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Abstract

The paper discusses Bayesian productivity analysis of 27 EU Member States,
USA, Japan and Switzerland. Bayesian Stochastic Frontier Analysis and a two-
stage structural decomposition of output growth are used to trace sources of
output growth. This allows us to separate the impacts of capital accumulation,
labour growth, technical progress and technical efficiency change on economic
development. Since estimates of the growth components are conditioned upon
model parameterisation and the underlying assumptions, a number of possible
specifications are considered. The best model for decomposing output growth
is chosen based on the highest marginal data density, which is calculated using
adjusted harmonic mean estimator.
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1 Introduction
The concept of a frontier analysis (FA) was first coined by Koopmans (1951) and
Debreu (1951). Their works presented the theoretical basis later used by Farrell
(1957) in his pioneering work on efficiency analysis of the US agriculture industry.
Today, among many other fields of application, FA is used as a tool for macro-
scale productivity analyses. The idea is to use the concept of a production frontier
in order to compare entire economies as producing a mutually comparable product
(e.g., GDP) using a set of production factors (e.g., physical capital and labour) under
a common technology (see, e.g., Growiec, Pajor, Pelle and Prędki, 2011; Growiec
2012a,b; Makieła 2009, 2012; or Fried, Lovell and Schmidt, 2008; for a lengthy list
of applications). In such a model, economic growth (i.e., the increase in GDP from
one period to another) is caused either by accumulation of production factors (IC),
or by increased productivity (TFP change, labelled PC hereafter). This is a well-
known framework, which summarizes what can be seen as a one-stage decomposition
of output growth. However, one may also want to further decompose changes in
TFP (PC) into technical efficiency (EC) and technical progress (TC) contributions.
This framework has been first used in the context of a frontier analysis by Färe,
Grosskopf, Norris and Zhang (1994), who have used Data Envelopment Analysis
(DEA) to analyse economic growth of selected countries. Later, Koop, Osiewalski
and Steel (1999) have proposed a Bayesian approach to derive components of output
growth. More recently, however, researchers’ attention has turned to investigating
the impact of capital accumulation on economic growth, especially in the context
of the EU Member States (see, e.g., Salinas-Jiménez, Alvarez-Ayuso and Delgado-
Rodriguez, 2006; or Makieła 2012 in the context of EU15). Hence, one may also want
to decompose the IC component in order to analyse impact of each production factor
separately.
Many researchers seem to prefer DEA as a tool for macro-scale productivity analysis
nowadays (see, e.g., Färe, Grosskopf and Margaritis, 2006; Margaritis, Fare and
Grosskopf, 2007; Growiec 2012a,b). The argument is that, being a nonparametric
approach, DEA does not require imposing any structure on the production frontier.
However, in DEA the production frontier is estimated as a piece-wise linear function
which significantly constraints the analysis.
The above limitations give way for Bayesian Stochastic Frontier Analysis (BSFA
hereafter). BSFA has several advantageous features distinctive to Bayesian inference.
First, being a stochastic approach, it is less affected by outlying observations and
nuisance in the data (Fried, Lovell and Schmidt, 2008). Simar and Zelenyuk (2011)
have proposed a stochastic class of DEA estimators which mitigate this problem. See
also Prędki (2012) and Kuosmanen and Kortelainen (2012) for other propositions
of bridging the gap between parametric and non-parametric methods. Second, it
allows us to obtain exact small sample results, which is of particular importance
in relatively small macroeconomic datasets. Third, we can easily impose economic
regularity conditions on the production function and test for additional restrictions
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(e.g. constant returns to scale) or possible model simplifications. Fourth, if a proper
model is chosen, parametric methods yield more information. Model choice, however,
is often made ad hoc, which raises concerns because the final results are conditioned
not only on the data but on the parametric specification as well. This makes Bayesian
approach even more appealing as it allows us to formally compare competing model
specifications and to choose the best model on the basis of model probabilities given
the data. In particular much progress has been made recently to overcome numerical
issues that have been troubling the harmonic mean estimator (HME) used for purposes
of model comparisons. Lenk (2009) shows that the so-called pseudo-bias of HME can
be corrected if we take into account differences between numerical representations of
prior and posterior supports. Osiewalski and Osiewalski (2013) propose practical way
of computing Lenk’s correction in highly dimensional space of parameters and latent
variables while Pajor and Osiewalski (2013) refine Lenk’s concept on improving the
performance of computed harmonic mean estimator.
The aim of this work is to use Bayesian Stochastic Frontier Analysis (BSFA) in order
to, first, select the best model given the data, and then use it to trace changes in
economic growth patterns among 27 EU Member States, USA, Japan and Switzerland
in 1996-2010. In doing so, this paper builds on previous work by Makieła (2009)
extending it twofold. First, the output decomposition methodology proposed by
Koop, Osiewalski and Steel (1999) in the context of BSFA is extended by additional
decomposition of IC component. This allows us to separately trace changes in capital
and labour contributions to economic growth. Second, unlike Makieła (2009) who
builds his analytical conclusions around only one model we take full advantage of the
Bayesian approach and consider a set of 42 plausible model specifications. Following
Makieła (2012) we use the Bayesian criterion for choosing the optimal model under
equal prior probabilities – the highest marginal data density. Unlike in Makieła (2012),
however, the harmonic mean estimator is corrected for pseudo-bias. Since this has not
been done before in the context of BSFA, we report on our findings from such pseudo-
bias correction. Also, unlike Makieła (2012) we use Lindley-type testing, which allows
us to obtain some additional insights into model parameterisation dilemma.
The data used in the analysis come from AMECO database, supervised by
Directorate-General for Economics and Finance of the European Commission. These
are GDP in mld in Purchasing Power Standard (PPS) in 2000 constant prices, net
capital stock in mld PPS in 2000 constant prices and total number of hours worked
annually in a given country (in thousands). The paper summarizes some of the
key aspects of a more extensive study from the author’s Ph.D. dissertation and it
is structured as follows. BSFA models used in the study are presented in Section 2.
Next, in Section 3 we provide details on structural decomposition methodology and, in
Section 4, describe the method used for choosing the optimal model. Decomposition
results, obtained using the best model, are discussed in Section5 and concluding
remarks are summarized in Section 6.
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2 BSFA models considered in the study
Let Yit, Kit and Lit be levels of production, capital and labour respectively in i-th
country (i = 1, . . . , N) in t-th period (t = 1, . . . , T ), and lowercase letters yit, kit and
lit indicate their natural logs. The general model takes the following form

yit = ht (kit, lit;β) + vit − uit (1)

where ht(·) is the log form of a production function (possibly time-varying according
to changing technology), vit are independent normally distributed variables with zero
mean and an unknown precision σ−2, and uit are independent identically distributed
nonnegative variables reflecting inefficiency, i.e., technical efficiency is rit = exp (−uit)
where 0 < rit ≤ 1, and rit = 1 is maximum efficiency; vit and ujs are stochastically
independent for any i, t, j and s. The parametric specifications are

1. M1: Cobb-Douglas production function (labelled CD)

ht (kit, lit;β) = h (kit, lit;β) = β0 + β1kit + β2lit (2)

2. M2: Cobb-Douglas production function with time trend (labelled CDt)

ht (kit, lit;β) = β0 + β1kit + β2lit + β3t (3)

3. M3: Cobb-Douglas production function with linear trend in each parameter of
the function (labelled CD-LT)

ht (kit, lit;βt) = βt0 + βt1kit + βt2lit

where βta = β̇a + tβ̈a (a = 0, 1, 2). This formula can be rearranged as

ht (kit, lit;β) = β̇0 + β̇1kit + β̇2lit + t
(
β̈0 + β̈1kit + β̈2lit

)
(4)

1. M4: translogarithmic (translog hereafter) production function (labelled TR)

ht (kit, lit;β) = h (kit, lit;β) = β0 + β1kit + β2lit + β3k
2
it + β4l

2
it + β5kitlit (5)

2. M5: translog production function with time trend (TRt hereafter)

ht (kit, lit;β) = β0 + β1kit + β2lit + β3k
2
it + β4l

2
it + β5kitlit + β6t (6)

3. M6: translog production function with linear trend in each parameter (labelled
TR-LT)

ht (kit, lit;βt) = βt0 + βt1kit + βt2lit + βt3k
2
it + βt4l

2
it + βt5kitlit
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where βta = β̇a + tβ̈a (a = 0, . . . , 5). The formula can be rearranged as

ht(kit, lit;β) = β̇0 + β̇1kit + β̇2lit + β̇3k
2
it + β̇4l

2
it + β̇5kitlit+

+t(β̈0 + β̈1kit + β̈2lit + β̈3k
2
it + β̈4l

2
it + β̈5kitlit)

(7)

1. M7: translog production function with quadratic trend in each parameter
(labelled TR-QT):

ht (kit, lit;βt) = βt0 + βt1kit + βt2lit + βt3k
2
it + βt4l

2
it + βt5kitlit

where βta = β̇a + tβ̈a + t2
...
β a (a = 0, . . . , 5). Like in TR-LT this can be rearranged as

follows
ht (kit, lit;β) = β̇0 + β̇1kit + β̇2lit + β̇3k

2
it + β̇4l

2
it + β̇5kitlit+

+t(β̈0 + β̈1kit + β̈2lit + β̈3k
2
it + β̈4l

2
it + β̈5kitlit)+

+t2(
...
β 0 +

...
β 1kit +

...
β 2lit +

...
β 3k

2
it +

...
β 4l

2
it +

...
β 5kitlit)

(8)

Formulas (2-8) can be summarized as ht (kit, lit;β) = x′itβ where vector xit is
the element of X and contains the list of arguments appropriate to the given
production function specification in (2-8). This work also considers two most widely
used distributions of inefficiency term, i.e., exponential and half-normal (Greene,
2008). Thus, we have two "types" of SFA models: normal-exponential (labelled EXP
hereafter) and normal-half-normal (labelled NHN hereafter). The full Bayesian EXP-
type model is

fN
(
β|b, C−1) fG (σ−2|0.5n0, 0.5a0

)
fG
(
λ−1|1,− ln(r0)

)
·

·
N∏
i=1

T∏
t=1

fN
(
yit|x′itβ − uit, σ2) fG (uit|1, λ−1) (9)

where fN (.|w,Z) is a normal density function with mean w and covariance matrix Z,
fG(.|w, z) is a gamma density function with mean w

z and variance
(
w
z

)2. The model
structure is similar to Koop, Osiewalski and Steel (1999); the difference is in the prior
on β. I set n0 = a0 = 10−6 which leads to a quite flat distribution for σ−2 with mean
1 and variance 2 ·106. The r0 parameter refers to prior median efficiency and it means
that we give equal prior chances that technical efficiency of a given country is either
greater or smaller than r0. We set r0 as 0.6, 0.75 or 0.875. Thus, each parametric
specification of an EXP model is estimated for three different settings of r0. To allow
for cross-model comparability b and C−1 parameters have been calibrated so that
the prior on β shares the following properties in all models: i) average elasticities
of capital and labour have prior means 0.5 with prior standard deviation 0.2, ii)
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neutral technical change has prior mean 0.02 and prior standard deviation 0.01.
Economic regularity conditions (nonnegative factor elasticities of production) are
imposed through inequalities appropriate to the given parametric specification. It
is important to note that for translog models prior standard deviations for factors
and scale elasticities (at their means) are slightly higher than in Cobb-Douglas. This
is necessary because otherwise the prior covariance matrix is not invertible. Such
difference in the prior structure favours Cobb-Douglas functions and may constitute
a decision problem if marginal data densities are higher there than in translogs.
Fortunately, as we learn later it is not the case here. The model is too complex
to analytically derive marginal posterior distributions of its parameters. We can,
however, draw from their conditional posterior distributions, which are

p
(
β|y,X, u, λ−1, σ−2) ∝ fJN

(
β|C−1

∗
[
Cb+ σ−2X ′(y + u)

]
, C−1
∗
)

p
(
σ−2|y,X, u, λ−1, β

)
∝ fG

(
σ−2|n0+NT

2 , 1
2
[
a0 + (y + u−Xβ)′ (y + u−Xβ)

])
p
(
u|y,X, λ−1, σ−2, β

)
∝ fNTN

(
u|Xβ − y − σ2λ−1, σ2 · INT

)
I
(
u ∈ RNT+

)
p
(
λ−1|y,X, u, σ−2, β

)
∝ fG

(
λ−1|NT + 1,

∑N
n=1

∑T
t=1 uit − ln (r0)

)
(10)

where C−1
∗ = (C + σ−2X ′X)−1 and J is the number of elements in β. Based on

the formulas above one can approximate characteristics of the joint and marginal
posterior distributions using Gibbs sampler.
The full Bayesian NHN-type model used in the study is

fN
(
β|b, C−1) fG (σ−2|0.5n0, 0.5a0

)
fG
(
ω−2|5, 10 ln2(r0)

)
·

·
N∏
i=1

T∏
t=1

fN
(
yit|x′itβ − uit, σ2) fN (uit|0, ω2) (11)

where n0 = a0 = 10−6 and again we estimate the model setting r0 = 0.6, 0.75 or 0.875
as prior median; the prior on ω−2 is as proposed in van den Broeck, Koop, Osiewalski
and Steel (1994). Like in the case of EXP, this model is also very complex, and thus
the characteristics of joint and marginal posterior distributions must be approximated
numerically, e.g., using the derived conditionals and Gibbs sampler. For β and σ2

the conditionals do not change in comparison to EXP model. Conditionals for the
remaining parameters are

p
(
ω−2|y,X, u, σ−2, β

)
∝ fG

(
ω−2| 12NT + 5, 1

2 ·
N∑
n=1

T∑
t=1

uit + 10 ln2(r0)
)

p
(
u|y,X, ω−2, σ−2, β

)
∝ fNTN

(
u|ω(Xβ − y)

ω2 + σ2 , ω2σ2

ω2+σ2

)
I
(
u ∈ RNT+

) (12)
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As a result we have two model types (NHN, EXP), seven possible parameterisations
of the production function (CD, CDt, CD-LT, TR, TRt, TR-LT, TR-QT) and three
settings for the prior median efficiency (0.6, 0.75, 0,875) to choose from. This amounts
to 42 different parametric variations. Since the number of models is substantial, each
model is given a codename as follows: "model type label"/"parametric specification
label" followed by prior median given in brackets; e.g., EXP/TR(0.6) is a normal-
exponential model with translog production function and prior median 0.6.
The models have been estimated using Gibbs sampler coded in MATLAB. One million
draws were taken discarding initial hundred thousand (burn-in process). During
each simulation, convergence of the chain to its limiting stationary distribution
was monitored using both sequential plots, cusum paths (Yu and Mykland, 1998),
multivariate potential scale reduction factor (Brooks and Gelman, 1998) – MPSRF
in short, effective sample size (see, e.g., LeSage and Pace 1999; or notes in Table 1)
and I-statistic (Raftery and Lewis, 1992). Convergence diagnostics results for selected
models are provided in Table 1. Sequential plots have been primarily used to asses
if the burn-in stage is long enough, while cusum plots, MPSRF, effective sample size
and I-statistic have been used to analyse samplers’ mixing speeds. All simulations
stabilize way before the end of their burn-in phase and samplers’ mixing speeds are
either very good (i.e., highly oscillatory cusum paths with low excursion and hardly
any difference in comparison to their benchmark paths), or at least satisfactory in the
two most complex NHN models – TR-LT and TR-QT. The study also reports that
samplers for EXP models are significantly outperforming NHN samplers in terms
of their mixing speeds (see results in Table 1; or examples of cusum path plots in
Figure 1). Regardless of the model, the number of burn-in cycles and the number of
accepted draws could have been smaller if we were to base our analysis on commonly
used statistics such as posterior means and posterior standard deviations. In this case,
however, long runs are necessary to acquire precise-enough estimates of marginal data
densities for all models, especially those where samplers’ mixing speeds are relatively
low.

3 Structural decomposition of output growth
The difference in the log of GDP between two corresponding periods t and t+1 can
be written as (Koop et al., 1999)

∆yt+1 = 1
2(xi,t+1 +xit)′(βt+1−βt) + 1

2(βt+1 +βt)′(xi,t+1−xit) + (uit−ui,t+1) (13)

where the first term reflects output change due to technical progress (or regress),
the second is due to change in production factors, and the third reflects changes to
technical efficiency. This allows us to derive three main components of output growth

ICi,t+1 = exp
[

1
2(βt+1 + βt)′(xi,t+1 − xit))

]
(14)
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Table 1: Convergence diagnostics for selected models

Model code MPSRF EFF.Samp I-statistic
NHN/TR-LT(0.6) 1.0436 98589 35.22
NHN/TR-LT(0.75) 1.0044 213360 4.41
NHN/TR-LT(0.875) 1.0033 439836 2.17
NHN/TR-QT(0.6) 1.1654 31953 124.24
NHN/TR-QT(0.75) 1.0703 67355 29.00
NHN/TR-QT(0.875) 1.0081 131787 3.33
NHN/TR(0.6) 1.0033 140342 17.59
NHN/TR(0.75) 1.0065 139389 7.10
NHN/TR(0.875) 1.0005 504528 4.65
NHN/TRt(0.6) 1.0052 187174 18.84
EXP/TR-LT(0.6) 1.0006 598162 1.06
EXP/TR-LT(0.75) 1.0021 542466 1.06
EXP/TR-LT(0.875) 1.0005 238675 1.04
EXP/TR-QT(0.875) 1.0005 643600 1.09
EXP/TR-QT(0.75) 1.0047 494745 1.08
EXP/TR-QT(0.6) 1.0438 409184 1.05
EXP/TR(0.6) 1.0020 49205 4.08
EXP/TR(0.75) 1.0033 147683 2.12

Source: author’s calculations using CODA diagnostics Toolbox for MATLAB.

Note: MPSRF stands for multivariate potential scale reduction factor; Eff.samp is effective sample size
indicates what sample size would be needed to achieve the same level of uncertainty if the chain was
white noise. For example, in normal–half-normal model with TR-LT function and 0.6 prior median (i.e.,
NHN/TR-LT(0.6) model) a sample of 900 000 is an equivalent of 98 589 draws from a chain that is a
multivariate white noise; see, e.g., LeSage and Pace (1999)

TCi,t+1 = exp
[

1
2(xi,t+1 + xit)′(βt+1 − βt)

]
(15)

ECi,t+1 = exp(uit − ui,t+1) (16)

and the joint impact of TC and EC as

PCi,t+1 = ECi,t+1 × TCi,t+1 (17)

Formulas (13-17) summarize decomposition methodology introduced by G. Koop, J.
Osiewalski and M.F.J. Steel (1999) in the context of BSFA models. The reader should
note that output growth breakdown into IC and PC constitutes a one-stage output
growth decomposition strategy well known in the literature. In this work, however,
we want to investigate all sources of output change separately. Thus, for a two-factor
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Figure 1: Convergence diagnostics for models’ intercepts; cusum path plot for normal-
exponential (on the left) and normal-half normal (on the right); based on TR-QT
parametric specification and 400 000 accepted draws; scale: -0.03:0.04; benchmark
path is based on draws from normally distributted independent sampler with the same
mean and standard deviation as aquired from Gibbs sampler; see Yu and Mykland
(1998) for details.

production function formula (14) is now broken down into (Makieła, 2012):

ICi,t+1 = exp
[
∆f1i,t+1 · El.f1

(
1
2(xi,t+1 + xit)

)]
×

× exp
[
∆f2i,t+1 · El.f2

(
1
2(xi,t+1 + xit)

)]
= IC.f1i,t+1 × IC.f2i,t+1

(18)

where f1 and f2 are the production factors (e.g., capital and labour) and El.f1(.),
El.f2(.) are their elasticity functions. The reader should note that the two-input
formula in (18) can be easily extended to incorporate more factors; e.g., a measure
of human capital, if such is available. This leads us to a two-stage decomposition
where, first, output growth is decomposed into IC and PC, and second (Eq. 17-18),
where PC is decomposed into EC and TC components, and IC is decomposed into
each factor’s contribution. To sum up, the change in GDP level between period t and
t+ 1 (OCi,t+1) in this study can be summarized as

OCi,t+1 = IC_ki,t+1 × IC_li,t+1 × TCi,t+1 × ECi,t+1 (19)

where components on the right side of (19) reflect the impact of capital change, labour
change, technical progress and efficiency change on economic growth respectively. To
make interpretations more intuitive, indicators from (14-19) are given as percentage
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changes to the previous year. Thus, a simple transformation ∆%=100%(δ-1) is used,
where δ is the initial level of an indicator from (14-19). Labels AOC, AIC (AIC_K,
AIC_L) and APC (ATC, AEC) denote time-averages for a given country of those
indicators.
To conclude this section it is worth noting that model choice has a profound impact
on the structure of output growth decomposition. That is, it determines how in-depth
the output decomposition can be. For this reason when choosing the optimal model
a researcher should consider the following. CD model does not allow for technical
progress (frontier cannot shift over time) and since factors’ elasticities are constant
among all observations, changes in the IC component can be caused only by changes
in factors’ input levels. Effectively this leads to a simple Solow-type decomposition
of output growth. CDt model does allow for a technical change which, however, is
constant not only through time but across countries as well. CD-LT model allows the
technology to change, but only over time and in a linear fashion. TR model allows us
to consider technical change more flexibly through factors elasticities, which can vary
over time and across countries (if inputs change). It is not possible, however, to distil
the effects of technical change from the impact of input change component. TRt model
solves this problem only partially because we face the same issue as in CDt model;
unrealistic assumption regarding technical change. A full-scale decomposition can be
obtained with TR-LT model. Introducing linear trend into each parameter of the
translog production function allows the technical change, here seen as gradual change
in production technology function parameters over time, to impact each country
differently over time (though in a linear fashion). TR-QT model further loosens the
restrictions on how technical change can impact a country’s growth. In doing so, it
allows us to investigate changes in technical progress contribution to a given country’s
economic growth over time. Other possibilities are also mentioned in the literature.
For example Koop, Osiewalski and Steel (2000) propose to extend a simple Cobb-
Douglas form by AR(1) autoregressive processes in factor elasticities. This approach
is more up to date as regards the contemporary research on time-series analysis.
Unfortunately we face considerable numerical problems when applying it in translog
models because factor elasticities of production are functions of parameters and data
in translogs. Since one of the aims of this research is to compare Cobb-Douglas and
translog functional forms, modelling technology change using autoregressive processes
is left out of the scope of this study.

4 Choosing the best model
A key aspect of every Bayesian analysis that involves more than one model is the
computation of marginal data density, also referred to as integrated likelihood or
marginal likelihood. Since this paper uses MCMC methods we can approximate
marginal data density (mdd hereafter) for each model using the Harmonic Mean
Estimator (HME hereafter) proposed by Newton and Raftery (1994). Though it
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is by far the most commonly used and universal technique to approximate mdd,
it has earned serious critique for being unstable or "over optimistic". For this
reason a number of alternatives to HME have been proposed (see, e.g., Newton
and Raftery 1994; Gelfand and Dey, 1994; or Chib and Jeliascov, 2001) as well as
methods to improve on it (see, e.g., Newton and Raftery, 1994; Raftery, Newton,
Satagopan and Krivitsky, 2007; Lenk 2009; Osiewalski and Osiewalski, 2013; Pajor
and Osiewalski, 2013). As Lenk (2009) shows, HME is pseudo-biased because the
MCMC simulation only visits the area of the parameter space with substantial
posterior mass. In other words, it will never visit regions of the parameter space,
for which the binary representation of the posterior density is zero. Since BSFA
models have highly dimensional spaces of parameters and latent variables, we follow
HME correction method proposed by Osiewalski and Osiewalski (2013), and adopt it
to BSFA framework.
Table 2 presents marginal data densities (in decimal logs) for all 42 models considered
in this study along with model rankings before and after HME’s correction. The
correction does not change much in terms of overall model ranking for EXP-type
models (Spearman rank correlation is 0.9857). It yields, however, some interesting
results as regards NHN vs. EXP comparison and how NHN models perform given
different levels of prior median.
The biggest correction for HME pseudo-bias is in NHN/TR-QT(0.6) model. Its mdd
dropped nearly by 783 orders of magnitude. Seemingly the best NHN models –
translogs with low prior median – have turned out to be among the worst after the
adjustment. However, similar models with higher prior median remain at the top of
both rankings; before and after the adjustment. As a result NHN models’ ranking has
changed considerably after HME adjustment (Spearman rank correlation is -0,2195).
Setting r0 (prior median) has a huge impact on HME pseudo-bias in NHN models,
mostly via Lenk’s correction on latent variables. It seems that the more our
assumption about prior median is not in line with the information in the data the
bigger Lenk’s correction on model’s latent variables is – and all NHN models are very
sensitive to the choice of r0. At its extreme Lenk’s correction in translog models
with 0.6 prior median is roughly between 400 and 780 orders of magnitude. On
condition that the prior median is well-tuned NHN models still outperform their EXP
counterparts after HME adjustment. The differences, however, are much smaller than
before HME adjustment.
A good addition to formal model selection based on mdd’s is Lindley-type testing.
Such tests are based on a classic concept of hypothesis testing of possible model
reductions. Though they do not give us information as to what type of model to
choose (NHN vs. EXP), or what prior median to set, they can be found helpful
in testing possible parametric simplifications of the production function or, e.g., to
empirically check for constant returns to scale (CRS restrictions) often assumed in
economic growth literature. Furthermore, the tests are relatively easy to compute and
can be found more intuitive for practitioners that are not that familiar with formal
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Table 2: Convergence diagnostics for selected models

Model code
Prior

HME
Lenk’s Final Ranking before Ranking after

correction correction

median correction result Overall Within Overall Within
model type model type

EXP/CD(0.6) 0,6 117,57 -13,27 104,30 36 15 30 14
EXP/CD(0.75) 0,75 115,16 -12,00 103,16 39 18 33 17
EXP/CD(0.875) 0,875 112,94 -11,06 101,88 42 21 36 20
EXP/CDt(0.6) 0,6 118,14 -14,41 103,72 35 14 32 16
EXP/CDt(0.75) 0,75 115,70 -13,20 102,50 38 17 34 18
EXP/CDt(0.875) 0,875 113,36 -12,23 101,14 40 19 37 21
EXP/CD-LT(0.6) 0,6 118,72 -13,60 105,12 34 13 29 13
EXP/CD-LT(0.75) 0,75 115,83 -11,82 104,01 37 16 31 15
EXP/CD-LT(0.875) 0,875 113,07 -10,76 102,31 41 20 35 19
EXP/TR(0.6) 0,6 141,50 -14,93 126,57 20 5 9 4
EXP/TR(0.75) 0,75 136,92 -12,66 124,26 24 8 12 7
EXP/TR(0.875) 0,875 132,93 -10,62 122,31 28 11 17 10
EXP/TRt(0.6) 0,6 141,59 -15,97 125,62 19 4 10 5
EXP/TRt(0.75) 0,75 137,52 -13,97 123,55 23 7 13 8
EXP/TRt(0.875) 0,875 132,58 -12,47 120,10 30 12 20 12
EXP/TR-LT(0.6) 0,6 142,13 -14,97 127,16 18 3 8 3
EXP/TR-LT(0.75) 0,75 137,68 -12,37 125,31 22 6 11 6
EXP/TR-LT(0.875) 0,875 133,20 -11,07 122,13 27 10 19 11
EXP/TR-QT(0.6) 0,6 142,76 -15,49 127,28 16 1 7 2
EXP/TR-QT(0.75) 0,75 142,54 -12,72 129,82 17 2 6 1
EXP/TR-QT(0.875) 0,875 134,36 -11,60 122,76 26 9 16 9
NHN/CD(0.6) 0,6 145,1 -32,50 112,64 15 15 25 13
NHN/CD(0.75) 0,75 132,8 -17,35 115,43 29 18 23 11
NHN/CD(0.875) 0,875 121,8 -11,90 109,90 33 21 27 15
NHN/CDt(0.6) 0,6 151,5 -32,06 119,44 14 14 21 9
NHN/CDt(0.75) 0,75 136,1 -18,68 117,46 25 17 22 10
NHN/CDt(0.875) 0,875 122,1 -13,23 108,83 32 20 28 16
NHN/CD-LT(0.6) 0,6 153,2 -29,98 123,24 13 13 15 7
NHN/CD-LT(0.75) 0,75 139,3 -17,02 122,26 21 16 18 8
NHN/CD-LT(0.875) 0,875 124,7 -11,70 112,99 31 19 24 12
NHN/TR(0.6) 0,6 269,8 -453,33 -183,50 3 3 41 20
NHN/TR(0.75) 0,75 232,2 -121,79 110,41 6 6 26 14
NHN/TR(0.875) 0,875 174,8 -28,40 146,37 9 9 3 3
NHN/TRt(0.6) 0,6 256,0 -418,34 -162,37 4 4 40 19
NHN/TRt(0.75) 0,75 214,9 -120,49 94,41 8 8 38 17
NHN/TRt(0.875) 0,875 169,4 -24,67 144,70 11 11 4 4
NHN/TR-LT(0.6) 0,6 276,6 -400,47 -123,87 1 1 39 18
NHN/TR-LT(0.75) 0,75 221,4 -73,21 148,20 7 7 2 2
NHN/TR-LT(0.875) 0,875 159,1 -18,52 140,61 12 12 5 5
NHN/TR-QT(0.6) 0,6 276,3 -782,66 -506,36 2 2 42 21
NHN/TR-QT(0.75) 0,75 233,1 -109,82 123,29 5 5 14 6
NHN/TR-QT(0.875) 0,875 170,4 -17,50 152,86 10 10 1 1

Spearman rank correlation (before vs. after HME adjustment)
Within EXP model type 0,9857
Within NHN model type -0,2195
Overall 0,254
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Bayesian model comparison (BMC). The tests used here are Bayesian counterparts
of chi-square tests (see, e.g., Marzec and Osiewalski, 2008; or Makieła, 2009). Let γ
denote such a subvector of parameters of the full model that γ = γ∗ (e.g., γ = 0) leads
to the model restriction under question (e.g., simplification). Since (for a large enough
number of observations) the marginal posterior distribution of γ is approximately
normal with mean E(γ| y,X) and covariance matrix V(γ| y,X), the quadratic form

τ(γ; ; y,X) = [γ − E(γ| y,X)]′ V−1(γ| y,X) [γ − E(γ| y,X)]

has the posterior close to the chi-square distribution with as many degrees of freedom
as there are parameters in γ. The test amounts to checking whether the parameter
value γ∗ lies in the tail of the posterior distribution of γ – if so, the restriction is
considered invalid. Table 3 shows a summary of Lindley-type tests on TR-LT and
TR-QT functions.
Though the best model is still being chosen based on the highest mdd criterion,
there are two added values from performing these tests here. First, it is clear that
TR-QT function is a statistically meaningful extension of a simple translog. The
tested value, here γ∗ = 0, is far in the tail of the posterior distribution of τ(γ; ; y,X)
for all simplifications under considerations. This indicates that there are significant
temporal dynamics in the data, which favour a more time-flexible parameterisation.
Second, global CRS restrictions are not supported by the data.

5 Decomposition of output growth in 27 EU
Member States, USA, Japan and Switzerland

Tables 4-5 show posterior characteristics of the main decomposition results for
individual countries and the following aggregates:

1. a simple average to indicate average change in those economies that form a given
economic entity (e.g. the EU),

2. a weighted average, weighted by each country’s average GDP level in the
analysed period. This average is used as an indicator of average change in the
economic area as a whole, and thus is an indicator of economic change within
regions like EU12, EU15 or the EU.

The results are based on NHN/TR-QT(0.875) model which has been selected based
on the analysis performed in Section 4. Due to space considerations the paper
does not provide decomposition results for all 42 models. It is worth noting,
however, that most models considered in the study (including all top-ranked models)
gave consistent results as regards output change decomposition. This means that
the decomposition outcome is quite robust to parametric specification. As noted
in Section 3 more restrictive parametric specifications will limit the detail of the
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decomposition. However, the results for comparable components from simpler models
are in line with those from more complex ones and more substantial differences are
found in components’ dispersion measures; i.e., simpler models yield higher posterior
standard deviations.
Decomposition results show that countries economic development is mostly shaped by
changes in input factors, followed by productivity change. Second level decomposition
reveals that capital accumulation component is the key ingredient of rapid economic
growth in those countries and that efficiency change is the dominant component of
productivity change. Moreover, whenever we witness capital-driven rapid economic
growth, a country loses on productivity, either through efficiency change or (to a lesser
degree) technical change component (correlation between posterior means of APC and
AIC_K is -0.87.). Thus it seems that rapid, and driven by capital accumulation
economic growth has a negative impact on productivity. For example, EU12
productivity has been dropping on average by 1.39% (0.1%) annually. The notion
of capital-driven growth vs. productivity-driven growth may seem counterintuitive
at first. The reader should note, however, that this is no more than plain evidence
of a relation between equipment and productivity – it takes time to learn the newly
acquired capital. Previous research in this regard provides some additional evidence.
For example, Makieła (2009) reports that countries such as Portugal, Slovenia and
South Korea, which had very high average input change component had also very low
average productivity change component.
Productivity change is not influenced by the second component of input change,
changes in labour input (correlation between posterior means of APC and AIC_L is
0.23.). Productivity decomposition shows that productivity change is mostly shaped
by changes in technical efficiency, which is also the most volatile component over time
and accounts for most of growth acceleration and deceleration.
The "old" Member States have had a more balanced yet smaller economic growth.
Impact of labour change on economic growth was positive and coupled with increased
productivity [by 0.13% (0.06%)], which is probably due to efficiency increase [0.14%
(0.13%)]. This impact (of joint positive influence of labour change and efficiency
change) is particularly strong in three EU15 countries: Ireland, UK and the
Netherlands. Interestingly enough these EU countries are also amongst the biggest
beneficiaries (in per capita terms) of inexpensive, yet skilled labour force from EU12.
Impact of technical change is more difficult to assess. It appears that the distinction
should be made between big and small economies rather than EU12 and EU15. The
technical change component of output growth has a positive effect on bigger economies
and a negative effect on smaller ones. Due to economic meltdown at the time it is hard
to reach firm conclusions about the impact of technology on economic growth. All
economies started producing less given their inputs after around 2005 which caused the
“best practices” frontier eventually to shift downwards. Thus, though there were some
considerable dynamics as regards frontier change over time (indicated by significance

K. Makieła
CEJEME 6: 193-216 (2014)

206



Bayesian Stochastic Frontier Analysis . . .

Table 3: Lindley-type tests for different parametric specifications nested in TR-QT
and TR-LT

Parametric Degrees Normal-half-normal Normal-exponential
specification of freedom τ(g∗) Pr{τ(g) > τ(g∗)|data} τ(g∗) Pr{τ(g) > τ(g∗)|data}

TR-QT (prior median= 0.6)
TR-LT 6 36.00 2.75E-06 18.98 4.20E-03
TR 12 44.40 1.30E-05 29.58 3.23E-03
TRt 11 44.00 7.27E-06 27.48 3.89E-03
CD 15 844.31 0 140.98 0
CDt 14 711.83 0 135.17 0
CD-QT 9 583.13 0 106.54 0
CD-LT 12 700.94 0 130.54 0
CRS restr 9 674.778 0 131.79 0

TR-QT (prior median = 0.75)
TR-LT 6 32.60 1.25E-05 19.06 4.06E-03
TR 12 39.67 8.15E-05 29.60 3.21E-03
TRt 11 39.65 4.11E-05 27.52 3.83E-03
CD 15 546.03 0 132.37 0
CDt 14 503.54 0 127.60 0
CD-QT 9 428.29 0 98.92 0
CD-LT 12 500.60 0 122.95 0
CRS restr. 9 518.22 0 123.62 0

TR-QT (prior median = 0.875)
TR-LT 6 20.84 1.96E-03 19.16 3.90E-03
TR 12 27.60 6.33E-03 29.34 3.51E-03
TRt 11 27.28 4.17E-03 27.45 3.93E-03
CD 15 231.09 0 122.94 0
CDt 14 220.63 0 119.49 0
CD-QT 9 187.59 0 89.77 0
CD-LT 12 216.43 0 114.60 0
CRS restr. 9 222.5824 0 114.01 0

TR-LT (prior median = 0.6)
TR 6 3.90 0.69 9.55 0.15
TRt 5 3.90 0.56 7.86 0.16
CD 9 344.40 0 107.89 0
CDt 8 308.62 0 102.75 0
CD-LT 6 7896.08 0 6403.33 0
CRS restr. 6 391.18 0 118.25 0

TR-LT (prior median = 0.75)
TR 6 4.68 0.59 9.51 0.15
TRt 5 4.60 0.47 7.84 0.17
CD 9 248.05 0 102.09 0
CDt 8 232.45 0 97.75 0
CD-LT 6 7604.27 0 5952.67 0
CRS restr. 6 274.28 0 112.95 0

TR-LT (prior median = 0.875)
TR 6 7.39 0.29 9.42 0.15
TRt 5 6.88 0.23 7.80 0.17
CD 9 185.21 0 96.47 0
CDt 8 173.62 0 93.01 0
CD-LT 6 7275.70 0 4617.47 0
CRS restr 6 261.882 0 107.37 0

Note: CRS restr. indicates testing for constant returns to scale.
207 K. Makieła

CEJEME 6: 193-216 (2014)



Kamil Makieła

of quadratic forms by Lindley-type tests), posterior means of average technical change
components are small. What can be said more generally about productivity is that,
in small countries productivity change has had its source mainly in efficiency change.
In bigger economies influence of technical change is more significant. EU12 economies
grew impressively throughout the analysed period. The region’s average annual
growth rate was around 3.5%, significantly higher than EU15 and other economies.
Decomposition results indicate that the capital growth component is the sole driver
of economic growth in the region. Remaining components have had a marginal and
rather negative impact on economic growth. This comes with small exception of
Poland where economy grew also due to labour change (0.03% [0.003]) and technical
change [0.38% (0.42%)], and Romania where technical change is also quite likely to
have had a positive impact on economic growth [0.11% (0.46%)]. Growth through
capital accumulation in EU12 is due to a number of reasons. First, EU12 region is
highly undercapitalized in comparison to EU15 and the benchmark economies (USA,
Japan, and Switzerland). Capital-to-labour ratio is just 32.7 PPS (Purchasing Power
Standard) per hour worked in the region and a country average is 35.6, indicating that
smaller economies are just slightly better-off. These ratios, however, are nowhere near
the EU15 average, which is 93 for the region and 87.9 for a country average (thus
bigger economies are slightly better-off). Second, the rate of capital accumulation
in EU12 was the highest while labour input even slightly declined. Normally, one
would argue that if labour had grown as well, it would have boosted economic growth
even further. Though this may be true we should remember that labour input is
already very high in relation to the capital stock in EU12, when compared to EU15
or benchmark economies. As EU12 economies evolve this imbalance is expected to
disappear and the fastest way is when labour input remains constant or even declines.
Hence, it comes as no surprise that economic growth in those countries is gained
primarily through capital accumulation.
Table 6 shows correlation coefficients of the joint posterior distributions of the
components of output growth for each country. The results reveal the following
correspondences between economic growth components.
First, there is a trade-off effect between technical change and efficiency change
(negative posterior correlation between ATC and AEC). Though correlation strength
ranges from moderate to high, the direction of this relationship remains stable in
all countries considered. Second, negative correlation between APC and AIC_k
reiterates what has already been mentioned earlier. Capital accumulation-driven
economic growth negatively affects productivity. Fortunately this effect is not that
strong. Third, relationship between labour component and productivity is more
complex. If labour input grows, labour component is positively correlated with
productivity component. However, if labour input declines the correlation coefficient
is negative. Fourth, capital component and labour component of economic growth
are highly correlated. Moreover the sign of the posterior correlation coefficient is
dependent
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Table 4: Output growth decomposition results; first level of decomposition; averages
by country

Country Emp.
growth
rate

Expected
growth
rate

First level of decomposition Capital
stock to
labour
(PPS
per hour
worked)
(1996-
2010
average)

Capital
stock
annual
growth
rate
(1996-
2010
average)

Labour
annual
growth
rate
(1996-
2010
average)

E(AOC)D(AOC)E(AIC)D(AIC)E(APC)D(APC)
Austria 2.05 2.050 0.188 1.818 0.049 0.228 0.191 102.786 2.166 0.310
Belgium 1.90 1.885 0.164 1.706 0.024 0.176 0.162 103.495 1.918 1.039
Bulgaria 3.48 3.476 0.190 4.322 0.125 -0.811 0.219 20.591 4.965 -0.462
Czech Republic 2.75 2.755 0.189 2.920 0.064 -0.160 0.194 51.365 3.582 -0.404
Denmark 1.27 1.304 0.128 1.433 0.018 -0.127 0.127 73.370 1.624 0.599
Estonia 4.75 4.768 0.195 8.025 0.225 -3.015 0.269 30.931 8.700 -1.077
Finland 2.78 2.741 0.188 1.424 0.016 1.298 0.187 77.564 1.601 0.744
France 1.70 1.701 0.185 1.741 0.074 -0.040 0.196 112.217 2.186 0.315
Germany 1.27 1.271 0.185 1.088 0.057 0.181 0.192 103.555 1.446 0.002
Greece 2.58 2.581 0.189 2.017 0.034 0.554 0.188 75.820 2.321 0.737
Hungary 2.44 2.502 0.187 4.598 0.084 -2.004 0.185 35.071 5.420 -0.192
Ireland 4.37 4.363 0.192 4.026 0.065 0.324 0.195 82.756 4.623 1.256
Italy 0.88 0.886 0.184 1.391 0.042 -0.498 0.186 88.257 1.665 0.455
Japan 0.66 0.662 0.185 0.380 0.081 0.281 0.201 78.544 0.967 -1.051
Latvia 4.22 4.243 0.193 7.432 0.217 -2.968 0.264 23.606 8.166 -0.579
Lithuania 4.32 4.337 0.184 5.703 0.140 -1.292 0.218 26.762 6.347 -0.162
Netherlands 2.17 2.162 0.177 1.792 0.038 0.363 0.178 101.789 2.068 0.798
Poland 4.27 4.301 0.174 4.583 0.110 -0.270 0.187 28.093 5.561 0.132
Portugal 1.71 1.714 0.187 2.489 0.041 -0.756 0.186 44.554 2.937 0.136
Romania 2.52 2.525 0.189 4.079 0.151 -1.493 0.229 18.179 5.092 -1.250
Slovakia 4.14 4.167 0.183 5.363 0.090 -1.135 0.188 43.247 6.183 -0.361
Slovenia 3.22 3.252 0.189 5.553 0.079 -2.179 0.188 53.005 6.222 0.151
Spain 2.77 2.773 0.189 3.582 0.065 -0.781 0.192 83.170 4.023 1.999
Sweden 2.60 2.596 0.189 1.474 0.030 1.106 0.188 101.577 1.704 0.585
Switzerland 1.87 1.868 0.187 1.068 0.009 0.791 0.185 97.496 1.163 0.857
United
Kingdom

2.26 2.248 0.165 1.856 0.063 0.385 0.175 75.091 2.304 0.328

United States 2.38 2.406 0.164 2.191 0.124 0.211 0.193 83.471 2.946 0.256
Cyprus 3.22 3.219 0.189 3.911 0.058 -0.666 0.190 42.542 4.282 1.815
Luxembourg 4.02 4.026 0.169 4.460 0.052 -0.415 0.171 93.110 5.067 2.781
Malta 2.41 2.412 0.188 2.984 0.057 -0.555 0.191 54.155 3.210 0.672
Average 2.70 2.706 0.032 3.180 0.045 -0.442 0.051 66.872 3.682 0.348
weighted 1.98 1.985 0.072 1.881 0.089 0.102 0.108 84.356 2.469 0.173
EU average 2.82 2.818 0.034 3.382 0.047 -0.546 0.054 64.691 3.903 0.384
EU region 1.99 1.985 0.056 2.058 0.054 -0.071 0.076 86.547 2.488 0.433
EU15 average 2.29 2.283 0.044 2.146 0.043 0.134 0.060 87.941 2.510 0.806
EU15 region 1.81 1.802 0.062 1.774 0.057 0.027 0.083 93.044 2.149 0.514
EU12 average 3.48 3.491 0.056 4.948 0.100 -1.388 0.105 35.629 5.644 -0.143
EU12 region 3.51 3.522 0.080 4.445 0.098 -0.884 0.112 32.703 5.301 -0.243
US+JP+CH 1.64 1.641 0.095 1.204 0.074 0.432 0.117 86.503 1.692 0.021
US+JP+CH reg 1.97 1.985 0.121 1.736 0.118 0.244 0.159 82.567 2.454 -0.038

Note: Definitions for AOC, AIC, APC are provided in Section 3; E(. . . ) is posterior mean; D(. . . ) is
posterior standard deviation.
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Table 5: Output growth decomposition results; second level of decomposition;
averages by country

Country
Empirical Expected Second level of decomposition

growth growth rate

rate E(AOC) D(AOC) E(AIC_K) D(AIC_K) E(AIC_L) D(AIC_L) E(AEC) D(AEC) E(ATC) D(ATC)

Austria 2.05 2.050 0.188 1.778 0.057 0.039 0.008 0.285 0.260 -0.056 0.157
Belgium 1.90 1.885 0.164 1.574 0.051 0.130 0.027 0.236 0.225 -0.060 0.159
Bulgaria 3.48 3.476 0.190 4.376 0.116 -0.052 0.010 -0.553 0.363 -0.258 0.385
Czech Republic 2.75 2.755 0.189 2.983 0.057 -0.061 0.008 -0.278 0.242 0.118 0.188
Denmark 1.27 1.304 0.128 1.376 0.028 0.056 0.011 -0.068 0.136 -0.059 0.106
Estonia 4.75 4.768 0.195 8.028 0.206 -0.002 0.020 -2.260 0.329 -0.771 0.398
Finland 2.78 2.741 0.188 1.356 0.029 0.067 0.014 1.373 0.211 -0.073 0.108
France 1.70 1.701 0.185 1.664 0.086 0.076 0.012 -0.054 0.331 0.015 0.233
Germany 1.27 1.271 0.185 1.088 0.058 0.000 0.000 0.076 0.281 0.106 0.188
Greece 2.58 2.581 0.189 1.907 0.050 0.107 0.017 0.492 0.219 0.061 0.122
Hungary 2.44 2.502 0.187 4.625 0.081 -0.026 0.003 -2.008 0.298 0.005 0.245
Ireland 4.37 4.363 0.192 3.929 0.089 0.093 0.024 0.458 0.234 -0.133 0.116
Italy 0.88 0.886 0.184 1.276 0.058 0.113 0.016 -0.665 0.231 0.169 0.143
Japan 0.66 0.662 0.185 0.716 0.037 -0.334 0.043 -0.069 0.240 0.351 0.188
Latvia 4.22 4.243 0.193 7.455 0.206 -0.021 0.012 -2.306 0.347 -0.677 0.422
Lithuania 4.32 4.337 0.184 5.713 0.138 -0.009 0.003 -0.819 0.311 -0.477 0.332
Netherlands 2.17 2.162 0.177 1.661 0.061 0.129 0.023 0.368 0.251 -0.004 0.165
Poland 4.27 4.301 0.174 4.552 0.113 0.030 0.003 -0.644 0.416 0.378 0.429
Portugal 1.71 1.714 0.187 2.468 0.043 0.020 0.002 -0.864 0.269 0.110 0.215
Romania 2.52 2.525 0.189 4.324 0.123 -0.235 0.031 -1.598 0.436 0.109 0.462
Slovakia 4.14 4.167 0.183 5.396 0.086 -0.031 0.005 -0.945 0.246 -0.191 0.196
Slovenia 3.22 3.252 0.189 5.548 0.081 0.004 0.002 -1.830 0.222 -0.355 0.147
Spain 2.77 2.773 0.189 3.131 0.130 0.437 0.065 -0.907 0.237 0.128 0.140
Sweden 2.60 2.596 0.189 1.396 0.045 0.076 0.015 1.152 0.254 -0.045 0.155
Switzerland 1.87 1.868 0.187 0.956 0.029 0.111 0.021 0.819 0.235 -0.027 0.141
United Kingdom 2.26 2.248 0.165 1.771 0.075 0.083 0.011 0.124 0.196 0.261 0.149
United States 2.38 2.406 0.164 2.095 0.136 0.093 0.012 -0.091 0.235 0.303 0.230
Cyprus 3.22 3.219 0.189 3.973 0.081 -0.060 0.028 -0.017 0.293 -0.649 0.263
Luxembourg 4.02 4.026 0.169 4.612 0.088 -0.146 0.044 0.032 0.251 -0.446 0.241
Malta 2.41 2.412 0.188 3.042 0.067 -0.057 0.012 0.247 0.369 -0.798 0.348
Average 2.70 2.706 0.032 3.158 0.048 0.021 0.009 -0.347 0.101 -0.096 0.117
weighted 1.98 1.985 0.072 1.844 0.095 0.036 0.006 -0.108 0.147 0.211 0.149
EU average 2.82 2.818 0.034 3.353 0.050 0.029 0.010 -0.415 0.107 -0.131 0.125
EU region 1.99 1.985 0.056 1.968 0.068 0.088 0.015 -0.169 0.148 0.098 0.131
EU15 average 2.29 2.283 0.044 2.058 0.062 0.087 0.019 0.140 0.129 -0.006 0.111
EU15 region 1.81 1.802 0.062 1.668 0.074 0.104 0.017 -0.067 0.173 0.095 0.144
EU12 average 3.48 3.491 0.056 4.994 0.097 -0.044 0.005 -1.105 0.212 -0.286 0.246
EU12 region 3.51 3.522 0.080 4.485 0.093 -0.039 0.005 -1.011 0.295 0.129 0.323
US+JP+CH 1.64 1.641 0.095 1.248 0.071 -0.044 0.005 0.225 0.151 0.206 0.139
US+JP+CH (reg) 1.97 1.985 0.121 1.743 0.117 -0.006 0.001 -0.059 0.196 0.303 0.205

Note: Definitions for AOC, AIC, APC are provided in Section 3; E(. . . ) is posterior mean; D(. . . ) is
posterior standard deviation.
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Table 6: Posterior correlations between components of output growth; time averages

Country ρ(ATC, ρ(APG, ρ(APG, ρ(APG, ρ(AEC, ρ(AEC, ρ(AEC, ρ(ATC, ρ(ATC, ρ(ATC, ρ(AIG_K,

AEC) AIG) AIG_K) AIG_L) AIG) AIG_K) AIG_L) AIG) AIG_K) AIG_L) AIG_L)

Austria -0.69 -0.28 -0.28 0.28 -0.50 -0.50 0.51 0.48 0.48 -0.50 -0.99
Belgium -0.70 -0.14 -0.13 0.13 -0.43 -0.45 0.45 0.46 0.49 -0.51 -0.99
Bulgaria -0.83 -0.58 -0.58 -0.51 0.40 0.38 0.60 -0.67 -0.65 -0.82 0.85
Czech Rep. -0.62 -0.35 -0.35 -0.34 0.30 0.30 0.36 -0.70 -0.69 -0.75 0.96
Denmark -0.47 -0.13 -0.12 0.10 -0.02 0.00 -0.02 -0.13 -0.14 0.15 -0.97
Estonia -0.73 -0.77 -0.77 -0.67 0.32 0.31 0.38 -0.78 -0.77 -0.77 0.88
Finland -0.47 -0.14 -0.15 0.15 -0.11 -0.12 0.13 -0.01 -0.01 0.00 -0.98
France -0.82 -0.41 -0.41 0.40 -0.64 -0.65 0.66 0.58 0.59 -0.61 -0.99
Germany -0.74 -0.33 -0.33 0.33 -0.48 -0.48 0.48 0.38 0.38 -0.39 -0.99
Greece -0.52 -0.20 -0.20 0.20 -0.03 -0.02 0.01 -0.26 -0.26 0.28 -0.99
Hungary -0.79 -0.30 -0.30 -0.23 0.38 0.37 0.53 -0.65 -0.64 -0.79 0.87
Ireland -0.56 -0.37 -0.37 0.35 -0.42 -0.42 0.43 0.23 0.24 -0.27 -0.98
Italy -0.60 -0.23 -0.23 0.23 -0.18 -0.18 0.19 -0.02 -0.01 0.00 -0.99
Japan -0.59 -0.45 -0.45 -0.45 0.15 0.14 0.16 -0.65 -0.63 -0.66 0.98
Latvia -0.77 -0.76 -0.76 -0.66 0.38 0.37 0.51 -0.78 -0.78 -0.83 0.88
Lithuania -0.77 -0.62 -0.62 -0.53 0.37 0.36 0.53 -0.72 -0.72 -0.81 0.85
Netherlands -0.71 -0.24 -0.23 0.23 -0.47 -0.48 0.48 0.46 0.47 -0.49 -0.99
Poland -0.91 -0.50 -0.50 0.46 0.40 0.41 -0.61 -0.58 -0.59 0.76 -0.90
Portugal -0.73 -0.22 -0.22 0.20 0.41 0.42 -0.52 -0.66 -0.67 0.77 -0.93
Romania -0.87 -0.65 -0.64 -0.58 0.35 0.28 0.55 -0.61 -0.55 -0.77 0.85
Slovakia -0.66 -0.40 -0.40 -0.31 0.25 0.24 0.40 -0.66 -0.64 -0.75 0.83
Slovenia -0.54 -0.35 -0.34 0.22 0.08 0.08 -0.11 -0.56 -0.56 0.45 -0.82
Spain -0.59 -0.35 -0.35 0.34 -0.31 -0.32 0.32 0.05 0.07 -0.09 -0.99
Sweden -0.68 -0.19 -0.19 0.18 -0.42 -0.43 0.43 0.45 0.46 -0.48 -0.99
Switzerland -0.62 -0.06 -0.06 0.05 -0.23 -0.27 0.27 0.30 0.36 -0.38 -0.99
United Kingdom -0.52 -0.42 -0.42 0.41 0.07 0.07 -0.08 -0.57 -0.57 0.57 -0.99
United States -0.67 -0.61 -0.62 0.62 -0.26 -0.25 0.20 -0.28 -0.28 0.34 -0.98
Cyprus -0.77 -0.31 -0.30 0.23 0.38 0.36 -0.25 -0.64 -0.61 0.43 -0.86
Luxembourg -0.76 -0.35 -0.31 0.20 0.30 0.20 -0.04 -0.54 -0.41 0.18 -0.89
Malta -0.86 -0.32 -0.31 0.25 0.41 0.38 -0.15 -0.60 -0.56 0.29 -0.87
Average -0.69 -0.37 -0.37 0.04 0.02 0.00 0.23 -0.26 -0.24 -0.21 -0.40
weighted -0.66 -0.46 -0.46 0.32 -0.19 -0.20 0.23 -0.18 -0.17 -0.01 -0.68
EU average -0.69 -0.37 -0.36 0.04 0.03 0.02 0.23 -0.26 -0.25 -0.21 -0.41
EU region -0.68 -0.34 -0.34 0.27 -0.24 -0.24 0.28 0.04 0.05 -0.14 -0.87
EU15 average -0.64 -0.27 -0.26 0.25 -0.21 -0.22 0.23 0.06 0.07 -0.09 -0.98
EU15 region -0.66 -0.32 -0.32 0.31 -0.31 -0.31 0.31 0.12 0.13 -0.14 -0.99
EU12 average -0.76 -0.49 -0.49 -0.22 0.34 0.32 0.23 -0.66 -0.65 -0.36 0.29
EU12 region -0.80 -0.48 -0.48 -0.05 0.35 0.34 0.03 -0.63 -0.62 -0.13 0.12
US+JP+CH -0.62 -0.37 -0.37 0.07 -0.11 -0.13 0.21 -0.21 -0.18 -0.23 -0.33
US+JP+CH reg -0.65 -0.57 -0.57 0.36 -0.16 -0.16 0.19 -0.35 -0.35 0.09 -0.52

Note: Definitions for AOC, AIC, AIC_K, AIC_C, APC, ATC and AEC are in Section 3; ρ(a,b) is a
posterior correlation coefficient between a and b
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on whether labour input increases or decreases. When labour change is positive
the two components are highly negatively correlated (they force each other out).
Hence, if share of capital component in economic growth rises it comes at the expense
of labour component and vice-versa. This can be simply explained if we view
capital accumulation as an “automatization effect”. If one country achieves higher
economic growth through capital accumulation (thus by automatizing its macro-scale
production) it comes at the expense of labour input (e.g., funds that could have been
used to employ more labour).

6 Concluding remarks
Regardless of the model considered, capital accumulation is the main driver of
economic growth. Its impact on growth in the studied economies has been on
average several times higher than that of technical efficiency change – the second most
important component. However, while capital accumulation has had the biggest share
in economic growth, efficiency change accounts for most of economic growth dynamics;
acceleration and deceleration over time. Labour change component has turned out
to be less significant than capital accumulation and even efficiency change. Technical
progress has had a marginal impact on economic growth on average. A likely reason
for this is that the model has been estimated using data covering the economic crisis
that had its origin around the middle of the first decade of the 20th century and every
economy has been struggling with it at some point ever since.
To sum up, it should be noted that components of output growth are conditioned upon
model choice. Thus, it is important to first select the best parametric specification
before proceeding with output growth decomposition. The use of Bayesian Stochastic
Frontier Analysis (BSFA) allows us to choose the optimal model not only based on
basic conceptual guidelines briefly mentioned at the end of Section 3 but primarily
based on information in the data. In particular, model selection exercise performed
in the study reports the following findings. First, Cobb-Douglas parameterisation is
too restrictive to be used in empirical studies of economic growth. Even though the
prior structure of the models slightly favoured Cobb-Douglas functions over translogs
(see Section 2), their marginal data densities have turned out to be considerably
lower. Second, global constant returns to scale, so often assumed by the theorists of
economic growth, are not supported by the data. Third, adjusting HME for pseudo-
bias is very important in NHN models and when one wants to compare models of
different types, e.g., NHN to EXP. For example in some NHN models, poorly chosen
prior median has caused enormous HME pseudo-bias via latent variables leading to
an impression that NHN models greatly outperform EXP models. However, much
of the difference disappears once HME is adjusted. Fourth, on the one hand NHN
models with a well-tuned prior median still considerably outperform EXP. On the
other hand, however, EXP models are less dependent on how this hyperparameter
is set. In EXP models, HME pseudo-bias has had virtually no impact on model
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selection and ranking; quite the opposite in NHN models. This may be due to thicker
tails of exponential distribution in comparison to half-normal. The researcher is less
penalized for poorly selected prior median than in the case of half-normal distribution.
Thus, given the fact that i) EXP models are less dependent on the prior median than
NHN models, ii) samplers for EXP models are more efficient (faster mixing speeds,
thus fewer runs are required), and that iii) similarly parameterised EXP and NHN
models yield similar results, it makes EXP models more appealing to practitioners.
The presence of economic crisis has had its consequence in a downward trend of
the production technology frontier at the end of the analysed period. One would
argue though that an economic crisis does not affect the technological potential and
innovative power of an economy. It might be useful then to model a non-decreasing
technology change and analyse how this affects the estimates, and quite possibly model
choice, during the time of a crisis. Though it is technically possible to restrict model
parameters in such a way, it should be noted that this work follows core literature on
SFA and treats technology strictly as the “best practices frontier”. That is why if all
countries produce less given their inputs over time the production frontier is let to
shift downwards – implying diminishing technological potential.
Another possible contribution would be to model GDP, capital and labour using
techniques found in time series analysis. This work pre-assumes a causal link between
macroeconomic product (represented by GDP), physical capital and labour. However,
the very existence of such macroeconomic production function is sometimes disputed
in the literature (see, e.g., Growiec, 2012b). Since these processes (GDP, physical
capital and labour) are likely to be unit root stochastic processes, it would be
interesting to know if they are cointegrated. Should cointegration exist it can be
seen as the sought-after macroeconomic production function. However, cointegration
analysis for stochastic frontier models has not been developed yet, and using current
panel-cointegration techniques can be very misleading.
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