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The ability of humans to compare relative magnitudes 
of environmental stimuli is an important skill that is rooted 
in basic evolutionary mechanisms (Cantlon & Brannon, 
2006). This ability is exhibited regularly in two different 
types of judgments. One type of judgment is based on 
physical magnitude, where competing items are judged 
based on physical size characteristics (e.g., area, volume, 
etc.). For example, one might choose the larger of two 
sandwiches from a plate by deciding which appears to have 
the larger volume. Another type of judgment is based on 
numerical magnitude, where competing items are judged 
based on numerosity. For example, when buying grapes 
in a grocery store, a shopper might choose one bunch that 
appears to contain many grapes over another bunch that 
appears to contain fewer grapes. On the surface, these two 
types of judgments seem quite distinct, as they appear to 
ask different questions – a physical magnitude judgment 
asks “how much?”, whereas a numerical magnitude 

judgment asks “how many?” In spite of this appearance, 
these two types of judgments can interact in the context 
of symbolic number judgments, where the items to be 
compared (Arabic number digits) possess both physical 
magnitude (the physical size of the number digit) and 
numerical magnitude (the underlying quantity represented 
by the number digit). The purpose of the present study is 
to examine the interaction between physical and numerical 
magnitude in symbolic number judgments.

An example of this interaction occurs in a typical 
laboratory task where a participant is presented with two 
number symbols, but one number is presented in a larger 
font than the other (see Figure 1). Suppose further that 
the participant is asked to ignore numerical value and 
choose the physically larger digit. Even though numerical 
magnitude is irrelevant to this comparison task, participants 
are usually slower to respond on trials where physical and 
numerical magnitude are incongruent with each other 
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(e.g., a large 2 paired with a small 8, as in the right panel 
of Figure 1), compared to trials on which physical and 
numerical size are congruent (e.g., a small 2 paired with 
a large 8, as in the left panel of Figure 1). This relative 
slowdown in the magnitude comparison is called the 
size-congruity effect, a well-studied phenomenon in 
the fields of decision making and numerical cognition 
(Faulkenberry, Cruise, Lavro, & Shaki, 2016; Henik & 
Tzelgov, 1982; Paivio, 1975; Schwarz & Heinze, 1998).

Figure 1. Example stimuli in a physical size comparison 
task. The left panel depicts a congruent trial, where the 
physically larger digit (8) is also the numerically larger 
digit. The right panel depicts an incongruent trial, 
where the physically larger digit (2) is the numerically 
smaller one.

One might note that this size-congruity effect is a bit 
of a curious result; indeed, participants could simply adopt 
a strategy of ignoring the identity of the numerical digit 
and simply focus on the physical size, as the task requires. 
However, the presence of the size-congruity effect implies 
that individuals simply cannot ignore the numerical value. 
On its own, the effect is certainly interesting. However, the 
size-congruity effect may perhaps be even more important 
for the subsequent debate it has generated concerning 
the nature of number representation. According to one 
theoretical account, the size-congruity effect occurs because 
a digit’s physical size and numerical magnitude are both 
encoded into a common, analog represention, upon which 
further processing occurs in a serial fashion. This early 
interaction account (Reike & Schwarz, 2017; Schwarz 
& Heinze, 1998; Szűcs & Soltész, 2007, 2008) predicts 
that the relative slowdown on incongruent trials is due to 
interference at the encoding stage.

An alternative account posits that physical size 
and numerical magnitude are encoded separately along 
independent pathways, and the interference between 
physical size and numerical magnitude occurs as 
competition between parallel and partially active response 
options (Faulkenberry et al., 2016; Santens & Verguts, 
2011). In contrast to the early interaction account, this 
late interaction account predicts that the locus of the 
size-congruity effect is not in the encoding stage, but rather 
in the decision stage.

A variety of paradigms have been employed to test 
between these competing models of the size-congruity 
effect, including classical response time (RT) tasks (Henik & 
Tzelgov, 1982), electrophysiological techniques (Schwarz & 
Heinze, 1998; Szűcs & Soltész, 2007, 2008), neuroimaging 

(Cohen Kadosh et al., 2007), computer mouse tracking 
(Faulkenberry et al., 2016), and visual search (Krause, 
Bekkering, Pratt, & Lindemann, 2016; Sobel, Puri, & 
Faulkenberry, 2016; Sobel, Puri, Faulkenberry, & Dague, 
2017). However, the outcomes of these multiple approaches 
have proved to be equivocal; some studies support the 
early interaction account, whereas others support the late 
interaction account. As such, a clear consensus on the origin 
of the size-congruity effect remains elusive.

A potentially fruitful method for elucidating the nature 
of the size-congruity effect may come from employing 
accumulator models to describe the distributions of RTs 
that are produced in the comparison task. Generally 
speaking, an accumulator model posits that responses 
in decision tasks stem from a process that involves 
noisy accumulation of stimulus information over time. 
When the accumulated information reaches a certain 
threshold, a response is initiated. An advantage of using an 
accumulator model for modeling RTs is that by fitting such 
a model, one obtains estimates of distributional parameters 
that can directly index the underlying cognitive processes 
involved in the decision, such as the rate of information 
accumulation, the response threshold, and the duration of 
non-decision processes including encoding and response 
production (Anders, Alario, & Maanen, 2016). Further, 
these models are quite good at describing the shape of 
typical RT distributions, which tend to be positively skewed 
(Luce, 1986). From a measurement standpoint, this allows 
one to model the effects of experimental manipulations on 
the entire distribution of RTs, rather than simply modeling 
the effects of manipulations on the collapsed means or 
medians. The use of accumulator models has a rich history 
in the behavioral sciences (Link & Heath, 1975; Luce, 
1986; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & 
McKoon, 2016). However, the use of such models has been 
relatively limited in the context of numerical cognition.

Whereas some accumulator models have been quite 
well studied in the context of two-choice decision tasks, 
such as the drift diffusion model (Ratcliff et al., 2016) and 
the linear ballistic accumulator model (Brown & Heathcote, 
2008; Heathcote & Hayes, 2012), such models are typically 
best suited for tasks in which the error rate is sufficiently 
large (Anders et al., 2016). As a consequence, these models 
are difficult to fit in tasks with very low error rates, such as 
the ones typically employed in the context of single-digit 
symbolic number representations. An alternative to the 
drift diffusion and linear ballistic accumulator models is the 
shifted Wald model (Anders et al., 2016; Schwarz, 2001). 
The shifted Wald model is a single-boundary accumulator 
model whose probability density represents the distribution 
of first-passage times of a continuous diffusion process that 
drifts (with rate γ) toward a single boundary of height α. 
Mathematically, the probability density is given by

where x > 0 represents a specific data point (i.e., a single 
response time), γ is the drift rate, α is the response threshold, 
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and θ is a rightward shift of the entire distribution that 
represents nondecision time. Descriptively, each parameter 
characterizes a specific characteristic of the distribution’s 
appearance. This can be seen in Figure 2, which depicts the 
effect of selectively increasing each shifted Wald parameter. 
Increasing drift rate γ results in a “spreading out” of the 
distribution, but leaves the mode relatively stable. Increasing 
response threshold α increases variance to a lesser extent 
than does an increase of γ, but the mode is shifted quite 
substantially rightward. Increasing nondecision time θ does 
not change the variance, but instead results in a pure “shift” 
of the distribution rightward.

An important consideration for the present study 
is that each of the three shifted Wald parameters can be 
interpreted as an index of specific cognitive processes 
(Anders et al., 2016; Heathcote, 2004; Schwarz, 2001). 
This idea is depicted in detail in Figure 3. Specifically, drift 

rate γ indexes rate of information uptake from encoded 
stimuli, and can be influenced by individual processing 
differences or stimulus characteristics that reflect task 
difficulty. Mathematically, the drift rate represents the rate 
at which information stochastically accumulates toward an 
absorbing boundary; as such, it is an intuitive proxy for 
rate of information uptake. Response threshold α represents 
the height of the absorbing boundary of the accumulator; 
larger values of α would require the accumulator to 
proceed longer before “hitting” the boundary. Thus, 
response threshold α is a natural index of response caution 
in the sense that it represents the amount of accumulated 
information required before initiating a response. Finally, 
nondecision time θ represents a horizontal shift of the 
accumulator function; this accounts for any elapsed 
time that is not already accounted for by either drift 
rate or response threshold. Thus, nondecision time θ 
is used to index any processes that are not related to the 
decision-related accumulation process, such as low-level 
perceptual processing or response production (i.e., motor 
preparation for a button press).

Several recent studies have used the shifted Wald 
distribution to index processes in cognitive tasks. For 
example, Anders, Riès, Maanen, and Alario (2015) fit 
RT distributions in a picture naming task and found that 
greater semantic interference resulted in slower drift rate 
(i.e., slower information accumulation) and larger response 
threshold, but no change in nondecision time. These effects 
on the shifted Wald parameters were largely consistent with 
predictions of the “dark-side model”, a model of lexical 
choice in psycholinguistics (Oppenheim, Dell, & Schwartz, 
2010). Another example in the context of numerical 
cognition comes from Faulkenberry (2017), who had 
participants complete an addition verification task under 
varying problem formats (words or digits). He found that 
presenting problems in word format resulted in a decrease 
in drift rate, concluding that the effect of problem format 
is not isolated to the encoding stage, but rather has a direct 
impact on calculation processes as well. This result was 
interpreted as support for an interactive model of mental 
arithmetic processing (Campbell & Clark, 1988; Campbell 
& Epp, 2004).

Figure 2. Effects of manipulating shifted Wald (SW) parameters on the shape of distributions. In all three plots, 
the solid line depicts a SW density with drift rate = 3, response threshold = 1, and nondecision time = 0.2 sec. The 
dotted line depicts the resulting density when exactly one of the parameters gets increased.

Figure 3. The shifted Wald as a cognitive model, 
describing RT as the time for an accumulator to drift 
toward and hit a single boundary of height 0.8 at 
a drift rate of 2.0. The nondecision time 0.15 represents 
the component of RT which is not due to this 
accumulation process. The solid black line represents 
the accumulator for a single trial, whereas the dashed 
upper curve represents the shifted Wald distribution 
formed by collecting RTs for many such trials.
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Against this background, the aim of the present 
study is to use the shifted Wald distribution as a model to 
permit a fine-grained examination of the size-congruity 
effect. Instead of collapsing participants’ RT distributions 
to single-valued summary statistics (e.g., means or 
medians) and examining the effect of physical-numerical 
size congruity on these means/medians, we instead fit the 
distributions to a shifted Wald distribution, which yields 
estimates of drift rate, response threshold, and nondecision 
time in each experimental condition. If the early interaction 
account is correct, one should expect the size congruity 
effects to stem from the stimulus encoding stage, and 
thus, one should see a congruity effect on our estimates of 
nondecision time. If, on the other hand, the late interaction 
account is correct, the size congruity effect should stem 
from post-encoding decision processes, and thus, one 
should see congruity effects on our estimates of drift rate 
and response threshold.

Method

Participants
Twenty-three under graduat e psychology students 

participated in the experiment for partial course credit. 
Informed consent was obtained from all individuals who 
participated in the study.

Stimuli and procedure
The experiment w as implemented via the OpenSesame 

software package (Mathôt, Schreij, & Theeuwes, 2011), 
which was run on a 20 inch iMac computer with a screen 
resolution of 1680 × 1050 pixels. Participants used 
a standard Dell keyboard for input. At the beginning of 
the experiment, participants were told that they would be 
presented with pairs of numbers, with each number being 
displayed in a different font size. Furthermore, they were 
told to quickly and accurately indicate (via a keypress) 
which digit was physically larger, pressing the “A” key if 
the number on the left was larger, and pressing the “L” key 
if the number on the right was larger.

The number pairs were constructed from the 
single-digit Arabic numerals 2, 3, 4, 5, 6, 7, and 8. Pairs 
were chosen in order to balance the numerical distance 
between numerals. Ignoring order, there were 12 possible 
pairs of numbers: 2–3, 3–4, 4–5 (distance 1); 2–4, 3–5, 
4–6 (distance 2); 2–5, 3–6, 4–7 (distance 3); 2–6, 3–7, 4–8 
(distance 4).

The size-congruity manipulation was created by varying 
the font size of each digit in the number pair. Specifically, 
the physically smaller digit was presented in 28 point font, 
whereas the physically larger of the pair was presented 
in 36 point font. This resulted in two different congruity 
conditions – congruent trials, in which the numerically larger 
digit was also physically larger, and incongruent trials, in 
which the numerically larger digit was physically smaller. 
Each pair was also presented in two different left-right orders 
and two different font configurations (smaller/left;larger/
right or smaller/right;larger/left). In all, this resulted in 
12 × 2 × 2 × 2 = 96  experimental trials per block.

Participants completed 4 blocks of these 96 experi-
mental trials (384 trials total) in a single experimental ses-
sion lasting approximately 20 minutes. Each experimental 
trial began with a fixation cross displayed for 500 milli-
seconds, followed immediately by a pair of numbers. The 
center of the leftmost number was positioned 300 pixels 
(12.5 degrees) to the left of the center of the screen, 
whereas the center of the rightmost number was positioned 
300 pixels (12.5 degrees) to the right of center (resulting 
in a visual angle between numbers of approximately 
25 degrees). For each trial, the number pair remained on 
the screen until a response was made. If the response was 
correct, no feedback was given, and the next trial began 
immediately. If the response was incorrect, a red “X” was 
presented in the center of the screen for 1 second, after 
which the next trial began.

All data from this experiment were uploaded nightly 
to Github via a born open protocol (Rouder, 2016). These 
data (along with the experiment script) are available for 
download at https://git.io/vAEE8.

Results

Participants completed a total of  8832 experimental 
trials. We discarded 433 trials that contained an incorrect 
response (error rate = 4.90%). Further, we removed an 
additional 87 trials for which response time was below 
three median absolute deviations (MAD) and above six 
MAD from the overall median RT (median RT = 559 
msec, MAD = 142.33 msec) (Leys, Ley, Klein, Bernard, & 
Licata, 2013). This cleaning procedure resulted in retaining 
a total of 8312 trials (94.10% of original trials) for further 
analysis.

The general analysis plan throughout the paper is 
as follows. First, each hypothesis test was computed as 
a traditional frequentist test (specifically, a paired-samples 
t-test). Afterward, we performed a default Bayesian t-test 
(Rouder, Speckman, Sun, Morey, & Iverson, 2009) to 
obtain a Bayes factor, a likelihood ratio which provides 
a continuous measure of the extent to which the observed 
data is more likely to have occurred under one hypothesis 
than another (Kass & Raftery, 1995). As such, the Bayes 
factor provides a direct index of our relative belief in one 
of two competing hypotheses. Notationally, B10 represents 
a Bayes factor for the alternative over the null, whereas  B01  
represents a Bayes factor for the null over the alternative. 
This approach is especially useful in the case of null effects, 
which cannot be coherently argued for within a frequentist 
framework (Wagenmakers, 2007). As recommended by 
Dienes and Mclatchie (2018), we combine both frequentist 
and Bayesian procedures in our reporting. By doing this, 
we can combine the familiarity of the orthodox frequentist 
approach with a Bayesian measure of evidential value that 
is provided by our data.

As expected, we found a significant size congruity 
effect on RTs in the physical comparison task. As can 
be seen in Figure 4, the peak of the RT distribution for 
incongruent trials was shifted rightward compared to the 
distribution for congruent trials, indicating that incongruent 
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trials took longer to compare than congruent trials. This was 
confirmed by a paired samples t-test, from which we found 
a signficant effect of congruity on median RTs, t(22) = 6.30, 
p < .001. On average, responses for incongruent trials were 
63 milliseconds slower than congruent trials. This result 
was well supported by a Bayesian t-test, which produced 
a Bayes factor of B10 = 15,679.05. This indicates that 
the observed data are approximately 15679 times more 
likely under the alternative hypothesis than the null 
hypothesis, which provides substantial evidence in favor of 
a congruity-related increase in median RT.

Also apparent from Figure 4 is an increase in the 
spread of the RT distribution for incongruent trials. This 
was again confirmed by a paired samples t-test: standard 
deviations were signficantly larger for incongruent trials 
compared to congruent trials, t(22) = 5.54, p < .001. Similar 
to median RTs, a Bayesian t-test produced a Bayes factor 
of B10 = 3,152.15. As with median RTs, this result implies 
that the observed data are approximately 3152 times more 
likely under the alternative than the null, giving us much 
evidence in favor of a congruity-related increase in standard 
deviations.

Figure 4. Distributions of response times (in seconds) 
as a function of congruity (congruent versus 
incongruent).

Next, we attempted to more fully describe the effects 
of physical-numerical size congruity on the distributions 
of response times. To this end, we fit the distributions 
with a shifted Wald model. Specifically, each participant’s 
distribution of RTs was split into congruent trials and 
incongruent trials. Then, each of these two distributions was 
fit with a shifted Wald model using the method of Anders 
et al. (2016). This resulted in a collection of parameters γ 
(drift rate), α (response threshold), and θ (nondecision time) 
for each of the 46 combinations of congruity (congruent, 
incongruent) and participant (N = 23). We then tested the 
effects of congruity on the shifted Wald parameters by 
submitting each parameter to a paired samples t-test. As 
above, we further validated each result by measuring the 
evidential value of data in each test via a  Bayesian t-test.

The effects of physical-numerical size congruity on 
each shifted Wald parameter can be seen in Table 1 as 
well as in Figure 5. For drift rate γ, there was a significant 
effect of congruity, t(22) = –5.27, p < .001. As can be seen 

in Figure 5A, mean drift rate was smaller for incongruent 
trials (M = 3.30) than for congruent trials (M = 3.91). This 
indicates that the rate of information accumulation from 
incongruent trials was reduced compared to trials in which 
the physical magnitude comparison was congruent with 
the numerical magnitude comparison. A Bayesian t-test 
yielded a Bayes factor of B10 = 1,729.35. This indicates 
that the observed data are approximately 1729 times 
more likely under the alternative hypothesis than the null 
hypothesis, which provides very strong evidence in favor 
of a congruity-related decrease in drift rate.

Table 1. Descriptive statistics for shifted Wald 
parameters

Congruity
Drift rate γ Response 

threshold α
Nondecision 

time θ

M SD M SD M SD

Congruent 3.91 0.70 0.92 0.17 0.32 0.05

Incongruent 3.30 0.51 1.04 0.22 0.32 0.05

Note. M = mean, SD = standard deviation

Figure 5. Means of shifted Wald parameters presented 
as a function of congruity (congruent versus 
incongruent). Panel A depicts drift rate, which indexes 
rate of information accumulation from stimuli. Panel B 
depicts response threshold, which indexes the amount 
of accumulated information required before response 
initiation. Panel C depicts nondecision time, which 
indexes the amount of time required for nondecision 
processes (e.g., encoding and response generation).

Figure 5B shows that congruity also had a significant 
effect on response threshold α, albeit in the opposite 
direction, t(22) = 3.15, p = .002. The mean response 
threshold was larger for incongruent trials (M = 1.04) 
than for congruent trials (M = 0.92), which indicates 
that in addition to a reduction in the rate of information 
accumulation on incongruent trials compared to congruent 
trials, participants also required more information before 
making a decision on such trials. A Bayesian t-test 
resulted in a Bayes factor of B10 = 18.60, indicating 
that the observed data are approximately 19 times more 
likely under the alternative hypothesis than the null. Such 
a Bayes factor is generally interpreted as positive evidence 
in favor of a congruity-related increase in response 
threshold.
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Finally, Figure 5C shows that congruity did not have 
a significant effect on nondecision time θ, t(22) = –1.16, 
p = .870. Note that in a frequentist framework, the absence 
of a significant effect does not constitute evidence for 
a null effect (Wagenmakers, 2007). We can, however, 
measure the evidence for a null effect using a Bayes 
factor. To this end, a Bayesian t-test produced a Bayes 
factor of B01 = 8.96, which means that the observed data 
were approximately 9 times more likely under the null 
hypothesis than the alternative hypothesis, giving us 
positive evidence in favor of a null effect of congruity on 
nondecision time.

Discussion

The purpose of the present stud y was to use response 
time modeling to provide a fine-grained examination of the 
timecourse of the size congruity effect. Specifically, we 
aimed to use the results of this modeling to test between 
two competing models of the size congruity effect: an early 
interaction model, where the interference between physical 
and numerical magnitude is purported to be an encoding 
effect which occurs an at early representational stage, and 
a late interaction model, where interference occurs at later, 
decision-related stages.

As was expected, we found a large effect of physical-
-numerical congruity on median response times, where 
incongruent trials required significantly more time for 
comparison than congruent trials. Further, we found that 
the standard deviation of the response time distributions 
increased for incongruent trials. Such an increase in both 
the center and spread of the response time distributions 
indicates a need for more fine-grained analysis of the 
effects of congruity on the response times distributions. To 
this end, we used a shifted Wald distribution (Anders et al., 
2016), a single-boundary accumulator model, to provide 
a three-parameter description of the distributions in each 
congruity condition.

We found that congruent trials resulted in signficant 
changes to two of the three shifted Wald parameters. The 
observed increase in median RT and standard deviation 
that occured for incongruent trials was due primarily 
to a decrease in drift rate and an increase in response 
threshold. The decrease in drift rate means that, for 
incongruent trials, stimulus information was accumulated 
more slowly than for congruent trials. Simultaneously, 
there was an increase in response threshold, indicating that 
participants adopted a larger threshold for information that 
was required to be accumulated before making a decision. 
Critically, there was no effect of congruity on nondecision 
time. In all, the present data indicates that the congruity 
manipulation had effects on decision-related parameters 
(drift rate and response threshold) and no direct effect 
on the parameter related to encoding (nondecision time). 
By implication, the mismatch between numerical and 
physical size seems to impede participants’ ability to 
extract magnitude information from the encoded stimuli 
as well as increase participants’ threshold for information 
required before initiating a response. However, there seems 

to be no effect of congruity on early perceptual processing. 
As such, the pattern of observed behavior lends direct 
support to a late interaction model of the size congruity 
effect.

Such a conclusion is in general agreement with 
several other recent studies on the locus of interference 
in the size congruity effect, which have used a variety 
techniques ranging from visual search (Sobel et al., 
2016, 2017) to computer mousetracking (Faulkenberry 
et al., 2016). The cumulative data from these studies lend 
converging evidence on the late-interaction account of the 
size congruity effect. In turn, these data further support 
to a response competition model of number comparison 
put forth by Verguts and colleagues (Gevers, Verguts, 
Reynvoet, Caessens, & Fias, 2006; Verguts, Fias, & 
Stevens, 2005).

The present study is also novel in its use of response 
time modeling in the context of numerical cognition. 
Such models have been used successfully in a variety of 
other domains, and their advantages have been discussed 
previously. Note that we chose to a version of the number 
comparison task where participants were asked to 
choose the physically larger of the two presented digits. 
One could have easily used a version where participants 
are asked to choose the numerically larger of the two 
digits. Indeed, this would be an interesting direction for 
future work, as Arend and Henik (2015) recently showed 
that the size-congruity effect is larger for the numerical 
version of the task. In this task, one must additionally 
consider the instruction (“choose larger” versus “choose 
smaller”), as Arend and Henik also demonstrated that 
the “choose larger” instruction resulted in the larger 
size-congruity effect. This modulation of task instruction 
(see also Faulkenberry, Cruise, & Shaki, 2018) could very 
well have important downstream consequences for our 
modeling work here, and as such, a full interpretation of 
our results is necessarily tentative until further study can be 
completed.

In summary, the present data shows that the size 
congruity effect in physical number comparison arises 
due to late, response-related decision processes, and is not 
localized to an early encoding stage. As such, the data lends 
support for a late-interaction account of the size congruity 
effect.

Conflict of interest
On behalf of all authors, the corresponding author 

states that there is no conflict of interest.

Ethical approval
All procedures performed in studies involving human 

participants were in accordance with the ethical standards 
of the institutional and/or national research committee and 
with the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards.

Informed consent
Informed consent was obtained from all individual 

participants included in the study.



397A shifted Wald decomposition of the numerical size-congruity effect: Support for a late interaction account

Referenc es
Anders,   R., Alario, F.-X., & Maanen, L. V. (2016). The shifted Wald dis-

tribution for response time data analysis. Psychological Methods, 
21(3), 309–327. doi:  10.1037/met0000066

Anders,  R., Riès, S., Maanen, L. van, & Alario, F.-X. (2015). Evidence ac-
cumulation as a model for lexical selection. Cognitive Psychology, 
82, 57–73. doi: 10.1016/j.cogpsych.2015.07.002

Arend, I. , & Henik, A. (2015). Choosing the larger versus choosing the 
smaller: Asymmetries in the size congruity effect. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 41(6), 
1821–1830. doi: 10.1037/xlm0000135

Brown, S.  D., & Heathcote, A. (2008). The simplest complete model of 
choice response time: Linear ballistic accumulation. Cognitive Psy-
chology, 57(3), 153–178. doi: 10.1016/j.cogpsych.2007.12.002

Campbell,  J. I. D., & Clark, J. M. (1988). An encoding-complex view of 
cognitive number processing: Comment on McCloskey, Sokol, and 
Goodman (1986). Journal of Experimental Psychology: General, 
117(2), 204–214. doi: 10.1037/0096-3445.117.2.204

Campbell,  J. I. D., & Epp, L. J. (2004). An encoding-complex approach 
to numerical cognition in Chinese-English bilinguals. Canadian 
Journal of Experimental Psychology, 58(4), 229–244. doi: 10.1037/
h0087447

Cantlon,  J. F., & Brannon, E. M. (2006). Shared system for ordering small 
and large numbers in monkeys and humans. Psychological Science, 
17(5), 401–406. doi: 10.1111/j.1467-9280.2006.01719.x

Cohen Kad osh, R., Cohen Kadosh, K., Linden, D. E. J., Gevers, W., Ber-
ger, A., & Henik, A. (2007). The brain locus of interaction between 
number and size: A combined functional magnetic resonance imag-
ing and event-related potential study. Journal of Cognitive Neuro-
science, 19(6), 957–970. doi: 10.1162/jocn.2007.19.6.957

Dienes, Z ., & Mclatchie, N. (2018). Four reasons to prefer Bayesian 
analyses over signifi cance testing. Psychonomic Bulletin & Review, 
25(1), 207–218. doi: 10.3758/s13423-017-1266-z

Faulkenbe rry, T. J. (2017). A single-boundary accumulator model of re-
sponse times in an addition verifi cation task. Frontiers in Psychol-
ogy, 8. doi: 10.3389/fpsyg.2017.01225

Faulkenbe rry, T. J., Cruise, A., Lavro, D., & Shaki, S. (2016). Response 
trajectories capture the continuous dynamics of the size congru-
ity effect. Acta Psychologica, 163, 114–123. doi: 10.1016/j.actp-
sy.2015.11.010

Faulkenbe rry, T. J., Cruise, A., & Shaki, S. (2018). Task instructions 
modulate unit-decade binding in two-digit number representation. 
Psychological Research. doi: 10.1007/s00426-018-1057-9

Gevers, W ., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). 
Numbers and space: A computational model of the SNARC effect. 
Journal of Experimental Psychology: Human Perception and Per-
formance, 32(1), 32–44. doi: 10.1037/0096-1523.32.1.32

Heathcote , A. (2004). Fitting Wald and ex-Wald distributions to response 
time data: An example using functions for the S-PLUS package. 
Behavior Research Methods, Instruments, & Computers, 36(4), 
678–694. doi: 10.3758/bf03206550

Heathcote , A., & Hayes, B. (2012). Diffusion versus linear ballistic ac-
cumulation: Different models for response time with different con-
clusions about psychological mechanisms? Canadian Journal of 
Experimental Psychology, 66(2), 125–136. doi: 10.1037/a0028189

Henik, A. , & Tzelgov, J. (1982). Is three greater than fi ve: The relation 
between physical and semantic size in comparison tasks. Memory & 
Cognition, 10(4), 389–395. doi: 10.3758/bf03202431

Kass, R.  E., & Raftery, A. E. (1995). Bayes factors. Journal of the Ameri-
can Statistical Association, 90(430), 773. doi: 10.2307/2291091

Krause, F ., Bekkering, H., Pratt, J., & Lindemann, O. (2016). Interaction 
between numbers and size during visual search. Psychological Re-
search, 81(3), 664–677. doi: 10.1007/s00426-016-0771-4

Leys, C.,  Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting 
outliers: Do not use standard deviation around the mean, use abso-

lute deviation around the median. Journal of Experimental Social 
Psychology, 49(4), 764–766. doi: 10.1016/j.jesp.2013.03.013

Link, S.  W., & Heath, R. A. (1975). A sequential theory of psychologi-
cal discrimination. Psychometrika, 40(1), 77–105. doi: 10.1007/
bf02291481

Luce, R.  D. (1986). Response times: Their role in inferring elementary 
mental organization. New York: Oxford University Press.

Mathôt, S ., Schreij, D., & Theeuwes, J. (2011). OpenSesame: An open-
-source, graphical experiment builder for the social sciences. Behavior 
Research Methods, 44(2), 314–324. doi: 10.3758/s13428-011-0168-7

Oppenheim,  G. M., Dell, G. S., & Schwartz, M. F. (2010). The dark side 
of incremental learning: A model of cumulative semantic interfer-
ence during lexical access in speech production. Cognition, 114(2), 
227–252. doi: 10.1016/j.cognition.2009.09.007

Paivio, A.  (1975). Perceptual comparisons through the mind’s eye. Memo-
ry & Cognition, 3(6), 635–647. doi: 10.3758/bf03198229

Ratcliff,  R., & McKoon, G. (2008). The diffusion decision model: Theory 
and data for two-choice decision tasks. Neural Computation, 20(4), 
873–922. doi: 10.1162/neco.2008.12-06-420

Ratcliff,  R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion 
decision model: Current issues and history. Trends in Cognitive Sci-
ences, 20(4), 260–281. doi: 10.1016/j.tics.2016.01.007

Reike, D.,  & Schwarz, W. (2017). Exploring the origin of the number-
-size congruency effect: Sensitivity or response bias? Attention, 
Perception, & Psychophysics, 79(2), 383–388. doi: 10.3758/
s13414 -016-1267-4

Rouder, J.  N. (2016). The what, why, and how of born-open data. Be-
havioral Research Methods, 48, 1062–1069. doi: 10.3758/s13428-
015-0630-z

Rouder, J.  N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. 
(2009). Bayesian t-tests for accepting and rejecting the null hy-
pothesis. Psychonomic Bulletin & Review, 16(2), 225–237. doi: 
10.3758/pbr.16.2.225

Santens, S.,  & Verguts, T. (2011). The size congruity effect: Is bigger 
always more? Cognition, 118(1), 94–110. doi: 10.1016/j.cogni-
tion.2010.10.014

Schwarz, W.  (2001). The ex-Wald distribution as a descriptive model of 
response times. Behavior Research Methods, Instruments, & Com-
puters, 33(4), 457–469. doi: 10.3758/bf03195403

Schwarz, W.,  & Heinze, H. J. (1998). On the interaction of numerical and 
size information in digit comparison: A behavioral and event-re-
lated potential study. Neuropsychologia, 36(11), 1167–1179. doi: 
10.1016/s0028-3932(98)00001-3

Sobel, K. V. , Puri, A. M., & Faulkenberry, T. J. (2016). Bottom-up and 
top-down attentional contributions to the size congruity effect. 
Attention, Perception, & Psychophysics, 78(5), 1324–1336. doi: 
10.3758/s13414-016-1098-3

Sobel, K. V. , Puri, A. M., Faulkenberry, T. J., & Dague, T. D. (2017). Vi-
sual search for conjunctions of physical and numerical size shows 
that they are processed independently. Journal of Experimental Psy-
chology: Human Perception and Performance, 43(3), 444–453. doi: 
10.1037/xhp0000323

Szűcs, D., &  Soltész, F. (2007). Event-related potentials dissociate facili-
tation and interference effects in the numerical Stroop paradigm. 
Neuropsychologia, 45(14), 3190–3202. doi: 10.1016/j.neuropsy-
chologia.2007.06.013

Szűcs, D., & So ltész, F. (2008). The interaction of task-relevant and 
task-irrelevant stimulus features in the number/size congruency 
paradigm: An ERP study. Brain Research, 1190, 143–158. doi: 
10.1016/j.brainres.2007.11.010

Verguts, T., Fias,  W., & Stevens, M. (2005). A model of exact small-num-
ber representation. Psychonomic Bulletin & Review, 12(1), 66–80. 
doi: 10.3758/bf03196349

Wagenmakers, E.-J.  (2007). A practical solution to the pervasive problems 
of p values. Psychonomic Bulletin & Review, 14(5), 779–804. doi: 
10.3758/bf03194105




