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Abstract
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1 Introduction
Value at Risk is the standard tool used to measure potential loss of the instrument or
portfolio that would be reached or exceeded with a given probability (usually 1%) over
a fixed time horizon. It is employed for internal control and regulatory reporting. VaR
is a characteristic of the distribution of the future value of instrument. In practice,
this probability distribution is unknown and is replaced by statistical model. There
are several VaR models but the differences between them are due to the manner in
which the distribution is constructed. In linear VaR model the distribution of risk
factor returns is assumed to be normal, and the portfolio is required to be linear. The
historical simulation model uses a large quantity of historical data to estimate VaR,
but makes minimal assumption about risk factor return distribution (only concerning
stability of distribution). Monte Carlo approach may be used with great diversity of
risk factor return distribution.
Recently the most popular are approaches which are considerably more flexible than
the most parametric models used to this aim. One of them are GARCH models
estimated with use of the QML method based on heavy tailed likelihood. Nonetheless,
the significant kurtosis of the standardized residuals, although smaller than in the raw
data, is still noticed (Bollerslev and Wooldridge (1992)).
According to Frances and Ghijsels (1999), this phenomenon stems from additive
outliers in rate of returns. For the most part such outliers are not properly included
in the ARMA- and-GARCH-class of models. This leads to bias of the estimator in the
conditional mean and variance models. This phenomenon is observed by Andersen
and Bollerslev (1988), Ledorter (1989) and Jorion (1995). Conditional mean
model should be included in variance modelling, because incorrect identification of
the equation for the conditional mean may affect the results of testing for conditional
heteroscedasticity (Lumsdaine and Ng (1999)).
There are two methods for dealing with the occurrence of outliers. The first is to
estimate the model parameters using the maximum likelihood method, and then
to diagnose the innovations for the outliers identification. However, because of the
possibility of masking effect of outliers, the method may be inaccurate.
The second way is to use robust estimators. This method was developed originally by
Huber (1973). It limits the influence of outliers on estimators of parameters, and this
in turn translates into robustness when error distribution deviates from the assumed
one.
The most important estimators for ARMA and GARCH models were M-estimators,
filtered M-estimators (Martin, Samarov, Vandaele (1983)), filtered S-estimators
(Martin and Yohai (1996)), or filtered τ -estimators (Bianco, Garcia, Yohai
(2005)). Unfortunately filtered estimators are asymptotically biased and in case of
M-estimators, large outliers have still strong effect on the estimators.
Muler and Yohai (2008) and Muler, Pena and Yohai (2009) for the ARMA and
GARCH model presented robust estimators which are referred to as BIP-estimators
(bounded propagation innovation). In both models the first estimator is determined
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by minimizing the appropriately modified likelihood function, and the second is
constructed similarly but has an additional mechanism to reduce the propagation of
the effect of an outlier on the subsequent conditional variance estimators. The authors
presented the asymptotic properties of both estimators, proved their consistency and
asymptotic normality.
Another, completely different robust estimation method, is regression quantiles,
described by Koenker and Bassett (1978), which yields the ordinary sample quantiles.
The linear function of order statistics often exhibits desirable robustness, particularly
to heavy-tailed distribution and outlying observation. The paper presents the
robust approach also due to its wide applicability in risk measurement and portfolio
allocation. The most popular is CaViaR approach presented by Engle and Manganelli
(2004): time-varing VaR is modelled directly via autoregression.
The robust approach among the Polish researchers was developed by Zieliński (1983).
Doman (2005), Kaszuba (2008), Majewska (2008), Orwat (2007), Trzpiot (2008a),
Trzpiot and Majewska (2008) have analysed robust estimation methods in scope of
risk management and portfolio analysis. However, the robust estimation methods
were not analysed for the period of high volatility, and forecasts generated by the
models are not compared. Our study focuses on such comparisons. In addition, we
examine whether the models based on robust estimation accurately reflect variability
clustering, presence of fat tails and skewness of the distribution.
This paper is organised as follows. In the first section we present basic notation. In
section 2 we discuss foundations of robust estimation of the ARMA-GARCH class of
models and regression quantiles. Then the application to risk measurement in section
3 is provided. Section 4 concludes.

2 Notations and preliminaries

Fox (1972) considered types of outliers that may occur in time series. The first
class is that of innovative outliers which may be modelled using ARMA-GARCH
framework. The innovation outlier first appears at the moment t and afterwards
similar large values are observed close to original line of slope. In consequence there
is one innovation outlier and a certain number of leverage points which can potentially
improve accuracy of estimation (figure 1 - 2). The second type are additive outliers
that affects a single observation. In this case the observations do not obey classical
ARMA-GARCH model (figure 3 - 4). Hence large outliers at the time t can affect
estimated values of µt+k and ht+k up to several periods t+ k. This is caused by the
fact that outliers are not adequately included in these models and some extension of
model is needed.
Rate of return of the financial instrument in presence of additive outliers can be
written as ARMA(p, q)-GARCH(r, m) models with an indicator function (Hamilton

37 E. Ratuszny
CEJEME 5: 35-63 (2013)



Ewa Ratuszny

(1994), Muler, Pena and Yohai (2009)):

r∗t = rt + aIt (1)

φ(L)(rt − µ) = θ(L)ut (2)
where ut =

√
htzt, zt ∼ N(0, 1), ht is a conditional variance of ut (types of conditional

variance models analysed in paper are contained in table 2), at corresponds to size of
innovation and It is the indicator function that takes value 1 if the innovation occurs
at time t, and 0 otherwise.

Figure 1: Innovation Outliers in time series Figure 2: Example of Innovation Outliers -
scatterplot

Figure 3: Additive Outliers in time series Figure 4: Additive Outliers - scatterplot

Let δ(L) = φ−1(L)θ(L) = 1 +
∑∞
i=1 δiL

i, then equation (2) can be rewritten as
follows:

rt = µt + ut (3)
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Table 1: Conditional variance ht.

Model Analytical form Restriction

GARCH(r, m) ht = α0 +
∑r

i=1 αiu
2
t−i +

∑m

j=1 βjht−j α0 > 0, αi ≥ 0,
(Bollerslev (1986)) βj ≥ 0 , r > 0 m ≥ 0

EGARCH(r, m) log ht = α0 +
∑r

j=1 βj log ht−j+ r > 0
(Nelson (1991)) +

∑m

i=1 αi {|υt−i|+ E |υt−i|+ κυt−i}

GJR(r,m) ht = α0 +
∑r

j=1 βjht−j+ r > 0, m ≥ 0
(Glosten, Jagannathan, Runkle (1993)) +

∑m

i=1

(
αiu

2
t−i + κiu

2
t−iIt−i

)
Source: Hamilton (1994)

µt = µ+
∞∑
i=1

δiut−i (4)

where µt is the conditional mean of rt. In case of quasi-maximum likelihood method

Table 2: Error distribution specification.
Error distribution Density function

Normal(0,1) f(u) = 1√
2π e
− 1

2u
2
,

Student-t f(ut, υ) = Γ[(υ+1)/2]√
υπΓ[υ/2]

(
1 + u2

t
υ

)− υ+1
2

(Bollerslev (1986)) Γ(·) is the gamma function

GED f(ut, υ) = υexp{− 1
2 |utλ |υ}

λΓ( 1
υ ) 2−

υ+1
υ

(Nelson (1991)) where λ is constant given by λ =
[

Γ( 1
υ )

Γ( 3
υ )2− 2

υ

] 1
2
;

Γ(·) is the gamma function.

Source: Hamilton (1994)
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of estimation (QML), the general form of likelihood function is described as follows:

LT (θ) =
T∑

t=p+1
log f (ut − log ht(θ)) (5)

where f is assumed density function of errors (candidate functions included in our
empirical application are described in table 2) and θ = (α0, α1, . . . , αr, β1, . . . , βm) is
estimated vector of parameters.
The k-period-ahead forecasts of conditional mean and volatility are given by:

(rt+k|t − µ) = φ̂0 +
p∑
i=1

φ̂i(rt+k−i|t − µ) +
q∑
j=1

θ̂jut+k−j|t (6)

ht+k|t = α̂0 +
r∑
i=1

α̂iu
2
t+k−i|t +

m∑
j=1

β̂jht+k−j|t (7)

3 Methodology
3.1 Bounded innovation propagation methodology
Muler and Yohai (2008) and Muler, Pena and Yohai (2009) show that the QML
estimators of ARMA and GARCH models are not efficient in presence of outliers.
Hence, they proposed to use robust filters that reduce the propagation effect of the
outliers on the estimated value of µt and ht. In case of ARMA models they replace
equation (3)-(4) by auxiliary models for the contaminated returns r∗t , denoted as
BIP-ARMA (boundary innovation propagation-ARMA):

r∗t = µt + ut + aIt (8)

µt = µ+
∞∑
i=1

δj
√
ht−iη

(
ut−i√
ht−i

)
(9)

The same idea is used in case of GARCH model to limit the propagation effect of
potentially additive outliers on the future volatility. In case of the QML estimator,
the factor aIt−i, which includes occurrence of outliers, has no impact on ht, while
assuming GARCH process of r∗t it has decaying effect on volatility prediction. The
Muler and Yohai (2008) present auxiliary GARCH model with imposed filters
on standardised residuals. They called this model the BM-GARCH (boundary
M-GARCH):

ht,k = α0 +
r∑
i=1

αiht−i,kω

(
u2
t−i

ht−i,k

)
+

m∑
i=1

βiht−i,k (10)
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Using the same methodology as for the GARCH models, the residuals could be also
downweighted in exponential GARCH and GJR models to capture asymmetric effect
in volatility, especially occurring in equity. The analytical form of BM-EGARCH
model is as follows:

log ht = α0 +
r∑
j=1

βi log ht−j +
m∑
i=1

αi

{
|ut−i|√
ht−j

− E

(
|ut−i|√
ht−j

)}
+

m∑
i=1

Li
ut−i√
ht−j

(11)

and BM-GJR is given by:

ht = α0 +
r∑
j=1

βjht−j +
m∑
i=1

αiω

(
u2
t−i
ht−j

)
ht−j +

m∑
i=1

LiIt−iω

(
u2
t−i
ht−j

)
ht−j (12)

Muler and Yohai (2008) and Muler, Pena and Yohai (2009), due to inefficiency of
the QML estimation of the BIP-ARMA and BM-GARCH models, propose using the
M-estimator that minimizes the average value of the objective function ρ, evaluated
at the log-transform of squared standardised returns, i.e.:

θ̂ = arg min
θ

1
T

T∑
t=p+1

ρ

(
log u

2
t

ht

)
(13)

where ut is given by equation (9), ht is one of the selected GARCH-type models
(10-12) and ρ = − log(f).
The choice of ρ functions trades off robustness versus efficiency. Muler and Yohai
(2008) recommended the ones associated with Normal distribution of residuals:
BM1-GARCH with loss function:

ρ1(z) = m(ρN (z)) (14)

and BM2-GARCH with loss function:

ρ2(z) = 0.8m
(
ρN (z)

0.8

)
(15)

where
ρN (z) = 1√

2π
exp[−1

2(exp(z)− z)] (16)

and m is smoothed version of

m(x) = xI(x 6 4.02) + 4.02I(> 4.02) (17)

The BM1 estimator is more similar to the QML because on large interval it is equal to
identity (Muler and Yohai (2008)). Boudt, Danielsson, Laurent (2013) and Laurent,
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Lecourt, Palm (2011) propose loss function associated with the Student-t distribution
with v degrees of freedom:

ρtv (z) = (v + 1)
2 log

(
1 + exp(z)

v − 2

)
− z/2 (18)

The associated loss function in case of the generalised error distribution (GED) is as
follows:

ρGED(z, v) = −1
2

∣∣∣∣exp(z)
λ

∣∣∣∣v − exp(z) (19)

where

λ =
[

Γ
( 1
v

)
Γ
( 3
v

)2− 2
v

] 1
2

The k-period-ahead forecast in the BIP-ARMA model is obtained by:

r̂∗t+k|t = µ−
∞∑
i=1

δiu
∗
t+k−i|t = µ− (θ(L)−1φ(L)− 1))u∗t+k−i|t (20)

where r∗t = µ for t 6 0. The filtered innovation residual for period t is calculated as:

û∗t+k|t = rt+k|t − r̂∗t+k|t

and cleaned value of r∗t+k:

r∗t+k|t = r̂∗t+k|t +
√
ĥt+k|tη

 û∗t+k|t√
ĥt+k|t


The k-period-ahead forecast in the BIP-ARMA model can be also described as:

r̂∗t+k|t = µ+
p∑
i=1

φ̂i(r∗t+k−i|t − µ) +
q∑
j=1

θ̂j

√
ĥt+k−j|tη

 û∗t+k−j|t√
ĥt+k−j|t

 (21)

In the above expressions, ĥt+k is the k-period-ahead forecast of volatility, which in
case of the GARCH model is formulated as:

ĥt+k|t = α̂0 +
r∑
i=1

α̂iĥt+k−i|tω

(
û∗2t+k−i|t

ĥt+k−i|t

)
+

m∑
j=1

β̂j ĥt+k−j|t (22)

E. Ratuszny
CEJEME 5: 35-63 (2013)

42



Robust Estimation in VaR Modelling...

3.2 Quantile regression
According to many researchers, quantile regression is one of the most important
achievements in the area of robust methods for linear models. Koenker and Bassett
(1978) proved asymptotic normality of these estimators and showed that they are of
comparable effectiveness to least squares estimator for linear Gaussian models, while
significantly outperform the least squares estimator for a wide class of non-Gaussian
error distributions. They generalized a simple minimization problem yielding the
ordinary sample quantiles in the location model to the regression model.
Let rt be written as a regression process:

rt = x
′

tβ − ut (23)

where x′tβ is α-quantile for rt with given vector of explanatory variables xt measurable
relative to σ-algebra ψt−1, where ψt−1 is the information set available at time t− 1.
Then k-dimensional vector of β parameters minimizing the function:

min
β

 ∑
t|rt≥xtβ

θ |yt − xtβ|+
∑

t|rt<xtβ

(1− θ) |rt − xtβ|

 (24)

is a general form of the regression quantiles.

3.3 Value at Risk
Let qt denote α-quantile of variable distribution zt. Then one-day-ahead V aR forecast
for long and short position at the significance level α = 1% is:

V aRlt+1(α) = −µt+1|t −
√
ht+1|tqα (25)

V aRst+1(α) = µt+1|t +
√
ht+1|tq1−α (26)

where µt+1|t and ht+1|t denote the one-day-ahead forecasts of conditional mean and
volatility, respectively, determined in ARMA-GARCH class of models estimated using
QML (equations (6)-(7)) or robust method based on bounded innovation propagation
methodology (equations: (21)-(22)).
The CAViaR models, based on the regression quantiles framework, directly describe
the quantile of the rate of return. The general form of CAViaR models is described
by the equation:

V aRt = f(xt, βθ) = β0 +
p∑
i=1

βiV aRt−i + l(βp+1, ..., βp+q;ψt−1) (27)

One-period-ahead forecast of VaR based on CAViaR models is determined directly
from models with analytical forms given in table 3.3.
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Table 3: CaViaR models.
Model Analytical form

AD-Adaptive V aRlt = V aRlt−1 + β0[I(yt−1 ≤ −V aRlt−1)− α]
V aRst = V aRst−1 + β0[I(yt−1 ≥ −V aRst−1)− α]

SAV- Symmetric Absolute Value V aRlt = β0 + β1V aR
l
t−1 + β2 |yt−1|

V aRst = β0 + β1V aR
s
t−1 + β2 |yt−1|

AS- Asymmetric Slope V aRt = β0 + β1V aR
l
t−1 + β2(yt−1)+ − β3(yt−1)−

V aRt = β0 + β1V aR
s
t−1 + β2(yt−1)+ − β3(yt−1)−

where (x)+ = max(x, 0),(x)− = min(x, 0)

IGARCH- Indirect GARCH V aRt =
√
β1 + β2V aR2

t−1 + β3y2
t−1

Source: Engle and Manganelli (2004)

4 Application

4.1 Preliminary analysis
In this part we present the empirical application of robust estimation to VaR, and
we compare the results with those obtained from models estimated using the QML
method. All the calculations and analysis were made using MATLAB application.
As the dataset we use: FX rates of EUR/PLN (mid spot quotations since January
2, 2003 - 2347 observations), USD/PLN (mid spot quotations since January 3, 1994
- 4689 observations) and of CHF/PLN (mid spot quotations since January 3, 1996 -
4162 observations); indexes of WIG20 (closing quotations since January 2, 1995 - 4260
observations), FTSE100 (closing quotations since January 4, 2000 - 3032 observations)
and of S&P 500 (closing quotations since January 3, 2000 - 3020 observations) and
equities of TPSA (closing prices since January 4, 1999 - 3262 observations), PKN
Orlen (closing prices since January 3, 2002 - 2513 observations), and of Pekao (closing
prices since January 4, 1999 - 3262 observations). All quotations are up to December
31, 2011. The time series contain many discontinuities (figure (6) presents returns for
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the EUR/PLN as an example).
The time series of the quotations, prices and rates of return were checked for the
presence of following features: fatter tails than in the normal distribution (identified
on the basis of the quantile-quantile plots, histograms - figure (7)-(8) for EUR/PLN
is shown as an example - and the Lomnicki-Jarque-Bera test - results in table 15);
stationarity (identified on the basis of an augmented Dickey-Fuller test (ADF) -
results in table 16); autocorrelation of the rates of returns (identified on the basis
of the Ljung-Box Q-test - results in table 17 - autocorrelation, ACF, and partial
autocorrelation, PACF, figures); skewness, kurtosis of rates of return (checked using
descriptive statistics - results in table 14); volatility clustering and leverage effect
(both identified on the basis of rate of returns figures).
The most adequate ARMA-GARCH-class models which reflected the above identified
phenomena are presented in table 4.

Table 4: ARMA(p,q)-GARCH(r,m)-class model selection.
Instrument Model Error distribution

EUR/PLN ARMA(0,1)-GARCH(1,1) Student-t
USD/PLN ARMA(0,0)-EGARCH(2,2) Student-t
CHF/PLN ARMA(0,1)-EGARCH(1,1) Student-t
WIG20 ARMA(1,0)-GJR(1,1) normal

FTSE 100 ARMA(1,1)-EGARCH(2,2) Student-t
S&P 500 ARMA(0,0)-GARCH(1,1) GED
TPSA ARMA(0,0)-GARCH(1,1) GED

PKN Orlen ARMA(0,0)-GARCH(1,1) GED
Pekao ARMA(0,0)-GARCH(1,1) GED

4.2 Estimation
According to the Akaike and Schwarz information criteria, Student-t or GED
distribution for residuals turned out to be the most adequate among the analysed
forms, which is confirmed by significance of estimated degree of freedom parameter
(ν). As an example, the estimation of ARMA-GARCH models for EUR/PLN based
on QML and robust estimation BIP-BM1 and BIP-BM2 are presented in the table
18.
In the Symmetric Absolute Value models (SAV), parameters β0 for all analysed type
of instruments, and parameter β1 for Pekao and PKN Orlen, β3 for USD/PLN and
Pekao are insignificant. In case of the Asymmetric Slope models (AS) and Indirect
GARCH, only β1 parameter is significant. Parameter β0 of the Adaptive models is
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insignificant for all analysed time series. As an example the results of the CAViaR
models estimation for EUR/PLN are presented in table 19.
In preliminary analysis the ARCH test indicated heteroscedasticity (results in table
17). Post-estimation analysis based on the standardized residuals derived from
ARMA-GARCH-class models, estimated by the QML and robust method, indicates
that most of the selected models sufficiently explain the heteroscedasticity in time
series. Exception is the ARMA(1,1)-EGARCH(2,2) model for FTSE100 that does
not entirely explain heteroscedasticity.

4.3 Results
The aim of the empirical research is examination and comparison of VaR forecasts
obtained on the basis of robust estimation (i.e. using bounded innovation propagation
methodology in ARMA-GARCH-class models and regression quantiles in case of
CaViaR models) with the ones based on volatility described by the ARMA-GARCH-
class models estimated using the QML.
As a comparative criterion three groups of test/measures are used. The first group
includes tests based on the Bernoulli trials, like back-test, the LR Test of Unconditional
Coverage ( LRUC) proposed by Kupiec (1995), the Joint Test of Coverage and
Independence (LRCC), and Dynamic Quantile Test (DQ) presented by Engle and
Manganelli (2004).
The second group of measures is based on the decision-making aspect and includes
Binary Loss (BL), which is determined by number of exceptions in the specified
period (Lopez (1998), Pipień (2006)); Regulatory Loss (RL), which measures square
deviations of rate of return from the VaR forecast (Lopez (1999), Pipień (2006));
and the Firm Loss (FL) that embraces lost opportunities, associated with capital that
the institution must maintain in order to protect against the risk predicted by VaR
(Sarma, Thomas, Shah (2003), Pipień (2006)).
The third group is based on expected shortfall (ES), which indicates how much an
investor may lose on average when the model fails. Test statistics and formulae of
measures are given in table 5. When exceptions are checked for the sample used
for parameter estimation (hereinafter in-sample), the fraction of exceptions (i.e. the
number of times the estimated VaR was breached), in case of the ARMA-GARCH
class of models estimated on the basis of QML and BIP method, is close to the
expected number for the chosen confidence interval. It is indicated by back-test.
The test statistics of LRUC and of LRCC are not statistically significant at the 5%
confidence level, which indicates adequate level of VaR.
In case of the CAViaR models, the LR Test of Unconditional Coverage indicates for
most models overestimation VaR (results in table 6). The statistics of the Joint Test
of Coverage and Independence are also statistically significant at 5% confidence level,
which indicates the first order autocorrelation (results in table 7) .

The DQ test informs about the autocorrelation of VaR in subsequent periods.
For the both ARMA-GARCH-class models based on QML and BIP estimation, and
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Table 5: Test and measures.
Test/Measures Statistics/Formula

LRUC LRUC = 2
[
ln
{

(1− p̂)T−T∗ p̂T∗
}
− ln

{
(1− p)T−T∗ pT∗

}]
∼ χ2

1

where T∗ means the total number of exceptions and p̂ = T∗
T

LRCC LRCC = LRUC + LRind ∼ χ2
2

LRind = 2
[
ln
{

(1− τ̂01)T00 τ̂T01
01 (1− τ̂11)T10 τ̂T11

11
}
−

ln
{

(1− τ̂)(T00+T10) τ̂ (T01+T11)∗
}]
∼ χ2

2

where τ̂ij = Tij/(Ti0 + Ti1); τ̂ = (T01 + T11)/T

for j, i = 0, 1, Tij - number of points at time {t; 2 ≤ t ≤ T}

for which the It = i follows It+1 = j.

DQ DQ = β̂′X′Xβ̂
p(1−p) ∼ χ

2
k

where β̂ - the OLS estimator of linear regression:

Hit = β0 + β1Hitt−1 + β2Hitt−2 + . . .+ βrHitt−r+

+βr+1V aRt + βr+2x1 + . . .+ βkxk + vt

and Hit - the binary variable of 1[rt<V aR(α)] (for long position).

BL BL =
∑T+T ′

t=T f
(i)
t

f
(i)
t (rt+n; qt) =

 1 for rt+n < V aRt

0 for rt+n ≥ V aRt

RL RL =
∑T+T ′

t=T f
(i)
t

f
(i)
t (rt+n; qt) =

 1 + (rt+n − V aRt)2 for rt+n < V aRt

0 for rt+n ≥ V aRt

FL FL =
∑T+T ′

t=T f
(i)
t

f
(i)
t (rt+n; qt) =

 1 + (rt+n − V aRt)2 for rt+n < V aRt

c · V aRt for rt+n ≥ V aRt

where c > 0 - opportunity cost

ESI ESI = E (rt+n < V aRt)

ESII ESII = E(rt+n<V aRt)
V aRt
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Table 6: The LR Test of Unconditional Coverage LRUC in-sample results.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN + + + + s(-) s(-) l(-)s(-)
USD/PLN + + + + s(-) s(-) s(-)
CHF/PLN + + + s(-) s(-) s(-) s(-)

WIG20 + + + + s(-) + +
FTSE 100 + + + s(-) s(-) s(-) +
S&P 500 + + + s(-) s(-) + l(-)s(-)

TPSA + + + + + + +
PKN Orlen + + + + + s(-) +

Pekao + + + + s(-) s(-) s(-)

Notations: + V aR is not overestimated or underestimated; s(-) - test rejects null hypothesis for
a short position; l(-) - test rejects null hypothesis for a long position; l(-)s(-) - test rejects null
hypothesis in case of both position.

Table 7: The Joint Test of Coverage and Independence LRCC in-sample results.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN l(-) s(-) s(-) l(-)
USD/PLN + + + l(-)s(-) s(-) s(-) s(-)
CHF/PLN + + + s(-) s(-) s(-) s(-)

WIG20 + + + + s(-) + +
FTSE 100 + +
S&P 500 l(-)s(-) -

TPSA + s(-)
PKN Orlen +

Pekao + + + + s(-) s(-) s(-)

Notations: + lack of first order autocorrelation; s(-) - test rejects null hypothesis for short position;
l(-) - test rejects null hypothesis for long position; l(-)s(-) - test rejects null hypothesis in case of
both position; empty cells mean that the case was not registered in investigated periods.

for the CAViaR models, test indicates the presence of higher-order autocorrelation of
VaR (results in table 8).

In case of forecast, The LR Test of Unconditional Coverage indicates
overestimation or underestimation of VaR, especially in CAViaR models (results
in table 9). Statistics of the Joint Test of Coverage and Independence, if the case
occurred in investigated periods, are also low. Summary results are shown in table
10.
The DQ test for both the ARMA-GARCH-class of models based on QML and
BIP estimation and for CAViaR models indicates the presence of higher order
autocorrelation (results in table 11). Pipień (2006) indicated weakness of the LR
Test of Unconditional Coverage as a tool for comparing models. He proved it by
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Table 8: The DQ test in-sample results.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN + + + l(-)s(-) l(-)s(-) s(-) l(-)s(-)
USD/PLN s(-) s(-) s(-) l(-) l(-)s(-) s(-) l(-)s(-)
CHF/PLN + + + l(-)s(-) s(-) s(-) l(-)s(-)

WIG20 + l(-) l(-)s(-) l(-)s(-) s(-) + l(-)s(-)
FTSE 100 + + + l(-)s(-) s(-) + l(-)s(-)
S&P 500 + + + l(-)s(-) l(-) l(-) l(-)s(-)

TPSA l(-) l(-) l(-)s(-) + + + l(-)s(-)
PKN Orlen + + + l(-) s(-) s(-) l(-)

Pekao + + l(-) l(-)s(-) s(-) s(-) l(-)s(-)

Notations: + lack of higher-order autocorrelation; s(-) - test rejects null hypothesis for short position;
l(-) - test rejects null hypothesis for long position; l(-)s(-) - test rejects null hypothesis in case of
both position.

Table 9: The LR Test of Unconditional Coverage LRUC result for the forecast.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN + + + + + s(-) l(-)s(-)
USD/PLN s(-) s(-) s(-) + l(-)s(-) s(-) l(-)
CHF/PLN + + + + s(-) s(-) +

WIG20 + + + + s(-) s(-) s(-)
FTSE 100 + + + l(-)s(-) + + l(-)s(-)
S&P 500 l(-) l(-) l(-) l(-) l(-)s(-) l(-) l(-)s(-)

TPSA s(-) l(-) l(-) + + s(-) +
PKN Orlen + + + s(-) + + +

Pekao + + + s(-) l(-) + +

Notations: + V aR is not overestimated or underestimated; s(-) - test rejects null hypothesis for short
position; l(-) - test rejects null hypothesis for long position; l(-)s(-) - test rejects null hypothesis in
case of both position; empty cells mean that the case was not registered in investigated periods.

comparing the predictions of VaR obtained with use of the Bayesian methods with
results of analysis performed by M. Doman and R. Doman (2004) based on the
standard forecast. He indicates the difficulty in comparing the results of the specified
VaR models and argues that the results of the test depend on the number of generated
forecasts. For lower number of forecasts, the test indicates better adequacy of model,
and excludes the adequacy in case of large number of forecasts. Therefore, as a second
set of measures, we use tests based on decision-making aspects.
The Binary Loss (BL) provides a ranking of the specification models independent of
the assumed significance level of VaR. It is based on the number of exceptions. The
most adequate models for forecasts are presented in table 12. This criterion favours
models that overestimate VaR and provides a low score for models that generate
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Table 10: The Joint Test of Coverage and Independence LRCC result for the forecast.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN
USD/PLN +
CHF/PLN +

WIG20
FTSE 100 +
S&P 500

TPSA
PKN Orlen

Pekao

Notations: + lack of first order autocorrelation; s(-) - test rejects null hypothesis for short position;
l(-) - test rejects null hypothesis for long position; l(-)s(-) - test rejects null hypothesis in case of
both position; empty cells mean that the case was not registered in investigated periods.

Table 11: The DQ test result for the forecast.

Instrument
ARMA-GARCH class AD AS IGARCH SAV

QML BIP-BM1 BIP-BM2 regression quantiles
EUR/PLN s(-) s(-) s(-) s(-) s(-) s(-) +
USD/PLN s(-) s(-) s(-) s(-) s(-) s(-) s(-)
CHF/PLN + s(-) s(-) s(-) s(-) s(-) +

WIG20 + + + l(-) + + l(-)
FTSE 100 + + + + + l(-) +
S&P 500 l(-) l(-) l(-) + l(-) l(-) +

TPSA + + + + + + +
PKN Orlen l(-) l(-) l(-) l(-) + + l(-)

Pekao l(-) l(-) l(-) + + l(-) l(-)

Notations: + lack of higher-order autocorrelation; s(-) - test rejects null hypothesis for short position;
l(-) - test rejects null hypothesis for long position; l(-)s(-) - test rejects null hypothesis in case of
both position.

liberal VaR forecasts. According to that criterion, in our comparison the best seem
to be the CaViaR models.
While Binary Loss (BL) informs only about occurrence of exception, the loss from
the regulator perspective (RL) enables also to compare for different models amount
of losses received that are associated with the observed exception. According to this
criterion, for most analysed instruments, the best models turn out to be the ones
based on the robust estimation (table 12).
The loss from firm perspective (FL) includes the opportunity cost, i.e. the cost
of capital that institution have to set aside to cover market risk. The model that
generates too conservative V aR forecasts, will have lower scores, as a result of an
excessive amount of capital held to protect against the risk. In this case, the best are
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Table 12: The models most adequate according to the second group of measures.

Instrument
Binary Loss Regulatory Loss Firm Loss

l s l s l s
EUR/PLN SAV SAV SAV SAV AS BIP-BM1
USD/PLN AS SAV SAV SAV AS SAV
CHF/PLN SAV QML QML QML AS BIP-BM1

WIG20 AS SAV BIP-BM1 SAV QML AS
FTSE100 BIP-BM1 BIP-BM1 BIP-BM2 BIP-BM2 AS AS
S&P500 SAV AD SAV AD AD AS
TP S.A. SAV IGARCH SAV SAV SAV BIP-BM2

PKN Orlen AD AD BIP-BM2 AD BIP-BM2 BIP-BM2
Pekao S.A. AD AD AD AD AS AS

Notations: s - short position; l - long position; e.g. AD(l) - most adequate model for long position
turned out to be Adaptive model.

Table 13: The models most adequate according to the third group of measures.

Instrument
ES I ES II

l s l s
EUR/PLN SAV SAV SAV SAV
USD/PLN BIP-BM1 BIP-BM1 SAV AD
CHF/PLN BIP-BM1 AS AS BIP-BM2

WIG20 BIP-BM2 SAV SAV SAV
FTSE100 BIP-BM2 BIP-BM2 IGARCH QML
S&P500 SAV AD SAV AD
TP S.A. BIP-BM2 BIP-BM2 BIP-BM2 BIP-BM2

PKN Orlen S.A. IGARCH AD BIP-BM2 AD
Pekao S.A. AS AS AS BM1

Notations: s- short position; l- long position; e.g. AD(l) - most adequate model for long position
turned out to be Adaptive model.

the ARMA-GARCH models based on the robust estimation (results in table 12) The
third group of measures is purely informational. They are similar in nature to the test
based on decision-making aspects. They inform about the loss in case of exceptions.
Results of Expected Shortfall I and Expected Shortfall II are shown in table 13. In
terms of this criterion, the best models turn out to be also ARMA-GARCH class
based on the robust estimation. Tables 20-21 contain calculations of above tests for
EUR/PLN, as an example. Figures 9-22 show the projected V aR of EUR/PLN for
both long and short positions received on the basis of analysed models.
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Conclusions
In the paper we have briefly discussed some of robust estimation methods used to
calculate risk measure. We have also proposed to broaden robust estimation method
BIP to asymmetric GARCH type models that better fit to daily data of equity and
equity indexes. The purpose of the study was to compare the methods with quasi
maximum likelihood estimation and to present consequences of their implementation
in VaR modelling.
We analysed time series of FX rates, indexes and equities, changing the length of
series, to check whether this would have significant impact on the forecasts. We would
like to emphasize that we applied our analysis to series in high volatility period (due
to sub-prime crisis), because this has not yet been covered in the current literature
concerning robust estimation method.
The analysis showed that most adequate distribution for residuals turned out to be
the Student-t distribution and GED distribution; the latter especially for equities and
equity indexes.
Our analysis shows also that in the period of increased volatility on the financial
markets for instruments characterized by clustering of observations, fat tails, skewness
distribution, autocorrelation and heteroscedasticity, the models based on bounded
innovation propagation method quite well describe volatility, regardless of the length
of the time series, for which the parameters are estimated.
The VaR forecasts derived from the ARMA-GARCH models estimated robustly are
underestimated in the same cases as the ones from the models estimated using
QML methodology. Nevertheless the LR Test of Unconditional Coverage indicated
the significance of underestimation for models robustly estimated in only six of 36
cases considered. The DQ test, analysing higher-order autocorrelation, indicated
its significance in case of both robustly and standard estimated ARMA-GARCH-
type models, often for the same instruments. In view of the decision-making aspect
concerning the number of exceptions, losses due to the Value at Risk breaches, as well
as opportunity costs, the most adequate models turn out to be the ones based on BIP
estimation methodology. For regulatory purposes, both models based on BIP robust
estimation and QML are the most adequate.
Forecasts based on the second robust estimation metod, i.e. regression quantiles, do
not perform so well in periods of increased volatility. Forecasts of VaR are for many
instruments overestimated. In addition, past values of VaR significantly affect the
future values, which is verified by the DQ test. However, from the point of view of
the decision-making aspect, CAViaR models for some of the instruments behave much
better than the ARMA-GARCH class models. Hence, it is worth to take them also
into consideration by selecting the V aR methods for a particular instrument. It is
especially important in case of inadequacy of forecasts based on other models.
The empirical results prove that the robust estimators used in the ARMA-GARCH
class models appear to be a promising tool and competitive for standard used QML
method in scope of the volatility modelling and forecasting of VaR. Moreover, it is
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shown that the models based on quantile regression can ably fill the gap in case of the
instruments for which QML and BIP estimators fail. Osiewalski and Pajor (2010)
have proposed Bayesian parametric approach to Value at Risk and have concluded
that the hybrid MSF-SBEKK models can compete with CaViaR models. Hence, it is
worth to compare in next step BIP methodology with the Bayesian approach.
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Appendix - tables and figures

Figure 5: Exchange rate EUR/PLN. Figure 6: EUR/PLN rate of returns.

Figure 7: QQ plot of EUR/PLN rate of
returns.

Figure 8: Histogram of EUR/PLN rate of
returns.

Table 14: Descriptive statistics
Instrument Min Max Median Average Kurtosis Skewness Std.Dev. Variance

EUR/PLN -0.0418 0.0426 -0.0002 0.0000 7.7676 0.3367 0.0069 0.0000
USD/PLN -0.0607 0.0523 0.0000 0.0001 8.7136 0.3269 0.0083 0.0001
CHF/PLN -0.0799 0.0576 0.0000 0.0001 11.2321 -0.0332 0.0085 0.0001
WIG20 -0.1416 0.1371 0.0000 0.0002 6.5799 -0.1423 0.0187 0.0003
FTSE100 -0.0926 0.0938 0.0003 -0.0001 8.6110 -0.1345 0.0133 0.0002
S&P500 -0.0947 0.1096 0.0005 0.0000 10.0367 -0.1525 0.0139 0.0002
TPSA -0.1202 0.1278 0.0000 0.0000 5.1223 0.0583 0.0223 0.0005

PKNOrlen -0.1216 0.1287 0.0000 0.0002 5.1832 -0.0881 0.0223 0.0005
PekaoSA -0.2059 0.1356 0.0000 0.0003 6.9204 -0.0336 0.0237 0.0006
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Table 15: Jarque-Bera test.

Instrument Stat. p-value
EUR/PLN 2266.18 0.0000
USD/PLN 6460.15 0.0010
CHF/PLN 11750.05 0.0010
WIG20 2288.60 0.0010
S&P500 3985.24 0.0010
FTSE100 6240.30 0.0010
TPSA 613.87 0.0010

PKNOrlen 502.13 0.0010
PekaoSA 2088.90 0.0010

Table 16: ADF test for returns
Instrument Stat. p-value
EUR/PLN -48.64 0.0010
USD/PLN -67.24 0.0010
CHF/PLN -65.77 0.0010
WIG20 -63.81 0.0010
SP500 -60.03 0.0010

FTSE100 -57.76 0.0010
TPSA -58.74 0.0010

PKNOrlen -49.49 0.0010
PekaoSA -56.32 0.0010
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Figure 9: EUR/PLN. VaR for sample
estimated on the basis of ARMA(0,1)-
GARCH(1,1) model.

Figure 10: EUR/PLN. Forecast of VaR
received on the basis of ARMA(0,1)-
GARCH(1,1) model.

Figure 11: EUR/PLN. VaR for sample
estimated on the basis of BIP-ARMA(0,1)-
BM1-GARCH(1,1) model.

Figure 12: EUR/PLN. Forecast of VaR
received on the basis of BIP-ARMA(0,1)-BM1-
GARCH(1,1) model.

Figure 13: EUR/PLN. VaR for sample
estimated on the basis of BIP-ARMA(0,1)-
BM2-GARCH(1,1) model.

Figure 14: EUR/PLN. Forecast of VaR
received on the basis of BBIP-ARMA(0,1)-
BM2-GARCH(1,1) model.
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Figure 15: EUR/PLN. VaR for sample
estimated on the basis of Symmetric Absolute
Value model.

Figure 16: EUR/PLN. Forecast of VaR
received on the basis of Symmetric Absolute
Value model.

Figure 17: EUR/PLN. VaR for sample
estimated on the basis of Asymmetric Slope
model.

Figure 18: EUR/PLN. Forecast of VaR
received on the basis of Asymmetric Slope
model.

Figure 19: EUR/PLN. VaR for sample
estimated on the basis of Indirect GARCH
model.

Figure 20: EUR/PLN. Forecast of VaR
received on the basis of Indirect GARCH
model.

Figure 21: EUR/PLN. VaR for sample
estimated on the basis of Adaptive model.

Figure 22: EUR/PLN. Forecast of VaR
received on the basis of Adaptive model.
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Table 17: Quantifying the correlation.

Test Instrument
Lag5 Lag10 Lag15

Stat. p-value Stat. p-value Stat. p-value

Ljung-Box

EUR/PLN 29.91 0.0009 34.40 0.0030 40.49 0.0043
USD/PLN 35.51 0.0001 51.33 0.0000 53.80 0.0001
CHF/PLN 37.18 0.0001 50.03 0.0000 57.93 0.0000

WIG20 19.48 0.0346 28.07 0.0211 39.21 0.0063
SP500 76.45 0.0000 77.93 0.0000 89.91 0.0000

FTSE100 47.86 0.0000 67.95 0.0000 100.23 0.0000
TPSA 17.13 0.0716 22.13 0.1044 30.93 0.0561

PKNOrlen 28.81 0.0013 37.69 0.0010 42.22 0.0026
PekaoSA 23.20 0.0100 26.46 0.0334 40.21 0.0047

Ljung-Box

EUR/PLN 1176.91 1.000 1514.75 1.000 1800.48 1.000
USD/PLN 2942.34 1.000 4007.66 1.000 4902.06 1.000
CHF/PLN 895.45 1.000 1144.58 1.000 1635.30 1.000

WIG20 1216.51 1.000 1471.50 1.000 1665.74 1.000
SP500 2114.23 1.000 2792.13 1.000 3344.72 1.000

PKNOrlen 451.80 1.000 594.42 1.000 665.22 1.000
for squared returns FTSE100 2376.64 1.000 3324.42 1.000 4092.36 1.000

TPSA 338.23 1.000 388.53 1.000 430.86 1.000
PekaoSA 644.12 1.000 802.54 1.000 943.22 1.000

ARCH

EUR/PLN 450.54 1.000 477.07 1.000 516.73 1.000
USD/PLN 1020.99 1.000 1072.57 1.000 1101.59 1.000
CHF/PLN 425.18 1.000 465.75 1.000 619.38 1.000

WIG20 568.09 1.000 585.30 1.000 593.75 1.000
SP500 787.72 1.000 915.66 1.000 925.95 1.000

FTSE100 692.33 1.000 719.92 1.000 771.11 1.000
TPSA 157.26 1.000 153.22 1.000 168.15 1.000

PKNOrlen 227.19 1.000 240.13 1.000 242.68 1.000
PekaoSA 297.92 1.000 320.76 1.000 334.51 1.000
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Table 18: Estimation of ARMA-GARCH model for EUR/PLN.

Model ARMA(0,1) -GARCH(1,1)
Error distribution Student-t Student-t Student-t

Estimation method → QML BIP-BM1 BIP-BM2
Parameters ↓

φ̂0 - 0,00 0,00 0,00
t -2,80 0,08 0,08
α̂0 0,00 0,00 0,00
t 1,96 0,00 0,00
δ̂1 - 0,07 0,00 0,00
t -2,82 0,12 0,12
α̂1 0,05 0,04 0,06
t 5,36 91,15 121,12
β̂1 0,95 0,94 0,93
t 102,44 1 436,36 1 485,76
ν̂ 6,57 10,84 6,82
t 6,18 5,89 6,02

Table 19: Estimation of CaViaR models for EUR/PLN.
Model → SAV AS IGARCH AD

Parameters ↓
β̂0 -0.00005 0.00049 0.00000 0.00001
t 0.00 0.03 0.00 0.01
β̂1 1.00348 0.90483 0.92494
t 9.81 4.25 7.19
β̂2 2.35896 0.24778 0.30017
t 33.42 0.72 0.52
β̂3 0.12496
t 0.47

RQ 0.40 0.33 0.33 0.42

Notations: SAV-Symmetric Absolute Value; AS-Asymmetric Slope; IGARCH-Indirect GARCH ;
AD-Adaptive; RQ-Regression Quantile.
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Table 21: Adequacy of VaR measure for EUR/PLN - second and third
group of measures.

Model Position BL RL FL ESI ESII

sample

ARMA(0,1)-GARCH(1,1)
l 20 23.27 49.94 1.67 1.21
s 16 20.92 52.52 2.22 1.51

BIP-ARMA(0,1)-BM1-GARCH(1,1)
l 14 16.66 45.52 0.02 1.25
s 19 23.31 55.48 1.92 1.24

BIP-ARMA(0,1)-BM2-GARCH(1,1)
l 18 20.52 49.28 0.01 1.20
s 18 22.31 54.82 1.95 1.25

SAV
l 10 17.04 50.67 2.64 1.27
s 28 42.66 75.95 2.47 1.28

AS
l 20 23.65 50.22 1.75 1.19
s 36 46.52 72.79 2.06 1.25

IGARCH
l 18 22.36 48.42 1.77 1.24
s 41 53.32 79.01 1.90 1.26

AD
l 12 20.22 54.90 2.72 1.28
s 26 43.16 77.59 2.56 1.31

forecast

ARMA(0.1)-GARCH(1.1)
l 7 8.02 15.52 1.89 1.19
s 5 11.39 20.33 2.35 1.85

BIP-ARMA(0,1)-BM1-GARCH(1,1)
l 5 5.53 13.74 1.73 1.21
s 5 11.13 14.17 2.35 1.54

BIP-ARMA(0,1)-BM2-GARCH(1,1)
l 5 5.54 13.71 1.73 1.22
s 5 10.75 14.25 2.35 1.52

SAV
l 0 0.00 36.31 - -
s 0 0.00 36.31 - -

AS
l 5 5.82 13.22 1.93 1.26
s 8 14.96 22.33 2.13 1.42

IGARCH
l 6 7.27 14.52 2.04 1.25
s 10 18.63 25.85 1.98 1.45

AD
l 2 2.50 14.34 2.85 1.20
s 3 4.81 16.63 3.04 1.29

Notations: BL-Binary Loss; RL-Regulatory Loss; FL-Firm Loss; ESI-Expected Shortfall I ;
ESII-Expected Shortfall II ; l-long position; s-short position; SAV-Symmetric Absolute Value;
AS-Asymmetric Slope; IGARCH-Indirect GARCH ; AD-Adaptive.
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