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Abstract

Maximum score estimation is a class of semiparametric methods for the
coefficients of regression models. Estimates are obtained by the maximization
of the special function, called the score. In case of binary regression models
it is the fraction of correctly classified observations. The aim of this article
is to propose a modification to the score function. The modification allows
to obtain smaller variances of estimators than the standard maximum score
method without impacting other properties like consistency. The study consists
of extensive Monte Carlo experiments.
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1 Introduction

Maximum score estimators belong to the class of semiparametric estimation
techniques and are developed for regression models. Their advantage over parametric
methods like maximum likelihood is that they require less strict assumptions
about data generating process in order to obtain required properties, for example
consistency. Maximum score estimators were first introduced by Manski (1975, 1985)
for binary regression models. The term maximum score refers to the construction of
the estimator - estimated coefficients maximize a certain score which in case of binary
regression is a fraction of correctly classified observations in a sample.
The idea of Manski was later expanded in numerous ways. Horowitz (1992) introduced
a kernel function to the maximized score function, which allowed to achieve asymptotic
normality of estimates, whereas Kim and Pollard (1990) showed that the version of
Manski provided non-normal asymptotic distributions. Huang and Abrevaya (2005)
proved that the bootstrap technique cannot be used for Manski’s version whereas
Horowitz (2002) proved that it can be used for his variant. Moon (2004) analyzed
maximum score estimators for non-stationary data. Owczarczuk (2009) modified the
score function of Manski and Horowitz giving the possibility to estimate linear, binary,
tobit and truncated regression models which provided improvement over previous
techniques which were designed only for binary regression. However his version
requires an introduction of additional calibrating constants that must be set during
the estimation process.
The contribution of this paper is twofold. We show that the selected criterion, i.e.
maximal fraction of correctly classified observations in Manski and Horowitz version,
although very natural in binary regression models, is not the optimal one in terms
of the precision of estimates. The deviation from optimality is especially visible for
highly imbalanced samples, i.e. where a fraction of observation from certain class of
explained variable, say Y = 1, is large.
Additionally, we show that the modification which is a subject of this paper is
equivalent to optimal selection of calibrating constant within Owczarczuk’s (2009)
framework. In this article we analyze the impact of a calibrating constant in the
Owczarczuk (2009) version of the estimator on the variance of estimates and provide
its optimal value.
It is worth to underscore that the proposed modification inherits major properties
of the versions of Manski and Horowitz, i.e. the modification in case of using
indicator function generates non-normal asymptotic distributions of estimates and
their confidence intervals cannot be approximated by the bootstrap technique. On
the contrary using kernel functions instead of indicators has normal asymptotic
distribution and their small-sample properties may be approximated by the bootstrap.
The focus of the modification is to reduce variance.
The structure of this article is as follows. Section 2 provides overview of the
construction of maximum score estimators and briefly describes their properties,
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section 3 describes the idea of the proposed modification. Sections 4 and 5 provide
the setup and results of Monte Carlo experiments. Last section concludes the article.

2 Maximum score estimators
The following data generating process is usually assumed for binary regression.

yi = 1
(
β0 + βTxi + εi

)
, (1)

where 1(·) denotes the indicator function, β0 is a constant term, β is the vector of
coefficients by a vector of explanatory variables xi and εi is the error term. For
convenience the constant term and remaining coefficients are split.
For binary regression models usually the following prediction rule is used

ŷi =
{

1 if β̂0 + β̂Txi ≥ 0
0 if β̂0 + β̂Txi < 0,

(2)

what may be written as ŷi = 1(β̂0 + β̂Txi ≥ 0).
The idea of Manski (1975, 1985) estimator is to look for the values of estimates β̂0, β̂
that provide the highest fraction of correctly classified observations for a given sample.
This rule may be written as the following maximization problem

max
b0,b

1
N

N∑
i=1

[2yi − 1]
[
21
(
b0 + bTxi ≥ 0

)
− 1
]

(3)

The first term in the above sum is equal to +1 or −1 depending if yi is equal to 1
or 0. The second term is equal to +1 or −1 depending if 1(b0 + bTxi ≥ 0), i.e. the
prediction, is equal to 1 or 0. So if prediction matches the actual value of yi the sum
increases by 1 and decreases by 1 otherwise.
The above optimization problem has infinite number of solutions. This is due to
the fact, that the expression b0 + bTxi ≥ 0 has the same logical value when being
multiplied by a positive constant, i.e.

b0 + bTxi ≥ 0⇔ cb0 + cbTxi ≥ 0, for c > 0. (4)

So to obtain the unique solution, the normalizing condition must be implied. Manski
assumed ‖[β0, β]‖ = 1. So finally the estimator of Manski has the following form

[β̂0, β̂] = argmax
[b,b0]: ‖[b,b0]‖=1

1
N

N∑
i=1

[2yi − 1]
[
21
(
b0 + bTxi ≥ 0

)
− 1
]

(5)

Manski managed to prove consistency of his estimator. His initial idea of maximum
score estimators was later expanded in numerous ways. An significant improvement
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was done by Horowitz (1992). He noted that the optimized function is not a
continuous one and replaced the indicator function by a smooth kernel function
(cumulative distribution function). This modification allowed to achieve required
asymptotic properties, i.e. asymptotic normality which in turn allowed statistical
inference on significance of predictors. Horowitz formula is as follows

[β̂0, β̂] = argmax
[b,b0]: ‖b0‖=1

1
N

N∑
i=1

[2yi − 1]
[
2Kb0 + bTxi

h
− 1
]
, (6)

where h is a bandwidth parameter, K(·) is a smooth kernel function satisfying
limt→−∞K(t) = 0 and limt→∞K(t) = 1. Horowitz used a different but equivalent
normalization ‖b0‖ = 1.
The distinction between smooth version of Horowitz and non-smooth version of
Manski has many consequences. In case of a non-smooth variant the asymptotic
distribution in non normal as it was proved by Kim and Pollard (1990) and in case
of a smooth formulation the asymptotic distribution is normal as proved by Horowitz
(1992). What is more, small sample distributions cannot be approximated by the
bootstrap technique for a Manski estimator (Huang, Abrevaya 2005) and may be for
a Horowitz version (Horowitz 1992).
Owczarczuk (2009) proposed a generalization of maximum score estimators for a
wider class of models than just binary regression, i.e. for linear, binary, tobit and
truncated models. His idea was to replace the function that is maximized, i.e. a
fraction of correctly classified observations, which makes sense only for binary models,
by an average of explained variable which may be calculated for a large number
of models. Introducing an average required implying an additional normalizing
condition. Owczarczuk proposed the condition on the fraction of observations over
which the average is calculated. The fraction parameter is denoted by τ ∈ (0, 1).
Owczarczuk estimator may be expressed using indicator function or kernel function.
The estimator is given by the following formula with indicators

[βN , β0N ] = argmax
[b,b0]: ‖[b,b0]‖=1

1
N

N∑
i=1

yi1
(
bTxi ≥ b0

)
− µ

(
1
N

N∑
i=1

1
(
bTxi ≥ b0

)
− τ

)2

(7)
and with kernels

[βN , β0N ] = argmax
[b,b0]: ‖[b,b0]‖=1

1
N

N∑
i=1

yiK

(
bTxi

h

)
− µ

(
1
N

N∑
i=1

K
bTxi

h
− τ

)2

(8)

In the above formulas the normalization ‖[b, b0]‖ = 1 was used, but any arbitrary
normalization giving uniqueness may be applied.
The term µ( 1

N

∑N
i=1 1(bTxi ≥ b0)− τ)2 is a penalty that ensures that only a fraction

of τ observations gives the contribution to the average. The condition uses b values

M. Owczarczuk
CEJEME 7: 205-217 (2015)

208



Improving the Effectiveness of Maximum Score Estimators . . .

which form regression parameters. As it was proved by Owczarczuk (2009), optimal
values of b which maximize average and minimize penalty are close to real values β,
giving consistency. The constant µ must be arbitrary large. The value of τ does not
influence the consistency of the estimator for linear and binary regression. In case of
tobit and truncated models, the smaller the value the higher the variance but smaller
bias of the estimators (Owczarczuk 2009). In this setting value of the constant term
β0 is not estimated, so only the vector β is subject to estimation.

3 Modification of the score function for binary
regression models

The modification of the score function for binary regression models that is subject of
this paper is as follows: to maximize the fraction of correctly classified observations
as previously but with implying the condition to keep the split between observations
classified as Ŷ = 1 and Ŷ = 0 to 50%:50%. In other words we still want to maximize
the correctness of predictions but we require exactly half of the population to be
classified as Ŷ = 1.
The rationale is as follows. If a sample is balanced, i.e. number of observations from
class Y = 1 is approximately equal to the number of observations from class Y = 0
then Manski and Horowitz versions, the goal of which is to maximize fraction of
correctly classified observations, classify approximately half of the observations into
class Ŷ = 1 and half of observations into class Ŷ = 0. If a sample is imbalanced,
i.e. when a fraction of observations from one class, say Y = 1, increases, then these
methods classify more and more observations into this majority class, i.e. the fraction
of observations with prediction Ŷ = 1 increases. An extreme situation may be, say,
when a sample contains of 99% observations from class Y = 1. Then a model that
classifies all observations into this class, achieves the fraction of correctly classified
observations of 0.99. Any improvements over this quantity will be only slight as 0.99
is already very large and close to maximum value of 1. So the method loses sensitivity
when the imbalance increases. It will results in higher standard deviations as it will
be showed in section 5.
On the contrary, in case of applying the additional condition of keeping the number
of observations classified as Ŷ = 1 fixed, the situation looks quite differently. Since
the new, proposed method forces to keep 50% to 50% split between Ŷ = 1 and Ŷ = 0,
so it does not classify more and more observations into one class, so the sensitivity is
not lost and the method obtains smaller standard deviations.
As far as the statistical underpinning is concerned, it is sufficient to note that
the proposed modification is equivalent to the Owczarczuk (2009) version with
τ = 0.5, since the maximization of the mean value of explained variable in a certain
subpopulation is equivalent to maximization of the number of observations from class
Y = 1 in the population classified as Ŷ = 1.
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A cost that the proposed modification brings is that the estimation of the constant
term is biased, so only vector of coefficients by explanatory variables is estimated.
However usually the constant term is of little interest in applications.
It should also be noted that the modification due to the implied split condition worsens
the in-sample prediction in order to increase precision of the estimates by variables
and it additionally introduces bias to the intercept. However these drawbacks may be
easily overcome as after the estimation the biased intercept estimate may be replaced
by its unbiased version. A typical procedure may be as follows: parameters by
variables are estimated by the modified procedure and then an intercept is calibrated
so that the in-sample prediction precision is maximized. This gives the final vector of
estimates.

4 Monte Carlo experiments setup
In order to illustrate the properties of the proposed modification, the Monte Carlo
experiments were conducted. The design is as follows. The following equation will be
estimated

yi = 1(a0 + a1x1i + a2x2i + ε) (9)

Values of a1 and a2 are set to 1. The value of a0 is selected so that desired fraction
of observations from the class Y = 1 is achieved and it differs for different setting.
Due to the normalization that must be implied on the vector of coefficients and for
convenience of the interpretation of the results, the normalization ‖a1‖ = 1 was used
for estimation by maximum score. To sum up, it is sufficient to observe the estimation
results for a2 coefficient which true value is equal to 1. The following aspects of data
generating process will be investigated.

1. Fraction of observations with yi = 1 in the sample. The following values are
considered: {0.2, 0.4, 0.5, 0.6, 0.8}. This aspect will be controlled by the constant
term a0.

2. Distribution of x1 and x2. The study uses normal distribution with zero
expected value and unit variance. Experiments (not shown in this paper)
with Student’s t with 3 degrees of freedom , uniform and exponential were
also conducted providing similar results.

3. Distribution of ε. Similarly to the distribution of x1 and x2, normal distribution
was used. Experiments for Student’s t with 3 degrees of freedom, uniform and
exponential were also conducted, providing similar results..

4. Type of heteroscedasticity. In the study presented no heteroscedasticity
was applied. Experiments with heteroscedasticity of the form εi het. =
= εi

√
|x1i + x2i| where εi is homoskedastic, were also conducted.
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5. Number of observations. The following values were considered:
{500, 1500, 3000, 4500}

Within each setting 1000 replications were used. The aim of the experiments is
to show that the split of 50%:50% between the predictions provides the smallest
root mean squared error of estimates. Within the experiments the split will be
parametrized by parameter τ , i.e. split τ :(1− τ) will be implied and it will be shown
that the minimum is obtained by τ=0.5. The results are benchmarked against the
standard Horowitz version. For each replication the following values of τ were applied
{0.2, 0.3, . . . , 0.7, 0.8}. The value of the kernel bandwidth was selected to h = 1 and
the penalty constant to µ = 80.

5 Monte Carlo experiments results
Since the simulations were conducted for various combinations of aspects of data
generating process, results may be analyzed in many intersections.

Table 1: Results of Monte Carlo experiments: mean values of estimates

n P (Y = 1) Horowitz τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

500

0.2 1.010 1.012 1.008 1.008 1.009 1.009 1.009 1.011
0.4 1.008 1.011 1.009 1.008 1.008 1.008 1.010 1.015
0.5 1.006 1.012 1.007 1.006 1.006 1.006 1.008 1.009
0.6 1.010 1.017 1.014 1.012 1.011 1.010 1.010 1.015
0.8 1.008 1.001 1.003 1.003 1.002 1.002 1.004 1.013

1500

0.2 1.003 1.003 1.002 1.002 1.002 1.003 1.003 1.003
0.4 1.001 1.001 1.001 1.001 1.002 1.002 1.002 1.003
0.5 1.002 1.002 1.002 1.002 1.003 1.003 1.005 1.007
0.6 1.005 1.005 1.004 1.004 1.005 1.006 1.007 1.008
0.8 1.006 1.006 1.006 1.006 1.006 1.005 1.005 1.006

3000

0.2 1.002 1.002 1.001 1.001 1.001 1.000 1.000 1.002
0.4 0.999 1.001 1.000 0.999 0.999 0.999 0.999 0.998
0.5 1.001 1.003 1.002 1.001 1.001 1.001 1.001 1.001
0.6 1.003 1.001 1.002 1.002 1.002 1.003 1.003 1.005
0.8 1.003 1.004 1.004 1.004 1.004 1.003 1.003 1.004

4500

0.2 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.001
0.4 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003
0.5 0.998 0.999 0.998 0.998 0.998 0.998 0.998 0.999
0.6 1.002 1.003 1.002 1.002 1.002 1.002 1.002 1.002
0.8 0.999 1.001 1.001 1 1.000 0.999 0.999 0.999

Table 1 shows mean values of estimates, averaged over 1000 replications. We may
observe that all variants provide approximately unbiased estimators, as all values are
approximately equal to 1. We may conclude that the value of τ does not influence the

211 M. Owczarczuk
CEJEME 7: 205-217 (2015)



Marcin Owczarczuk

bias and estimators remain unbiased. The same conclusion applies to the Horowitz
version. Estimators remain unbiased for all selected sample sizes and fractions of
observations from class Y = 1.
Table 2 shows standard deviations of estimates, averaged over 1000 replications.
Figures 1, 2, 3 and 4 provide graphical representation of values in the tables. We
may observe that the value of τ strongly influences the standard deviation which is a
measure of estimation precision. The optimal value is equal to τ = 0.5. The higher
deviation from 0.5, the higher standard deviation. This result is consistent for all
selected sample sizes and fractions of observations from class Y = 1.

Table 2: Results of Monte Carlo experiments: standard deviations of estimates

n P (Y = 1) Horowitz τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

500

0.2 0.170 0.184 0.153 0.144 0.142 0.142 0.144 0.166
0.4 0.128 0.159 0.134 0.128 0.126 0.127 0.131 0.159
0.5 0.122 0.155 0.130 0.124 0.123 0.124 0.131 0.159
0.6 0.127 0.153 0.132 0.127 0.126 0.128 0.134 0.164
0.8 0.170 0.168 0.150 0.147 0.144 0.145 0.154 0.188

1500

0.2 0.093 0.100 0.086 0.082 0.081 0.083 0.085 0.100
0.4 0.068 0.090 0.074 0.069 0.067 0.067 0.070 0.087
0.5 0.070 0.084 0.072 0.070 0.070 0.072 0.077 0.096
0.6 0.073 0.088 0.074 0.071 0.071 0.073 0.078 0.094
0.8 0.096 0.089 0.079 0.078 0.078 0.081 0.088 0.107

3000

0.2 0.064 0.069 0.059 0.056 0.057 0.058 0.059 0.067
0.4 0.050 0.062 0.052 0.050 0.050 0.052 0.055 0.066
0.5 0.048 0.062 0.053 0.050 0.048 0.049 0.051 0.062
0.6 0.049 0.059 0.051 0.049 0.049 0.049 0.052 0.062
0.8 0.068 0.065 0.058 0.057 0.057 0.058 0.062 0.075

4500

0.2 0.053 0.057 0.049 0.046 0.046 0.047 0.048 0.055
0.4 0.042 0.052 0.044 0.042 0.042 0.042 0.044 0.053
0.5 0.039 0.050 0.042 0.040 0.039 0.040 0.042 0.052
0.6 0.040 0.048 0.042 0.040 0.039 0.040 0.042 0.052
0.8 0.055 0.055 0.049 0.048 0.048 0.048 0.051 0.060

The comparison to the standard deviation of Horowitz version provides interesting
conclusions. Namely if the fraction of observations from class Y = 1 is equal to 0.5,
i.e. the sample is balanced, standard deviation of Horowitz version is approximately
equal to standard deviation of the proposed modification. The higher the imbalance in
the sample, the higher the difference in standard deviation between the modification
and Horowitz version.
Equivalently we have shown that τ = 0.5 is the optimal calibrating constant within
Owczarczuk (2009) framework.
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Figure 1: Standard deviation of estimates of maximum score estimators as a function
of τ . Vertical line represents standard deviation of Horowitz estimator. Number of
observations is equal to 500
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Figure 2: Standard deviation of estimates of maximum score estimators as a function
of τ . Vertical line represents standard deviation of Horowitz estimator. Number of
observations is equal to 1500
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Figure 3: Standard deviation of estimates of maximum score estimators as a function
of τ . Vertical line represents standard deviation of Horowitz estimator. Number of
observations is equal to 3000
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Figure 4: Standard deviation of estimates of maximum score estimators as a function
of τ . Vertical line represents standard deviation of Horowitz estimator. Number of
observations is equal to 4500
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6 Conclusions
In this article we proposed a modification of the score function within the maximum
score estimation for binary regression models. The proposed modification gives
smaller variances of estimation than the standard maximum score technique. The
advantage of the proposed approach is especially visible for imbalanced samples.
Equivalently we provided the optimal value of the calibrating constant to the
Owczarczuk (2009) framework of maximum score estimation.
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