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Abstract

Often daily prices on different markets are not all observable. The question
is whether we should exclude from modelling the days with prices not available
on all markets (thus loosing some information and implicitly modifying the
time axis) or somehow complete the missing (non-existing) prices. In order to
compare the effects of each of two ways of dealing with partly available data, one
should consider formal procedures of replacing the unavailable prices by their
appropriate predictions. We propose a fully Bayesian approach, which amounts
to obtaining the marginal posterior (or predictive) distribution for any particular
day in question. This procedure takes into account uncertainty on missing prices
and can be used to check validity of informal ways of "completing" the data (e.g.
linear interpolation). We use the MSF-SBEKK structure, the simplest among
hybrid MSV-MGARCH models, which can parsimoniously describe volatility of
a large number of prices or indices. In order to conduct Bayesian inference,
the conditional posterior distributions for all unknown quantities are derived
and the Gibbs sampler (with Metropolis-Hastings steps) is designed. Our
approach is applied to daily prices from six different financial and commodity
markets; the data cover the period from December 21, 2005 till September
30, 2011, so the time of the global financial crisis is included. We compare
inferences (on individual parameters, conditional correlation coefficients and
volatilities), obtained in the cases where incomplete observations are either
deleted or forecasted.
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1 Introduction
Conceptually, the idea of analyzing the broadest possible data set appears sound.
While modelling a multivariate portfolio on the basis of daily data, it may happen that
not all assets are valued over a particular calendar day or some data are missing. Such
a situation may result from several reasons: different national or religious holidays and
different bank holiday schedule in different countries, lack of publicly available data,
database incompleteness or just data errors. The most common way of handling such
situations is deleting days with unavailable prices. This leads to loss of information
and a smaller set of data. On top of that, financial time series are usually modelled by
using autoregressive structures: both in conditional mean and variance. If we delete
particular transactional days we modify the time axis in an uncontrolled manner,
which may result in misleading conclusions in estimation as well as in forecasting.
The modern literature provides little information on this problem. For univariate basic
autoregressive processes the problem was described by Tsay R. (2005), together with
a straightforward formula for the posterior distribution of one missing value in the
series. Whenever missing values occur in patches, Gibbs sampling is recommended.
Kim J. (2005), Kim J. and Stroffer D. (2008) focused on the problem of unavailability
of certain data points within univariate SV models. The methods they introduce for
handling unavailable observations are based on particle filters and an expectation-
maximization algorithm. However, most of the literature on multivariate time series
models either implicitly assumes full data availability or removes the days with partial
information only. The paper by Doman M. and Doman R. (2010, in Polish) is an
exception, as the authors explicitly consider the problem of partially unavailable
multivariate daily data. They simulate such data from diagonal BEKK(1,1) processes,
and then they estimate diagonal BEKK(1,1) models using different approaches to
partially available information. Doman M. and Doman R. (2010) are interested mainly
in conditional correlations and they conclude that linear approximation of unavailable
prices is a good strategy. Our research goal is somewhat different.
In this paper, we aim at empirical verification (on the basis of real data) of
possible gains resulting from treating missing observations as unknown quantities
of interest. We follow the formal Bayesian approach and construct the posterior
distributions of unavailable data. Methodologically, the research is set within the
hybrid models based on multivariate stochastic volatility and multivariate generalized
conditional heteroscedasticity structures (MSV-MGARCH). Such hybrid models were
proposed by Osiewalski J. (2009), Osiewalski J. and Pajor A. (2007, 2009), and
further developed and expanded by Osiewalski J. and Pajor A. (2010), Pajor A.
and Osiewalski J. (2012), Osiewalski J. and Osiewalski K. (2011a,b). Such a choice
is strongly motivated by both good data explanatory abilities and relatively low
computational burden of posterior sampling in these kinds of models. Hybrid models
formally belong to the MSV class. However, we distinguish them from pure MSV
models, in which the conditional covariance matrix does not contain a GARCH
structure.
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The above mentioned studies revealed that even the simplest hybrid structures have
enough flexibility to describe data well and yet they are parsimonious enough to
handle large portfolios and perform risk analysis successfully (using Value at Risk
and Expected Shortfall). Thus, hybrid MSV-MGARCH models can be considered as
a trade-off between model fit and computational burden of estimation. In this paper
we use the simplest model, i.e. the MSF-SBEKK structure proposed by Osiewalski J.
(2009) and Osiewalski J. and Pajor A. (2009), because the formal Bayesian treatment
of unavailable data is computationally too demanding to consider more complex model
specifications.
This paper contributes to the relevant literature in two ways. On the methodological
side, we treat unknown values of certain assets as latent variables and provide the
details of Bayesian inference about them, including the sampling scheme for drawing
from the posterior distribution. On the empirical side, we show how the modification
of the data set by removing days with missing observations influences posterior
distributions of some model parameters and characteristics of returns volatility and
correlation.
The paper is organized as follows. In the following section the Bayesian MSF-
SBEKK model with missing data is introduced and the posterior distribution is
presented. In Section 3 the generation of a pseudo-random sample from the posterior
distribution is covered. Empirical study, presented in Section 4, is divided into two
subsections. Firstly, we investigate the missing data issue for a chosen multivariate
portfolio. Secondly, we present posterior characteristics of parameters and their
selected functions together with the posterior distributions of missing data points.
Finally, concluding remarks are presented in Section 5.

2 Bayesian MSF–SBEKK model with missing data

Let us denote by 0.01 · x∗t,i the natural logarithm of the unobserved price and
by 0.01 · xt,i the natural logarithm of the observed price of asset i at time t.
We consider the following multivariate specification for n individual assets. Let
rt = (rt,1 . . . rt,n)′ denote n-variate logarithmic return rates (in percentage points),
i.e. rt,i = x̂t,i − x̂t−1,i, where

x̂t,i =
{
xt,i, if price of asset i is available at time t,
x∗t,i, otherwise. (1)

We model rt using the basic VAR(1) framework:

rt = λ+ Λrt−1 + εt, t = 1, . . . , T, (2)

where T denotes the number of days when at least one asset is valued (and its price
is observed). The error terms, εt (t = 1, . . . , T ), are assumed to follow the hybrid
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MSF-SBEKK structure, as in Osiewalski J. (2009) and Osiewalski J. and Pajor A.
(2009, 2010):

εt = G
1
2
t H

1
2
t ξt t = 1, . . . , T. (3)

In (3)Gt represents the MSV (here MSF) component involving a latent AR(1) process:

Gt = gtIn, ln gt = φ ln gt−1 + ζt (4)

with scalar gt>0 and |φ|<1, Ht represents the MGARCH – here SBEKK, i.e. scalar
BEKK(1,1) – component (of the conditional covariance matrix):

Ht = (1− β − γ)A+ βεt−1ε
′
t−1 + γHt−1 (5)

with symmetric positive definite n × n matrix A, scalar parameters β, γ > 0
(β + γ < 1), and

[ξ′t ζt]
′ ∼ iiN (n+1)

(
0[(n+1)×1],

[
In 0
0 τ−1

])
. (6)

The initial condition for Ht in (5) is taken as H0 = h0In with a scalar parameter
h0 > 0 and we assume g0 = 1 to initialize (4). Note that under (2) – (6) the
conditional distribution of x̂t = (x̂t,1 . . . x̂t,n)′ given gt and the past of both processes,
ψt−1, is n-variate Normal with mean x̂t−1 +λ+Λrt−1 and covariance matrix gtHt. In
this specification the conditional variances (given ψt−1) are equal to gtht,ii, thus they
extend both the MSF and SBEKK cases. The conditional correlation coefficient (given
ψt−1) does not depend on gt and takes the SBEKK form. However, posterior inference
on the conditional correlation coefficient is obviously influenced by the presence of the
latent process and thus the final results on conditional correlation may not be the same
as in the pure SBEKK model.
In order to separate available data from latent variables representing missing values,
let us rewrite (2) in terms of hundreds of logarithms of prices:

x̂t = λ+ x̂t−1 + Λ(x̂t−1 − x̂t−2) + εt. (7)

In the Bayesian approach, all unknown quantities are treated as random variables.
In the presence of latent variables (gt and unavailable prices), we are usually
interested in making inference on both the parameter vector, i.e. θ =
(λ′ (vecΛ)′ (vechA)′ β γ h0 φ τ)′ and the latent variable vectors: g = (g1 . . . gT )′ and
x∗, where x∗ groups logarithms of all missing price values. The joint density of
observations, x = (x′1 . . . x′T )′, latent variables and parameters can be factorized as
follows:

p(x, x∗, g, θ) = p(θ)p(x, x∗, g|θ)

= p(θ)
T∏
t=1

p(x̂t|ψt−1, gt, θ)p(gt|ψt−1, θ).
(8)

K. Osiewalski, J. Osiewalski
CEJEME 4: 169-197 (2012)

172



Missing Observations in Daily Returns . . .

It is worth stressing here that the MSF–SBEKK structure is based on two basic
conditional independence assumptions, which hold for any value of θ. Firstly, x̂t
is independent of the past of gt, given gt itself and the past of x̂t. Secondly, gt is
independent of the past of x̂t, given the past of gt. Thus in (8) we have

p(gt|ψt−1, θ) = p(gt|gt−1, θ) = g−1
t fN

(
ln gt|φ ln gt−1, τ

−1) , (9)

which is a univariate log-normal density, and, for µt = λ+ x̂t−1 + Λ(x̂t−1 − x̂t−2),

p(x̂t|ψt−1, gt, θ) = fnN (x̂t|µt, gtHt) , (10)

which is a multivariate Normal density function. For the sake of simplicity, we assume
that the initial conditions related to x̂t are known and constant, and we omit them
in our notation. The joint distribution of observed and unobserved logarithms of
prices need not be factorized further as we can jointly handle the existing and missing
values. For sampling from the posterior distribution, the likelihood function (which
takes a quite complicated form in this case) is not required.
In order to complete the Bayesian model, let us specify the prior structure of the
parameter vector θ. We will subjectively set the distributions of interest, which will
reflect our weak knowledge about model parameters (see Osiewalski J. and Pajor A.
(2009)). Let us assume that:

p(θ) = p(λ)p(vecΛ)p(A−1)p(β, γ)p(h0)p(φ)p(τ), (11)

which means prior independence among blocks of parameters. Furthermore we take:

• p(λ) = fnN (λ|0, In) – the n-variate Normal density with mean 0 and covariance
matrix In,

• p(vecΛ) ∝ fn2

N (vecΛ|0, In2)1{M : ρ(M)<1}(Λ), – a multivariate Normal truncated
by the restriction that all eigenvalues of Λ lie inside the unit circle, where ρ(M)
is the spectral radius of matrix M and 1A(x) is the indicator function of the set

A: 1A(x) =
{

1, x ∈ A
0, x 6∈ A ,

• p(A−1) = fWishart(A−1|In, n+ 2) – the Wishart distribution with mean In and
n+ 2 degrees of freedom,

• p(β, γ) ∝ 1{(x,y)∈[0,1]2: x+y<1}(β, γ) – a uniform distribution over a unit simplex,

• p(h0) = fExp(h0|1) – the Exponential distribution with mean 1,

• p(φ) ∝ fN (φ|0, 100)1{x: |x|<1}(φ),

• p(τ) = fExp(τ |200) – the Exponential distribution with mean 200.
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Finally we can write the joint density function:

p(x, x∗, g, θ) = p(λ)p(vecΛ)p(A−1)p(β, γ)p(h0)p(φ)p(τ)·

·
T∏
t=1

g−1
t fN

(
ln gt|φ ln gt−1, τ

−1) fnN (x̂t|µt, gtHt)
(12)

that represents the Bayesian MSF-SBEKK model with missing (non-existing) data.
The posterior distribution of all unobservable quantities (i.e. missing data, latent
variables and parameters) is characterised by the conditional density function
p(x∗, g, θ|x), which is proportional to p(x, x∗, g, θ) in (12).

3 Sampling from the posterior distribution
The joint posterior distribution, represented by the density p(x∗, g, θ|x), is highly
dimensional and too complicated to obtain any analytical results. In this case,
numerical methods must be applied in order to generate a (pseudo) random sample
from the posterior distribution and to obtain estimates of posterior characteristics.
Following Osiewalski J. (2009) and Osiewalski J. and Pajor A. (2009), we use a hybrid
Markov Chain Monte Carlo method: the Gibbs sampler with Metropolis and Hastings
steps. The algorithm is based on the conditional posterior distributions resulting
from (12) with a natural block partition of all unknown quantities in the model. The
conditional posterior distributions used to construct the sampler are described below,
together with the resulting sampling scheme.

i) The VAR(1) parameters λ and Λ have the following conditional densities:

p(λ|x, x∗, g,Λ, A, β, γ, h0, φ, τ) ∝ p(λ)
T∏
t=1

fnN (x̂t|µt, gtHt) , (13)

p(vecΛ|x, x∗, g, λ,A, β, γ, h0, φ, τ) ∝ p(vecΛ)
T∏
t=1

fnN (x̂t|µt, gtHt) . (14)

We cannot directly sample from these conditional posterior distributions (as in
pure MSV models) due to the presence of the MGARCH (SBEKK) structure,
which implies that the VAR(1) parameters from conditional means have an
impact on conditional variances at every time point. Thus, the Metropolis and
Hastings step is implemented. The choice of the proposal distribution is quite
arbitrary – it is set to be a Normal distribution centered at the previous state of
the Markov chain (Random Walk MH). The covariance matrix of the proposal
distribution is set to the sample covariance matrix (multiplied by a factor of
4) obtained from initial cycles, which are performed to calibrate the sampling
mechanism. The resulting acceptance rate oscillated between 3 and 7 percent in
the empirical example presented in the next section.
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ii) For the MGARCH (SBEKK) parameters A, β, γ and h0 we have:

p(A|x, x∗, g, λ,Λ, β, γ, h0, φ, τ) ∝ p(A)
T∏
t=1

fnN (x̂t|µt, gtHt) , (15)

p(β, γ, h0|x, x∗, g, λ,Λ, A, φ, τ) ∝ p(β, γ)p(h0)
T∏
t=1

fnN (x̂t|µt, gtHt) . (16)

Here again MH steps enable sampling from the conditional distributions. For
the matrix A−1, we sample candidate states from a Wishart distribution. The
proposal scale matrix is set to 1

k times the previously drawn A−1 (so that the
proposal expectation equals the previously drawn A−1) and degrees of freedom
k are set to 200. The value of k was chosen after a number of initial cycles and
resulted in acceptance rate around 5%. The candidate draws for parameters (β, γ)
are generated from a bivariate Normal distribution truncated by the restrictions
β > 0, γ > 0 and β + γ < 1. As in the case of the VAR(1) parameters, the
Normal proposal density parameters are: the previous Markov chain state for
the mean and the sample covariance from previous chains multiplied by a factor
of 2. For the initial condition, h0, we draw candidates from a Normal distribution
truncated to R+ (with parameters chosen in the same manner as for β and γ).
The acceptance rate was about 3-4%.

iii) For the parameters φ and τ , describing the latent process gt, we can use the pure
Gibbs step as in the MSF model (see Pajor A. (2010)), because their conditional
posteriors are standard distributions:

p(φ|x, x∗, g, λ,Λ, A, β, γ, h0, τ) ∝ p(φ)
T∏
t=1

fN
(
ln gt|φ ln gt−1, τ

−1)
∝ fN

(
φ|φ∗, s2∗)1(−1,1)(φ),

(17)

p(τ |x, x∗, g, λ,Λ, A, β, γ, h0, φ) ∝ p(τ)
T∏
t=1

fN
(
ln gt|φ ln gt−1, τ

−1)
∝ fG

(
τ |T2 + 1, β∗

)
,

(18)

where

s2∗ =
[

0.01 + τ

T∑
i=1

(ln gt−1)2

]−1

, (19)

φ∗ = s2∗τ

T∑
i=1

ln gt ln gt−1, (20)

β∗ =
[

0.005 + 1
2

T∑
i=1

(ln gt − φ ln gt−1)2

]−1

, (21)
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and fG(·|a, b) denotes the density of the Gamma distribution with mean a
b and

variance a
b2 .

iv) The latent variables gt can be drawn in the following manner, similarly as in
Pajor (2010), i.e. for t = 1, . . . , T − 1 we would like to sample from:

p(g−1
t |x, x∗, g1, . . . , gt−1, gt+1, . . . , gT , λ,Λ, A, β, γ, h0, φ, τ)

∝ fN
(
ln gt|φ ln gt−1, τ

−1) fN (ln gt+1|φ ln gt, τ−1) fnN (x̂t|µt, gtHt)

∝ fN
(
ln gt|φ ln gt−1, τ

−1) fN (ln gt+1|φ ln gt, τ−1) ·
·fG

(
g−1
t |n2 ,

(xt−µt)′H−1
t (xt−µt)
2

)
.

(22)

In the case of g−1
t , the Metropolis and Hastings step with a gamma distribution

of candidate draws is used (following Jacquier E., Polson N. and Rossi P. (1994)):

pc(g−1
t |·) = fG

(
g−1
t |ϕt, ηt

)
, (23)

where
ϕt =

1− 2 exp
(
σ2)

1− exp (σ2) + n

2 , (24)

σ2 =

 τ−1 (1 + φ2)−1
, 1 ≤ t ≤ T − 1

τ−1, t = T
, (25)

ηt =
(
ϕt −

n

2 − 1
)

exp
(
st + σ2

2

)
+ 1

2
(
xt − µt)′H−1

t (xt − µt
)
, (26)

st =


φ

1+φ2 (ln gt−1 + ln gt+1) , 1 ≤ t ≤ T − 1

φ ln gT−1, t = T
. (27)

The outlined MH sampling scheme is very efficient – the acceptance ratio did not
fall below 90%.

v) The unobserved price values are also sampled using the Metropolis and Hastings
steps, specially designed here to deal with this case. Assume that the first m,
m ∈ {1, . . . , n − 1}, elements of the vector x̂t are not available. If the missing
values are spread irregularly, we can always rearrange the assets. Then:

p(x∗t |x, x∗(−t), g, λ,Λ, A, β, γ, h0, φ, τ) ∝
T∏
j=t

fnN (x̂j |µj , gjHj) , (28)

where x∗(−t) denotes the missing values vector without unobserved prices from
time t. In the presence of the autoregressive structure, each of the missing values
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will have an impact on the whole future of the process. However, for simplicity
we base the distribution of candidate draws on time t information only. Thus, as
the proposal density we use:

pc(x∗t |x1, . . . , xt, x
∗
1, . . . , x

∗
t−1, g1, . . . , gt, θ) = fmN (x∗t |µ∗,Ω∗) , (29)

where

µ∗ = µt,1:m + (gtHt)(m+1):n,1:m(gtHt)−1
(m+1):n,(m+1):n

(
xt,(m+1):n − µt,(m+1):n

)
,

(30)
Ω∗ = (gtHt)1:m,1:m − (gtHt)(m+1):n,1:m(gtHt)−1

(m+1):n,(m+1):n(gtHt)1:m,(m+1):n
(31)

andMa:b,c:d denotes the block composed of matrixM rows from a to b and matrix
M columns from c to d. This proposal resulted in MH acceptance ratio between
20 and 70% (depending on the time index t), which is very satisfactory.

For the algorithm constructed in the manner above, the convergence is monitored
via standardised CUMSUM plots; see Yu B. and Mykland P. (1998) and Pajor A.
(2003). The chain length was set to 1 million states, in which the first 0.6 million
were considered as burn-in period. The sampling speed was approximately 19.1
seconds per 1000 chain states on a regular desktop CPU (Intel Core2Duo E8600).
The most time consuming steps are, however, the one related to drawing from the
conditional distributions of missing observations. The sampler in the Bayesian MSF-
SBEKK model with missing data modelled generates the chain states approximately
10 times slower than its equivalent without the days with unobserved values. All of
the empirical results in the following section are based on the last 400,000 MCMC
states, treated as a sample from the posterior distribution.

4 Joint analysis of volatility on different markets
In this section we try to examine how the way missing data are treated influences
empirical results of joint modelling of several asset prices. We consider two methods.
In the first one, we remove the days with missing data. In the second one, we treat
unavailable data as latent variables and formally estimate them. We compare the
posterior distributions of the model parameters in both cases and we check whether
main conclusions about volatility and conditional correlation are affected by methods
of handling missing price values. Finally, we present posterior distributions of some
unavailable prices.
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4.1 Data description
A six dimensional portfolio (n = 6) of assets from different markets is considered:

• stock exchanges, here represented by the main Polish index, WIG and American
S&P500,

• noble metals markets – gold and silver prices (London Fix, USD/oz),

• energy commodities markets – crude oil and natural gas (WTI Spot
Price, USD/Barrel and Henry Hub Gulf Coast Natural Gas Spot Price,
USD/MMBTU).

We analyze daily data from December 21, 2005 till September 30, 2011. This results
in 1492 days when at least one asset was valued.
Let us focus on a short period taken from the final part of the analyzed 1492 days; this
period is presented in Table 1. There are three days with incomplete data. August 15
is a bank holiday in Poland (Assumption of the Blessed Virgin Mary), September 5
is a public holiday in the USA (Labor Day – first Monday of September) and August
29 is a bank holiday in the United Kingdom (last Monday of August, called Late
Summer Bank Holiday). We could delete these days from our database - however, it
would lead to a loss of some information and would implicitly modify the time axis
(in our example there are 3 days in 3 adjacent weeks). In some cases, we might need
to remove up to 10% of all data (in Table 1 it would be necessary to remove 12 valid
data points out of 120). Deleting some data points is also connected with spuriously
aggregating individual series where no missing data were found. It might result in
artificial jumps (or omitting real jumps) and thus could have an impact on inference
about unknown quantities of interest. In the analyzed time series there are 107 days
with at least one missing price (7.2% of 1492) and 243 unavailable single data points
(grouped in x∗). Details on pairwise missing prices are presented in Table 2.
The descriptive statistics of the logarithmic returns (calculated with or without the
days characterized by missing values) can be found in Table 3. In the first case (with
unavailable price values), linear interpolation was used to fill the missing values. The
most visible difference is in the kurtosis of OIL returns: it has grown from 4.909 to
11.535 after time aggregation. Such a difference might result from deleting data from
the days between December 23 and 29, 2008. On December 23, 24, 26 and 29 the oil
price values were 30.28, 32.94, 37.58 and 39.89 USD per barrel, respectively. Thus if
we delete two middle days when the stock exchanges in Poland and in the UK were
closed (December 24 and 26), the return rate for OIL equals 27.564 percentage points
– it is the maximum value in the whole series with removed missing observations. It
means that by modifying the time axis we artificially created the biggest outlier on
this coordinate. Other such examples will be discussed in the next subsection. In
order to graphically present the artificial jumps (outliers) in the return series, we plot
in Figure 1 the logarithmic returns for the case of omitted days with incomplete data.
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Table 1: A part of the analyzed time series
date WIG S&P500 GOLD SILVER OIL GAS

2011-8-10 37368.93 1120.76 1772 38.31 83.05 4.09
2011-8-11 38934.71 1172.64 1760 39.18 85.48 4.06
2011-8-12 39910.95 1178.81 1736 38.29 85.19 4.17
2011-8-15 X 1204.49 1739 39.18 87.88 4.05
2011-8-16 40883.9 1192.76 1782.5 39.36 86.65 4.03
2011-8-17 41125.87 1193.89 1790 40.02 87.58 3.98
2011-8-18 38697.56 1140.65 1824 40.32 82.38 3.98
2011-8-19 38749.61 1123.53 1848 41.98 82.33 3.99
2011-8-22 39549.67 1123.82 1877.5 43.49 84.42 3.97
2011-8-23 39556.82 1162.35 1876 42.88 85.35 4.01
2011-8-24 39588.91 1177.6 1770 42.08 84.99 4.1
2011-8-25 39715.27 1159.27 1729 39 85.15 4.01
2011-8-26 39774 1176.8 1788 41.06 85.37 3.96
2011-8-29 40715.85 1210.08 X X 87.27 3.93
2011-8-30 41300.1 1212.92 1825 40.9 88.9 3.85
2011-8-31 42222.38 1218.89 1813.5 41.35 88.81 3.97
2011-9-1 41553.09 1204.42 1821 41.47 88.93 4.18
2011-9-2 40544.28 1173.97 1875.25 42.5 88.93 4.12
2011-9-5 38992.56 X 1895 42.71 X X
2011-9-6 39189.1 1165.24 1895 41.85 85.99 3.93
2011-9-7 40418.3 1198.62 1810 40.98 89.34 3.96

Table 2: Missing prices: individually (diagonal) and pairwise (above diagonal)
date WIG S&P500 GOLD SILVER OIL GAS
WIG 42 2 17 12 2 2

S&P500 41 9 8 38 38
GOLD 49 37 9 9
SILVER 37 8 8
OIL 40 40
GAS 40

Table 3: Descriptive statistics of analyzed data: with missing values removed (first
line) and linearly interpolated (second line)

WIG S&P500 GOLD SILVER OIL GAS

min -10.186 -9.47 -7.972 -18.958 -12.827 -27.472
-8.289 -9.47 -7.972 -18.693 -12.827 -25.529

max 6.084 10.957 6.841 18.279 27.564 28.391
6.084 10.957 6.841 18.279 16.414 28.391

mean 0.007 -0.008 0.084 0.091 0.026 -0.095
0.006 -0.007 0.078 0.085 0.024 -0.088

std. dev. 1.558 1.588 1.438 2.815 2.844 4.478
1.481 1.516 1.362 2.670 2.602 4.166

skewness -0.541 -0.324 -0.351 -0.696 0.858 0.373
-0.431 -0.268 -0.417 -0.605 0.050 0.389

kurtosis 3.318 8.032 2.937 7.738 11.535 7.06
2.784 8.804 3.382 7.598 4.909 6.171
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Figure 1: Percentage return rates (days with incomplete date are removed)
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Figure 2: Price data with missing points – hundreds of logarithms
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The series x̂t, i.e. the logarithms of prices (in hundreds) with linear interpolations are
plotted in Figure 2. The filled gaps are marked with bold circles. The analyzed period
covers the 2008 subprime crisis and fuel price turbulences starting in the summer of
2008. Although the subprime explosion is well known and described, the OIL price
movements in the summer of 2008 need more detailed explanation. Roesser R. (2009)
suggests a number of factors which might have contributed to the fuel price spike in
the summer of 2008:
1. Gulf of Mexico’s Independence Hub was shut down due to a gas leak in early April
2008 – about 10 percent of total Gulf of Mexico production (900 million cubic feet
per day) was lost, which resulted in supply shrinkage in this area and thus a price
increase;
2. there were low storage volumes;
3. an active hurricane season was forecasted.
These factors contributed together to a spike of the oil price (145 USD/barrel) in
July 2008. "These record high oil prices, along with other emerging problems, such as
subprime lending consequences, contributed to a global economic slowdown" (Roesser
R. (2009)). As the stock prices fell, both domestic (in the United States) and global
demand for crude oil, mainly driven by production and transport at that time of the
year, started to collapse. This affected the prices of oil in the second half of 2008 and
early 2009.

4.2 Empirical results
First, we discuss the marginal posterior distributions of the model parameters. In
most cases, the posterior distributions differ significantly from the prior ones in the
sense that the posteriors are much sharper, much more informative. The data did not
provide any strong information only about some parameters in the off-diagonal part of
the matrix A. Important conclusions can be drawn from the comparison of marginal
posterior distributions in the two estimated models (with incomplete data deleted or
missing data forecasted). For the majority of parameters, the posterior histograms are
indistinguishable. A small, yet visible, difference appears in the marginal posterior
distributions of the parameters in the conditional mean that describe the impact
of oil returns on metals and gas returns: Λ35, Λ45, Λ65. In the model with the
missing data forecasted, the linkages within the autoregressive part appear to be
stronger. This may result from the lack of jumps artificially created in the oil
series. The strongest differences are visible in the marginal posterior distributions
of the parameters appearing in the specification of the latent process. The variance
(σ2 = τ−1) is significantly larger in the model in which the days with missing
observations were removed: p(σ2

removed − σ2
modelled < 0|x) = 0.015. The parameter

φ, responsible for autocorrelation in the latent process, is significantly higher when
missing data are modelled: p(φremoved − φmodelled < 0|x) = 0.923.
In Figure 3 we only present these parameters, for which either the prior information
is not dominated (A14, A16, A23, A24, A26, A36, A45, A46, A56) or the way we treat
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missing prices matters (Λ35, Λ45, Λ65, φ, τ−1). The posterior histograms are jointly
plotted with the prior densities (dashed line). The light grey bars indicate histograms
of the marginal posterior distributions obtained in VAR(1)-MSF-SBEKK model, in
which missing data were modelled, while the dark grey bars – in the model with
removed days. The bold triangles and squares mark the 0.025 and 0.975 quantiles of
these distributions.
Let us discuss the posterior expectations of the parameters in the VAR(1)-MSF-
SBEKK model with missing data modelled. Whenever zero was not within the 95%
highest posterior density region, the values were marked with bold. The values
in brackets are posterior standard deviations. At first, let us look at the VAR(1)
parameters λ and Λ as well as their function α = (In×n − Λ)−1λ, which is the
unconditional mean in the case of a covariance stationary VAR(1) process:

WIG S&P500 GOLD SILVER OIL GAS

E(λ′|x) =
[

0.068
(0.028)

0.079
(0.022)

0.084
(0.027)

0.106
(0.048)

0.131
(0.048)

−0.105
(0.087)

] ,
WIG S&P500 GOLD SILVER OIL GAS

E(α′|x) =
[

0.080
(0.030)

0.069
(0.021)

0.089
(0.026)

0.151
(0.048)

0.127
(0.046)

−0.102
(0.083)

] ,
WIG−1 S&P500−1 GOLD−1 SILVER−1 OIL−1 GAS−1

E(Λ|x) =



−0.043
(0.027)

0.242
(0.031)

−0.021
(0.031)

0.002
(0.015)

0.007
(0.016)

−0.008
(0.008)

0.019
(0.022)

−0.091
(0.029)

−0.062
(0.026)

0.017
(0.012)

−0.013
(0.014)

0.006
(0.006)

−0.033
(0.026)

0.049
(0.028)

−0.026
(0.031)

0.015
(0.015)

0.077
(0.015)

0.006
(0.007)

−0.001
(0.045)

0.183
(0.046)

0.687
(0.052)

−0.350
(0.029)

0.202
(0.026)

0.012
(0.013)

−0.035
(0.047)

0.146
(0.051)

0.031
(0.049)

−0.015
(0.026)

−0.048
(0.029)

0.015
(0.013)

−0.133
(0.075)

0.067
(0.064)

−0.063
(0.089)

−0.064
(0.043)

0.174
(0.039)

0.016
(0.028)



WIG

S&P500

GOLD

SILVER

OIL

GAS

All posterior expectations of the elements of α, except for the last one representing
the natural gas, seem to indicate that, although strong turbulences occurred, the
significant growth of returns prevailed during the analyzed six years. In the
autoregressive component, the only lagged factor having a significant impact on other
assets returns (except natural gas) is the S&P return series; it is not surprising that
the US economy plays the crucial and primary role on other markets. On the other
hand, the most imitative and "dependent" asset is silver – with returns positively
stimulated not only by their own past, but also by the lagged S&P500, gold and oil
returns.
The posterior means (and standard deviations) of the SBEKK-related parameters of
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the model with missing data forecasted are as follows:

WIG S&P500 GOLD SILVER OIL GAS

E(A|x) =



1.377
(0.181)

0.348
(0.089)

0.238
(0.101)

0.445
(0.181)

0.503
(0.185)

0.073
(0.297)

0.804
(0.107)

0.029
(0.076)

0.056
(0.138)

0.400
(0.141)

−0.079
(0.233)

1.225
(0.158)

1.256
(0.215)

0.414
(0.173)

0.208
(0.278)

3.950
(0.527)

0.356
(0.303)

0.718
(0.514)

3.887
(0.513)

0.401
(0.502)
9.986
(1.429)



WIG
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SILVER

OIL

GAS

E(β|x) = 0.031
(0.002)

, E(γ|x) = 0.953
(0.004)

, E(h0|x) = 1.190
(0.405)

.

Again, the natural gas returns seem to follow a different volatility pattern than the
returns on the remaining assets. Incidentally, the pure SBEKK stationarity condition
is supported by the data, as the posterior distribution of β + γ is separated from 1
(0.999 quantile equals 0.988).
The posterior means (and standard deviations) of the MSV-related parameters of the
model with missing data forecasted are as follows:

E(φ|x) = 0.669
(0.055)

, E(τ−1|x) = 0.139
(0.024)

,

Figure 4: Posterior autocorrelation function of ln gt – mean with 0.025 and 0.975
posterior quantiles
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The posterior distribution of φ indicates that the autocorrelation function (plotted in
Figure 4) of the latent process ln gt is nonzero only for a few lags. The half life of shock
to the latent process, i.e. HL = ln 0.5

lnφ , is centered at 1.20 in the model with incomplete
data removed and at 1.78 in the model where missing data points are modelled;
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however, the posterior distributions of these quantities are mostly overlapping. The
posterior expectations of the latent process in both models are plotted in Figure 5.
At the very beginning of the series the results differ most – which was caused by an
artificially created jump in the GAS prices. After December 22, 2005, when GAS was
valued at 13.03$ per MMBTU, its price declined on December 23 and 27, taking values
of 11.17$/MMBTU and 10.22$/MMBTU, respectively, to end at 9.9$/MMBTU on
December 28, 2005. When removing two middle days (as the GOLD was not valued),
the growth rate takes an extreme value of −27.42, which was explained by gt (marked
with a filled square in Figure 5). Another such case occurred between April 28, 2011,
and May 3, 2011. When the Polish stock market was closed due to the national
holiday memorizing the declaration of the Constitution of May 3, 1791 (called the
Constitution Day), the SILVER return rate was equal to −11.04. The following one
(on May 4) was equal to −7.92, which means that aggregating them into one return
rate (due to lack of availability of the value of WIG on May 3) led to an artificial
jump of −18.96, again affecting the gt series (and marked with a filled triangle) in the
case when days with incomplete data were removed. The artificial jump created in
the OIL series (outlined in the previous subsection) was also marked in Figure 5 with
a filled circle. Although it was the most spectacular one, it did not affect the latent
process much due to the already high volatilities captured in the MGARCH part – as
this outlier fell in the time of perturbances related to the financial crisis.
In order to summarize our inferences on the latent variables gt we calculated the
time averages and standard deviations of the posterior means E(gt|x); they are equal
1.048 and 0.244 (respectively) in the case of forecasting unavailable data, and 1.038
and 0.207 in the case of removing incomplete data. This means that in both cases the
average level and dispersion of the estimates of gt are very close. Also, the correlation
coefficient between the two series of posterior means of gt is 0.907, indicating very
similar dynamics. However, removing days with incomplete data led to much higher
kurtosis of E(gt|x), namely 14,116, than in the case of forecasting unavailable data
points, which resulted in kurtosis equal to 4,981 only. Posterior inferences on volatility
of the returns were somewhat different. In Figures 7a-7c the posterior means of
the conditional standard deviations σt,i = D (rt,i|ψt−1, gt, θ) (measuring individual
volatilities) are presented for both cases: with missing data modelled and some
days removed. The conditional standard deviation of the oil returns tends to peak
higher when the days with missing data are removed. Summary statistics of our
Bayesian volatility estimates for each t, i.e. E (σt,i|x), are presented in Table 4. First,
volatility of each asset is on average higher and more dispersed in the case of removing
incomplete data. Second, the correlation coefficients between volatility estimates in
both cases (incomplete data removed or forecasted) are very high (above 0.93), except
for the OIL series, where the correlation coefficient is below 0.93 (and equal to 0.864).
Another interesting aspect is the analysis of cross-market effects, hereafter measured
by the posterior means of the conditional correlation coefficients; see Figure 8 for 6
(out of 15) pairs of assets. These posterior means do not differ by more than 5%
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Figure 5: Posterior means (and posterior means plus one standard deviation) of latent
variables gt

E(gt|x) – missing data modelled
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Table 4: Averages (and standard deviations) of posterior means of σt,i in both models
and correlations between posterior means

asset WIG S&P500 GOLD SILVER OIL GAS
incomplete data removed 1.420

(0.556)
1.295

(0.842)
1.340

(0.556)
2.359

(0.965)
2.488

(1.302)
3.966

(1.549)
missing data forecasted 1.370

(0.515)
1.255

(0.809)
1.288

(0.514)
2.257

(0.881)
2.364

(1.148)
3.772

(1.423)

correlation 0.980 0.976 0.965 0.934 0.864 0.963

when we compare the results obtained in the two models – with incomplete data
forecasted or deleted. It seems to be the confirmation of an initial belief that adding
incomplete information into the data set with some days removed does not have a
strong impact on posterior inference about assets’ comovements. Summary statistics
of our Bayesian estimates (i.e. posterior expectations) of the conditional correlation
coefficients between returns on assets i and j, ρt,ij = Corr (rt,i, rt,j |ψt−1, gt, θ) –
for t = 1, . . . , T – are presented in Tables 5 and 6. Table 5 groups all averages and
standard deviations of E (ρt,ij |x) calculated over t ∈ {1, 2, . . . , T}. Table 6 groups the
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correlation coefficient calculated over common observations period between E (ρt,ij |x)
in the two models: with incomplete data removed and missing data forecasted. The
way we treat incomplete data seems of little importance for inference on cross-
market effects and contagion analysis. The lowest values in Table 6 appear for
the dependencies between return on OIL prices and WIG, S&P500, GOLD and
SILVER (correlation coefficients about 0.93). As it is visible on Figure 8 and as
one might suppose from Section 4.1, the linkage of global crisis tightened the oil and
stock markets in the United States for almost two years after the summer of 2008.
Gold confirmed to have been a good security at the times of more volatile markets’
perturbations. In general, the model confirmed what subprime crisis revealed - that
diversifying portfolio by investing in noble metals is a good strategy.

Table 5: Averages (and standard deviations) of posterior means of ρt,ij in the model
with missing data forecasted (under diagonal) and incomplete data removed (above
diagonal)

WIG S&P500 GOLD SILVER OIL GAS
WIG 0.412

(0.124)
0.181

(0.162)
0.204

(0.128)
0.271

(0.156)
0.052

(0.094)
S&P500 0.400

(0.126)
0.043

(0.147)
0.077

(0.131)
0.265

(0.217)
0.023

(0.091)
GOLD 0.174

(0.166)
0.036

(0.152)
0.606

(0.080)
0.220

(0.127)
0.090

(0.116)
SILVER 0.188

(0.130)
0.067

(0.132)
0.594

(0.085)
0.168

(0.116)
0.157

(0.115)
OIL 0.260

(0.153)
0.256

(0.218)
0.214

(0.127)
0.144

(0.121)
0.095

(0.099)
GAS 0.045

(0.093)
0.005

(0.086)
0.084

(0.106)
0.140

(0.110)
0.081

(0.091)

Table 6: Correlation between E
(
ρmodelled;t∈{j: x̂j=xj}|x

)
and E (ρremoved|x)

WIG S&P500 GOLD SILVER OIL GAS
WIG – 0.987 0.983 0.979 0.931 0.968

S&P500 – 0.969 0.986 0.934 0.985
GOLD – 0.973 0.933 0.967
SILVER – 0.933 0.958
OIL – 0.968
GAS –

Finally we shall move to the posterior distributions of the missing values themselves.
The plots of daily GAS prices, together with whiskers representing the 95% highest
posterior density regions for unavailable data, are presented in Figure 9. As we
can see, in all cases the posterior mean falls near the linearly interpolated value
presented in Figure 2. In other words, the results of linear interpolation have high
marginal posterior density values. The posterior variance of any missing observation
reacts to volatility (i.e. the conditional standard deviation) of prices of the individual
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asset in question and other assets in the portfolio. The more volatile the market is,
the less certain we are about the unobserved price. As an example, the posterior
distributions of two latent variables were zoomed in and juxtaposed on the series
in Figure 9. The first one represents a rather calm period (when the posterior
conditional standard deviation oscillated around 2), while the second one is located
where the posterior conditional standard deviation peaks even above 10. The posterior
standard deviations of these two latent variables (missing data points) are equal to
0.016 and 0.058, respectively. We presented only the GAS prices as this series is
most spectacular in terms of differences in posterior variances of missing data points.
However, forecasting unavailable prices of other assets has lead to similar results.
In some cases, missing values appeared a few times in a row. The longest such period
included 3 missing values in the gold price series in the period around Christmas
2010 (between December 23 and 29). The posterior distributions of these three
missing prices are plotted in Figure 6. It is clearly visible that for these three days a
broad range of possible prices might be fitted. However, values representing a smooth
transition seem very likely. In particular, the values obtained by linear approximation
(marked with "x" on the price axis) lie above the medians and close to the third
quartiles of the marginal posterior distributions of unavailable prices. Instead of
smooth transition (represented by linear approximation) we could consider keeping
the missing prices at the constant level of the last observed price. It would be a
reasonable solution for the first day with missing data, but clearly not for the third
day and even not for the second day. Firstly, this would amount to using values of
lower and lower posterior density. Secondly, it would create an artificially high return
in the first period after price unavailability. So our conclusion that linear interpolation
is a good strategy (at least in our particular empirical example) is in agreement with
the general results obtained by Doman M. and Doman R. (2010) in a completely
different setup.

Figure 6: Posterior densities of unobserved prices – three missing values in a row
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The use of linear approximation or any other technique of replacing unavailable
prices can be justified from the perspective of formal, purely Bayesian inference in
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our VAR(1)–MSF-SBEKK model. Let κ denote all unknown quantities (parameters
and latent variables), except missing prices denoted by x∗. We are interested in
obtaining the marginal posterior p (κ|x) =

∫
X∗

p (κ|x, x∗) p (x∗|x) dx∗ and we are
able to efficiently draw κ from its conditional posterior given x∗, but drawing x∗ is
very time consuming. So we replace the marginal posterior of x∗, p (x∗|x), with a
very sharp (degenerate) distribution concentrated at some preliminary estimate of
x∗ (say, x̂∗, which may correspond to linear interpolation). This results in using
p (κ|x, x∗ = x̂∗), as if one conditioned on a data-based value of x∗, instead of using
the true marginal posterior distribution p (κ|x). The same argument was presented
by Osiewalski J. and Pajor A. (2009) in order to justify replacing large parameter
matrices by their OLS based counterparts in the context of Bayesian inference in
MSF-SBEKK models for very large portfolios.

5 Concluding remarks

In this paper we consider the Bayesian MSF-SBEKK multivariate volatility model
estimated on the basis of incomplete daily prices. We discuss two methods of missing
data treatment: the first one is to remove all days with only partially available
information and the second one is to include them with missing prices treated as latent
variables. The MCMC algorithm is suitably adjusted to sample from the posterior
distribution of missing prices. An empirical study on joint modelling of six time
series from three different markets (stocks, noble metals and fuels) is presented. In
this example, including latent variables that represent missing price values resulted
in visible changes in the posterior distribution of the parameters of the latent process
in the SV part of the model; consequently, posterior results on individual volatilities
changed as well. No differences were found in the case of cross-market comovements
of price changes and contagion analysis (examined on the basis of the conditional
correlation coefficients).
For all forecasted prices, the results of linear interpolation had high marginal posterior
density values. Simple linear approximation appeared a Bayesianly justified shortcut
procedure. The exact Bayesian procedure seems too demanding as the MCMC
sampler in the model with forecasting unavailable prices was approximately 10 times
slower than in the model with such days removed. Because of that, it seems that
including the broadest possible data set (with linear interpolation of unavailable data
points) is the most practical solution. It prevents from loosing available information,
modifying time axis, creating artificial outliers and thus changing volatility estimates
within multivariate framework. Therefore we advocate not to delete days with
incomplete data, even if such approach is harmless for some particular purposes,
like inference on conditional correlation between assets returns.
As a by-product of our empirical study we also show that the use of the MSF-SBEKK
modelling framework can provide substantial information about cross-market links.
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We confirmed that during the period of subprime crisis not the energy commodities,
but the noble metals market was the right place to seek for hedging against risk.
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