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Abstract
Development of facial recognition or expression recognition algorithms requires input data to thoroughly
test the performance of algorithms in various conditions. Researchers are developing various methods to
face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we
propose and establish a dataset of thermal facial images, which contains a set of neutral images in various
poses as well as a set of facial images with different posed expressions collected with a thermal infrared
camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the
impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided.
The paper describes the measurement methodology and database structure. We present baseline results
of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face re-
identification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and
local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range
of capabilities – from thermal face recognition to thermal expression recognition.
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1. Introduction

Face recognition systems operating in the visible domain have reached a significant level of
maturity which enables their wide commercial use. Also, due to a low cost of visible-range cam-
eras, investigations on face recognition have been directed towards this spectrum [1, 2]. However,
visible spectrum images strongly depend on ambient conditions since they rely on reflectivity of
surfaces. The dependence on reflectivity makes them vulnerable to various attacks, like a pre-
sentation attack, and it requires additional methods to uniformly distribute illumination on the
surface of the face. There are several challenges like illumination [3], pose [4], facial disguises
and changes of facial expression, that are still unresolved [5]. The research community has made
a great effort to face those challenges by developing more complex solutions. One of the promis-
ing directions is exploration of the infrared range of radiation [6].

According to the Planck’s law each body being in the thermal equilibrium emits radiation in a
broad spectral range [9]. Most of the heat energy is emitted in the LWIR range. The temperature
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differences on the face surface correspond to the differences of energy radiated in a broad radia-
tion range. Passive cameras assign the temperature differences to the differences in the radiated
energies in their spectral ranges per unit surface [10].

A thermal infrared image of the human face presents its unique heat-signature which can be
used as a pattern for recognition [7]. Practical application of thermal face recognition is more
complex since the energy received by a thermal camera does not only depend on the properties
of measured body (emissivity) but also on the sum of the energies radiated by different elements
of the scene captured by the camera, atmosphere characteristics and performance of the imager.

The use of infrared images for automatic face recognition is not free of challenges. Thermal
face imaging is sensitive to the emotional, physical and health conditions of the subject [8, 9].
Moreover, the properties of face depend on temperature of body, environment and occlusions
present on the face like scarfs, glasses or any disguise accessories that alter the emitted heat
pattern.

Face recognition based on infrared thermography remains not fully covered an area, espe-
cially in the context of qualitative and quantitative influence of time and environmental impacts.
Development and assessment of face recognition algorithms, in particular based on the machine
learning paradigm require a large number of samples to train and test models. Most of the exist-
ing datasets were collected using imagers offering out-of-date parameters. Moreover, the datasets
consist of sample images collected once during a single acquisition. The impact of aging and
varying conditions cannot be investigated using available datasets. It is of particular importance
to collect and distribute a dataset of facial images acquired repeatedly after a specific period of
time using state-of-the-art equipment.

The aim of this paper is to present a high-resolution database of thermal facial images ac-
quired in similar, controlled conditions using a state-of-the-art long-wavelength infrared imager.
The dataset contains images presenting faces in a neutral frontal position, in various head po-
sitions as well as frontal face images expressing various emotions. The measurement process,
database structure and experiment scenarios are described. The dataset has been evaluated in
three re-identification scenarios. Three descriptors have been selected to provide baseline recog-
nition results and have been studied in conjunction with seven distance metrics. The paper
presents a review of existing thermal face datasets, an overall description of the recognition
process and feature extraction methods.

2. Public datasets

Development of processing methods and algorithms requires input data to test and validate
their performance in various conditions. Datasets are required to evaluate algorithms as well as to
train machine learning or deep learning models. Images may be acquired in various conditions as
well as in different states of the subject – moving or in a standoff position. It is highly desirable
to collect many datasets covering various scenarios and to compare results of the experiments
using repeatable conditions.

One of the methods to compare results is to use public and freely available sets of data.
Researchers may use infrared face datasets which offer substantial sets of images. The main and
most known databases which contain face images in the infrared spectrum are following:

a) Equinox [12] – 320×240-pixel images of 90 subjects;
b) SCFace [13] –130 subjects and the total of 4160 images;
c) Carl Database [13, 14] – 160×120-pixel images of 41 persons;
d) Iris thermal/visible face database [16] – 4228 pairs of 320×240-pixel images;
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e) University of Notre Dame (UND) [17] – 320×240-pixel images of 241 subjects;
f) The Laval University thermal IR face motion database [18] – 640× 512-pixel images of

200 subjects.
g) Natural Visible and Infrared Facial Expression database (USTC-NVIE) [19] – around 100

subjects with images of 320×240-pixel resolution.
It should be stressed that the authors of the databases focused their attention on different

aspects. As an effect, the datasets differ in content and methodology. It is worth mentioning
that most of the currently available datasets contain images of relatively low resolution and
were captured using imagers with a low value of minimum resolvable temperature difference
(MRTD), which is the critical parameter describing a sensor’s ability to distinguish tempera-
tures. The current state-of-the-art equipment offers resolution of at least 640× 480-pixels and
MRTD below 50 mK. What is equally important, collection of a dataset should be repeated after
some period of time since aging and different ambient conditions may significantly influence the
performance. Therefore, it is justified to collect datasets using current equipment and updated
methodologies.

3. Database acquisition

The presented dataset consists of 2 sets of images, collected initially and after 12 months.
Each set consists of 30 subsets of images collected from 30 persons, including 10 sets of im-
ages of subjects wearing glasses. Each of the 30 datasets contains 24 or 12 images of a subject’s
face depending on whether the subject is wearing glasses or not, respectively. These images
present the subject with various head poses and showing various expressions. The dataset of-
fers a wide range of capabilities – from thermal face recognition to thermal expression recogni-
tion. The expression recognition in the thermal domain has received relatively little attention
compared with the visible-light expression recognition, thus this topic remains attractive for
researchers.

Images from each set present a subject’s face in frontal as well as various head positions and
showing various expressions. Every set consists of three frontal images presenting the face in
the upright position, four images presenting the face in various head positions (looking down,
looking left (30 degrees), looking right (30 degrees), looking up) and five frontal-face images
presenting various expressions of a subject. The set of expressions includes a subject smiling,
sad, surprised, angry and with eyes closed.

This set of images should provide a sufficient number of images and test cases. A sample set
of 10 IR images is presented in Fig. 1.

All the measurements were taken indoors. A subject was sitting on a chair in front of the cam-
era at a distance of 1.5 m. The camera was placed at a height of 1.2 m above the floor. Ambient
temperature during each of the measurement sessions was controlled using a thermometer and
stabilized using an air conditioning system. In order to ensure a uniform background of images,
the camera was directed towards the wall covered with cotton fabric. The fabric was aimed to
reduce the non-uniformity of wall as well as to eliminate reflections.

During the experiment a subject sitting in front of the camera was performing specific actions
guided by a person supervising the measurement process. In order to assure that the angle of head
rotation is always the same, numbered markers were installed on the walls and on the floor of
the room. A subject was asked to move or rotate the head towards and look at a marker. All the
expressions were elicited by asking subjects to perform a series of emotional expressions in front
of a camera. Subjects wearing glasses were asked to perform in two measurement sessions where
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Fig. 1. A dataset of thermal images presenting a face with various positions and expressions: a) upright; b) looking down;
c) looking left (30 degrees); d) looking right (30 degrees); e) looking up; f) smiling; g) sad; h) surprised; i) angry; j) eyes

closed.

the first one was without and the second with glasses. In order not to exhaust the participant, each
measurement session took no longer than 3 minutes.

Face recognition with the thermal infrared camera might be achieved by analysing the rel-
ative temperature distribution on the surface of a face. The fundamental parameter of infrared
cameras that describes their ability to differentiate temperatures is the noise equivalent tempera-
ture difference (NETD). The parameter directly defines the ability of a camera to detect shapes
of an object. Infrared cameras equipped with uncooled micro-bolometer focal plane arrays offer
NETD values between 40 and 130 mK, whereas imagers with cooled detection units have an
NETD value below 20 mK. During the acquisition process of thermal infrared images, a camera
equipped with 640×480-pixel micro-bolometer array of NETD <50 mK was used. The technical
specification of the sensor is provided in Table 1.

Table 1. Parameters of the FLIR P640 camera.

Parameters Values

Detection unit FPA (focal plane array), MCT (mercury cadmium telluride)

Resolution 640×480 pixels

Field of View (FOV) 11◦×8◦

spectral range 7.7 µm ÷ 11.5 µm

NETD < 50 mK

During all the measurement sessions, the thermal camera has operated in the auto-calibration
mode.
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4. Evaluation methodology

The presented dataset has been evaluated in terms of its usability for face recognition and
expression recognition. In order to quantitatively and qualitatively validate the dataset, a set of
state-of-the-art algorithms have been selected.

4.1. Data processing

The mathematical description of face relies on the values derived from a facial image. The
derived values, often referred to as features, should provide non-redundant information, facili-
tating the learning process. Since a variety of face descriptors is known, selection of the most
suitable type of features for a chosen task remains a challenge.

There are several various descriptors which differ in performance depending on the spectral
domain. The visible-domain face recognition is very often based on appearance-based methods,
such as PCA (Principal Component Analysis) [12], LDA (Linear Discriminant Analysis) [21],
and ICA (Independent Component Analysis) [22], which project face images into a subspace.
Other frameworks use a local-matching approach such as Local Binary Pattern (LBP) [23, 24],
Gabor Jet Descriptors [25], histograms of Weber Linear Descriptor features [26] and histograms
of oriented gradients (HOGs) [27]. In these approaches, a facial image is divided into blocks to
extract descriptors. Finally, global matching approaches such as Scale Invariant Feature Trans-
form (SIFT) and Speeded-Up Robust Features (SURF) [28, 29] are used.

Our evaluation methodology is based on using state-of-the-art methods and algorithms to
assess the usability of a dataset for thermal face verification (re-identification). We selected and
examined three state-of-the-art local feature extraction methods – a histogram of oriented gradi-
ents, local binary patterns and local derivative patterns, together with a set of metrics to compare
and assess effectiveness of the presented dataset.

The first descriptor considered in this paper was introduced by McConnell in 1986 [30], but
its wide usage started after the presentation by Dalal and Triggs at the CVPR conference in 2005
[1]. Dalal and Triggs were the first that successfully applied HOG to human detection. This was
an insight for researchers to use HOG for the face representation and the face recognition [32–
34]. The HOG feature is a local descriptor of the orientations of the image gradients around
the central point of an image. Each descriptor is a package of histograms of pixel orientations
extracted by calculation of their gradients.

Local binary pattern (LBP) is another local operator often used for description of facial fea-
tures. LBP was originally introduced by Ojala et al. in [23, 24] as a method to describe textures.
Several researchers proposed extensions to the traditional version of LBP. Tan and Triggs [37] ex-
tended LBPs to Local Ternary Patterns (LTPs), Ahonen et al. [36] introduced Soft Histogram for
Local Binary Patterns (SLBPs), Heikkila et al. [37] proposed Center-Symmetric Local Binary
Patterns (CSLBPs). Other approaches combining LBP with other methods were further intro-
duced, like Histograms of Local Variation Patterns (MHLVPs) or Local Gabor Binary Pattern
Histogram Sequence (LGBPHS) proposed by Zhang et al. [38] and [39].

Zhang et al. proposed a new local feature descriptor called Local Derivative Patterns (LDP)
in 2010 [40]. This new descriptor is able to capture a change of derivative directions among local
neighbours and encode the turning point in a given direction. The LDP is based on using high-
order local patterns for the face representation [42, 43]. This is the third descriptor compared in
the scope of this study.

Detailed mathematical descriptions of HOG, LBP and LDP are provided in [1, 23] and [40],
respectively. It should be noticed that HOG, as well as LBP and LDP is calculated around a
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selected specific central point of the cell or block of an image. Shape information of tightly
cropped images may be lost, thus to avoid losing this information the face detection and cropping
should include an extra margin of pixels around the patch that contains background pixels. The
images used in the experiment are loosely cropped in order to include relevant information as
well as additional background pixels.

The processing scheme of face re-identification is presented in Fig. 2. Two sample images are
pre-processed before face detection and segmentation using several various techniques, including
normalization techniques, bad-pixel filtering [44] and adaptive filtering [45] in order to remove
speckles and other undesirable elements of image. The next stage, face detection is performed
using the Viola-Jones algorithm. It is the most common face detection algorithm, based on Haar
features and the AdaBoost machine learning algorithm [46]. The feature extraction is the last
step before comparison of samples.

Fig. 2. A processing scheme of face re-identification.

Since the re-identification process involves two samples to assess the similarity or validate
the identity of a person, comparison of samples (matching) is made based on distance metrics.
The matching is a process of comparing the query features against the features of stored sam-
ples to generate a score. We compare feature vectors computed from both sample images using
distance metrics against a threshold calculated on the entire dataset. A set of metrics including
Chebyshev distance, city block (L1), correlation distance, cosine distance, Euclidean distance,
Spearman distance, and Mahalanobis distance have been used to achieve the best results. A de-
tailed description of metrics is provided in [41].

4.2. Design of experiment

We performed verification by comparing the test image with a set of corresponding images.
The dataset has been divided into test and training subsets. The test subset contained one frontal
image with a neutral facial expression taken from each person, while the training subset contained
all the remaining images.

The training subset was required for computing a threshold for face verification and for learn-
ing classifiers for facial expressions. The test subset was used for validating the performance of
the dataset and algorithms. Three types of experiments were performed to validate the dataset:

1. The experiment involving the entire dataset, between a frontal face image from the test
subset and other images of the same as well as other subjects from the training subset;

2. The frontal face verification, where a frontal face image from the test subset was compared
with frontal face images of the same as well as other subjects from the training subset;

3. The face recognition with various head positions, where a frontal face image from the test
subset was compared with face images presenting the head in different positions of the
same as well as other subjects from the training subset.

The quantitative assessment of the performance of the dataset and algorithms is based on
known performance metrics including equal error rate, false match rate [47] and false non-match
rate [48]. The equal error rate represents the value of algorithm threshold for which the proportion
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of false matches is the same as false non-matches (FNMR = FMR). The false match rate (FMR)
is a rate at which a biometric process mismatches biometric signals from two distinct individuals
as coming from the same individual. The false non-match rate (FNMR) is a rate at which a
biometric matcher mistakenly categorizes two signals from the same individual as being from
different individuals. In this study, we have used FMR1000 which refers to the lowest FNMR
for FMR <= 0.1% and ZeroFMR, as a reference to the lowest FNMR for FMR = 0%. Receiver
operating characteristics (ROC) [49] graphs are also provided.

5. Baseline results and discussion

In this section, we present the results of the experiments using the presented database. Two
main experiments were performed to show general usability of the dataset as well as to show a
change of results after a year. The results are arranged in two main groups. The first part presents
the results of experiments performed on the initial database while the second part consists of the
results of experiments performed on the initial database together with the results collected after
a year. Both parts include three evaluation tests performed according to the scenarios described
in Subsection 4.2.

The results are summarized in tables and graphs. The values of recognition rates have been
calculated accordingly.

Face descriptors have been calculated for different values of parameters. The HOG operator
enables to set four main parameters – block size, cell size, the number of orientation histogram
bins and the number of overlapping cells between adjacent blocks with initial values of 2× 2
pixels, 8×8 pixels and 9, respectively. LBP can be fine-tuned with three main parameters, namely
the number of neighbours, radius and cell size, with initial values of 8 pixels, 1 pixel and a size
of an image, respectively. The third descriptor, LDP, is well adjusted to encode directive pattern
features from local derivative variation. To optimize the facial descriptor, three parameters –
derivative order, direction and patch size – with initial values of 2nd order, 4 directions and 16
pixels, are used. All the results presented in this paper have achieved the maximum for optimal
values of parameters.

5.1. Initial dataset experiment

The initial dataset including thermal face images of 30 subjects has been evaluated in three
experiments. The numerical results of experiments are presented in Tables 2–4 and their visual
presentation is shown in Fig. 3. The results of experiments based on the entire initial database,

Table 2. Values of EER, FMR1000 and ZeroFMR for the recognition experiment
based on the initial database.

Performance measure
Descriptor

HOG LBP LDP

EER [%] 8.68 4.54 5.41

FMR1000 [%] 76.45 87.19 87.6

ZeroFMR [%] 75.62 86.36 85.54

Metric Spear. City Spear.
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the frontal images as well as the face images representing different head positions are presented
in Table 2, Table 3 and Table 4, respectively.

The outcome of the first experiment involving all facial images from the dataset is presented
in Table 2. The biggest values of ZeroFMR are achieved using LBP as the feature descriptor and
City distance as the matching method. Both LDB and LBP have achieved over 85%of accuracy.

The results of the second experiment involving frontal-face images only are presented in
Table 3. The biggest values of ZeroFMR are achieved using LBP as the feature descriptor and
Spearman distance as the matching method. The highest recognition rate is over 97%, however
it should be noticed, that all the images considered during this experiment showed the subjects
looking directly at the camera with neutral face expressions.

Table 3. Values of EER, FMR1000 and ZeroFMR for the recognition experiment
based on the frontal images.

Performance measure
Descriptor

HOG LBP LDP

EER [%] 3.06 0.72 3.04

FMR1000 [%] 90.82 98.47 91.33

ZeroFMR [%] 88.27 97.45 90.82

Metric City Spear. Spear.

The results of experiments on face images representing different head positions are presented
in Table 4. The maximum value of ZeroFMR achieved during this experiment is significantly
lower than that achieved during the previous two, up to 70%. Various head positions cause dif-
ficulties for feature-based descriptors when compared with frontal-face images, mainly due to a
smaller number of corresponding features between the test and training samples.

Table 4. Values of EER, FMR1000 and ZeroFMR for the recognition experiment
based on the face images representing different head positions.

Performance measure
Descriptor

HOG LBP LDP

EER [%] 29.46 32.31 29.96

FMR1000 [%] 14.29 27.68 19.64

ZeroFMR [%] 12.5 24.11 15.18

Metric Cos Spear. Cos

ROC curves and graphs of equal error rates are shown in Fig. 3. EER lines are marked in
violet and indicate the balance point between true positive and false positive rates.

The presented results of the three types of experiments indicate that the performance of facial
recognition algorithms varies according to the types of experiments performed and the applied
descriptor and metrics. The biggest values of recognition rates were obtained for the frontal
face experiment. The performance assessed with the entire dataset achieved 86.36% (ZeroFMR),
which gives more than a 10% decrease comparing with the frontal face experiment. According to
the values of ZeroFMR and FMR1000, the highest and the lowest recognition rates were achieved
by LBP and HOG, respectively.
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a) b)

c)

Fig. 3. ROC curves and EER lines of (a) HOG, (b) LBP and (c) LDP for the frontal-face re-identification experiment.

5.2. Repeated dataset experiment

Since aging influences the visible face recognition task, it is justified to investigate the impact
of aging on the thermal face recognition. Both human face appearance and its physical properties
change during the lifetime. The changes include thickness of skin, emissivity and temperature
distribution. All those factors may affect the face recognition performance.

The database provides two corresponding sets of images acquired with a year interval. This
data can facilitate the investigations of the aging impact on the thermal face recognition system.

The results of re-identification experiment using two sets of biometric samples collected with
an interval of a year are shown in Fig. 4, with their values presented in Table 5. The best value
of ZeroFMR calculated based on samples collected after a year are achieved for LDP and the
correlation distance. However, the absolute value achieved is 41.23%, which is more than a 60%
decrease, comparing with the results obtained based on the initial database. A noticeable decrease
of performance shows that the heat emission changed due to various factors.

The results of repeated dataset experiment showed that the face representation in the long-
wavelength infrared spectrum changes during time significantly. It requires further investigations
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Table 5. Values of EER, FMR1000 and ZeroFMR for the recognition experiment for
the frontal images (after a year).

Performance measure
Descriptor

HOG LBP LDP

EER [%] 27.61 27.8 24.95

FMR1000 [%] 26.32 40.26 50.65

ZeroFMR [%] 10.71 25.97 41.23

Metric Spear. Spear. Corr.

to provide a detailed overview of all the aspects connected with this change. The recognition
rates calculated during the experiment on the basis of images collected after a year are signifi-
cantly lower than the respective initial results. Moreover, over 60% decrease of the recognition
rate value creates a challenge for datasets and algorithms. Analyses of ZeroFMR and FMR1000
values indicate that the highest and the lowest recognition rates were achieved by LDP with the
correlation distance and HOG with the Spearman metric, respectively.

a) b)

c)

Fig. 4. ROC curves and EER lines of (a) HOG, (b) LBP and (c) LDP for the frontal-face re-identification experiment.
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6. Conclusions

We have proposed a dataset of thermal facial images aimed at facilitating development and
validation of an algorithm for thermal face recognition and thermal expression recognition. The
dataset consists of a variety of neutral thermal images in various poses as well as a set of fa-
cial images with different expressions. Collection of the dataset was repeated after a year from
the initial acquisition in order to provide information for investigations of the impact of aging.
This dataset can be used for various purposes ranging from thermal face recognition to thermal
expression recognition.

To evaluate applicability of the database, various scenarios of face re-identification experi-
ments were performed. We present the baseline results of processing using state-of-the-art facial
descriptors combined with a set of different distance metrics. Three selected local descriptors: a
histogram of oriented gradients, local binary patterns and local derivative patterns have been used
to validate the database in three types of experiments showing its performance for various tasks.
The frontal face verification task was performed twice to show the impact of aging. The cross-
check experiment involving data acquired twice: initially and after a year, showed a significant
decrease of recognition rate.
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