded that

p
(

µ
′
, h
∣∣∣x, θ\{µ′ ,h}, ξ,J

)
∝ hn/2+νh−1 exp

−h

1
2

ns

∆
+ Ah + 1

2

Aµn∆
(

µ0 − x−J
∆

)2

Aµ + n∆




· h1/2 exp

−1
2

h (Aµ + n∆)

[
µ

′
−

µ0Aµ +
(
x − J

)
n

Aµ + n∆

]2
 .

2) From the formulas of marginal distributions:

p
(
L
∣∣x, θ\L, ξ, J

)
=

p (x |θ, ξ, J ) p
(
L
∣∣θ\L, ξ, J

)
p
(
x
∣∣θ\L, ξ, J

)
∝ p (x |θ, ξ, J ) p

(
L
∣∣θ\L, ξ, J

)
∝ p (x |θ, ξ, J ) p (J |θ, ξ ) p

(
L
∣∣θ\L, ξ

)
∝ p (J |θ, ξ ) p

(
L
∣∣θ\L, ξ

)
p
(
L
∣∣θ\L, ξ = (l1, ..., ln)

)
∝ p (L) [1 + L]−n Π1

j=−1L|j|nj .
By the independence

p
(
L
∣∣x, θ\L, ξ = (l1, ..., ln) , J

)
∝

n∏
i=1

p (Ji |θ, ξi ) p (L) [1 + L]−n Π1
j=−1L|j|nj .
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By the independence and from

p (Ji = j |θ, ξi ) = = p (Ji = j |ηD, ηU , ξi ) (14)
= δ0 (j) I{0} (ξi) + ηD exp (ηDj) I(−∞,0) (j) I{−1} (ξi) +
+ ηU exp (−ηU j) I(0,∞) (j) I{1} (ξi) (15)

it follows that

p
(
L
∣∣x, θ\L, ξ = (l1, ..., ln) , J

)
∝ p (L) LN

(1 + L)n

∝ L
N+

γL

2
−1

exp
(

−L

2

)
1

(1 + L)n .

3) Combining (14) and the prior assumptions: p
(
pU

∣∣θ\pU

)
= p (pU ) and p (ξ |θ ) =

p (ξ |pU , L ), gives

p
(
pU

∣∣x, θ\pU
, ξ, J

)
= p

(
pU

∣∣θ\pU
, ξ, J

)
=

=
p (J |θ, ξ ) p

(
pU

∣∣θ\pU
, ξ
)

p
(
J
∣∣θ\pU

, ξ
) =

= p
(
pU

∣∣θ\pU
, ξ
)

=

=
p (ξ |θ ) p

(
pU

∣∣θ\pU

)
p
(
ξ
∣∣θ\pU

) ∝ p (ξ |pU , L ) p (pU ) .

Hence,

p
(
pU

∣∣x, θ\pU
, ξ = (l1, ..., ln) , J

)
∝ p (pU ) Π1

j=−1w
nj

j

∝ p (pU ) p
n−1
D pn1

U

∝ (1 − pU )n−1+bU −1
pn1+aU −1

U .

4) Note that

p
(
ηU , ηD

∣∣x, θ\(ηU ,ηD), ξ, J
)

=
p
(
ηU , ηD, x

∣∣θ\(ηU ,ηD), ξ, J
)

p
(
x
∣∣θ\(ηU ,ηD), ξ, J

) =

=
p (x |θ, ξ, J ) p

(
ηU , ηD

∣∣θ\(ηU ,ηD), ξ, J
)

p
(
x
∣∣θ\(ηU ,ηD), ξ, J

)
Because p (x |θ, ξ, J ) = p

(
x
∣∣θ\(ηU ,ηD), ξ, J

)
, therefore

p
(
ηU , ηD

∣∣x, θ\(ηU ,ηD), ξ, J
)

= p
(
ηU , ηD

∣∣θ\(ηU ,ηD), ξ, J
)

∝ p (J |θ, ξ) p (ξ|θ) p
(
ηU , ηD|θ\ηU ,ηD

)
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By the prior assumption p
(
ηU , ηD|θ\(ηU ,ηD)

)
= p (ηU , ηD) and under

∏
i∈∅ := 1 it

follows that

p
(
ηU , ηD

∣∣x, θ\(ηU ,ηD), ξ = (l1, ..., ln) ,J
)

∝ p (J |θ, ξ = (l1, ..., ln)) ·
· p (ξ = (l1, ..., ln) |θ) p (ηU , ηD)

∝ p (ηU , ηD)
n∏

i=1
p (Ji|θ, ξi = li)

∝ p (ηU , ηD)
∏

i:li=−1

p (Ji|θ, ξi = −1) ·

·
∏

i:li=1

p (Ji|θ, ξi = 1) .

From (6) we get:

p
(
ηU , ηD

∣∣x, θ\(ηU ,ηD), ξ = (l1, ..., ln) ,J = (j1, ..., jn)
)

∝ η
n−1+νD,η−1
D exp

(
−
(
A

D,η
− ND,J

)
ηD

)
I(0,∞) (ηD) ·

· η
n1+νU,η−1
U exp

(
−
(
A

U,η
+ NU,J

)
ηU

)
I(0,∞) (ηU )

5) From the independence

p (ξ, J |x, θ ) = p (J |x, θ, ξ ) p (ξ |x, θ ) =

=
n∏

i=1
p (Ji |xi, θ, ξi ) p (ξi |xi, θ )

a) Each ξi is a discrete random variable and ξi ∈ {−1, 0, 1}. From the prior
assumptions

P (ξi = li|xi, θ) = p (xi|ξi = li, θ) P (ξi = li|θ) p (θ)
p (xi, θ)

=

= p (xi|ξi = li, θ) wli

p (θ)
p (xi, θ)

.

If li = 0, then a jump does not occur and

P (ξi = 0|xi, θ) = 1
σ

√
∆

ϕ

(
xi − µ

′∆
σ

√
∆

; 0, 1

)
1

1 + L

p (θ)
p (xi, θ)

.

b) If li = −1, then a negative jump occurs and the value of log interest rate is
a sum of the pure diffusion component and the pure jump component. In other
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words, the density p (xi|ξi = −1, θ) is a convolution of 1
σ

√
∆

ϕ

(
yi − µ

′∆
σ

√
∆

; 0, 1

)
and

ηD exp (ηDvi) I(−∞,0) (zi). From (10) we obtain

p (x|ξi = −1, θ) =
∫ ∞

−∞

1
σ

√
∆

ϕ0,1

(
z − µ

′∆
σ

√
∆

)
ηD exp (ηD (x − z)) I(−∞,0) (x − z) dz =

= ηD exp
(

ηDxi − µ
′
∆ηD + 1

2
σ2∆η2

D

)
·

· Φ

−
xi −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1


and

P (ξi = −1|xi, θ) = ηD exp
(

ηDxi − µ
′
∆ηD + 1

2
σ2∆η2

D

)
·

· Φ

−
xi −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1

 · L

1 + L
pD · p (θ)

p (xi, θ)

c) The proof is based on the same idea as in the case of li = −1. Formula (11) leads
to the result:

P (ξi = 1|xi, θ) = ηU exp
(

−ηU xi + µ
′
∆ηU + 1

2
σ2∆η2

U

)
·

· Φ

xi −
(

µ
′∆ + σ2∆ηU

)
σ

√
∆

; 0, 1


· L

1 + L
pU

p (θ)
p (xi, θ)

.

Notice that

P (ξi = 0|xi, θ) + P (ξi = −1|xi, θ) + P (ξi = 1|xi, θ) = 1,

so
G := 1

σ
√

∆
ϕ
(

xi−µ
′
∆

σ
√

∆
; 0, 1

)
+

+ηD exp
(

ηDxi − µ
′∆ηD + 1

2 σ2∆η2
D

)
· Φ

−
xi −

(
µ

′∆ − σ2∆ηD

)
σ

√
∆

; 0, 1

 · LpD

+ηU exp
(

−ηU xi + µ
′∆ηU + 1

2 σ2∆η2
U

)
Φ

xi −
(

µ
′∆ + σ2∆ηU

)
σ

√
∆

; 0, 1

 · LpU .
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d) Note that
p (Ji |xi, θ, ξi ) ∝ p (xi |θ, ξi,Ji ) p (Ji |θ, ξi ) .

Applying (7) and (6) yields

p (Ji = j |xi, θ, ξi = 0) = δ0 (j)

e) From (12) it follows that

p (Ji = j |xi, θ, ξi = −1) ∝
√

h

∆
ϕ

(√
h

∆

(
xi − µ

′
∆ − j

)
; 0, 1

)
·

· ηD exp (ηDj) I(−∞,0) (j)

∝ exp

(
−1

2
h

∆

(
j −

[(
xi − µ

′
∆
)

+ ∆
h

ηD

])2
)
I(−∞,0) (j) .

Hence,

p (Ji = j |xi, θ, ξi = −1) ∝ ϕ

(
j; xi − µ

′
∆ + ∆

h
ηD,

∆
h

)
I(−∞,0) (j)

f) The proof proceeds along the same line of reasoning as in the case of li = −1.

Proposition 9 1. The independent Metropolis-Hastings algorithm with the
candidate-generating density (2n + 1) L ∼ χ2

2N+νL

and the transition probability:

min
{

exp
(

n
(

L(m+1) − L(m)
)) [

1 + L(m+1)
]−n [

1 + L(m)
]n

, 1
}

,

from a state L(m) to L(m+1) can be used to sample from p
(
L
∣∣x, θ\L, ξ, J

)
.

2. If n − N − νL

2 > 0, then the acceptance-rejection sampling with a proposition
density of the gamma-gamma distribution (Bernardo and Smith (2002)):

p (L) = pGg

(
L; n − N − νL

2
, 1, N + νL

2

)
,

and the acceptance probability e−L/2 can be used to sample from
p
(
L
∣∣x, θ\L, ξ, J

)
, where

pGg (L; α, β, n) = βα

Γ (α)
Γ (α + n)

Γ (n)
Ln−1

(β + L)α+n I(0,∞) (L)

Γ is the gamma function, α > 0, β > 0, n ∈ {1, 2, ...}.
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In practice, the condition n − N − νL

2
> 0 is often satisfied.

Proof 10 1. The proposition is based on the following approximation:

L
N+

νL

2
−1

exp
(

−L

2

)
(1 + L)−n ≈ L

2N + νL

2
−1

exp
(

− (2n + 1) L

2

)
.

Note that (2n + 1) L ∼ χ2
2N+νL

. Some simple calculations lead to the formula for the
transition probability:

min
{

exp
(

n
(

L(m+1) − L(m)
)) [

1 + L(m+1)
]−n [

1 + L(m)
]n

, 1
}

.

2. Note that

p
(
L
∣∣x, θ\L, ξ = (l1, ..., ln) , J

)
∝ L

N+
γL

2
−1

exp
(

−L

2

)
1

(1 + L)n

< L
N+

γL

2
−1 1

(1 + L)n .

If n − N − νL

2
> 0, then s (L) = 1

Γ
(

n − N − νL

2

) Γ (n)

Γ
(

N + νL

2

) L
N+

νL

2
−1

(1 + L)n is the

density of the gamma-gamma distribution, and

p
(
L
∣∣x, θ\L, ξ = (l1, ..., ln) , J

)
s (L)

∝ exp
(

−L

2

)
is the acceptance probability.
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