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NONLINEAR FREE VIBRATION ANALYSIS OF MICRO-BEAMS
RESTING ON VISCOELASTIC FOUNDATION BASED ON THE

MODIFIED COUPLE STRESS THEORY

In this paper, nonlinear free vibration analysis of micro-beams resting on the
viscoelastic foundation is investigated by the use of the modified couple stress theory,
which is able to capture the size effects for structures in micron and sub-micron scales.
To this aim, the gov-erning equation ofmotion and the boundary conditions are derived
using the Euler–Bernoulli beam and the Hamilton’s principle. The Galerkin method
is employed to solve the governing nonlinear differential equation and obtain the
frequency-amplitude algebraic equation. Final-ly, the effects of different parameters,
such as the mode number, aspect ratio of length to height, the normalized length scale
parameter and foundation parameters on the natural fre-quency-amplitude curves of
doubly simply supported beams are studied.

1. Introduction

Micro-beams play an important role in micro and nano-electromechanical sys-
tems (MEMs and NEMs) e.g., biosensors, micro-resonators, Atomic Force Micro-
scopes (AFMs) and actuators [1–4]. Some experiments [5, 6] were accomplished
on the size-dependent mechanical behavior of micro-scale structures. The results
of these tests are not in agreement with real mechanical design parameters of micro
structures, such as deflection, natural frequencies and buckling load, predicted by
formulations obtained using the classical continuum theory. To interpret these size
effects, the length scale parameters are required to exist in constitutive relations
which are just assumed in non-classical (higher-order) elasticity theories. Due to
this weakness of the classical continuum theory to capture the experimentally-
detected small-scale effects in the size dependent behavior of structures, various
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non-classical theories, such as the nonlocal [7], strain gradient [8], and couple stress
[9], were developed to eliminate the shortcoming in dealing with micro-structures.

In early 1960s, Toupin [9] introduced the couple stress theory in which higher-
order stresses, known as the couple stress tensor, were taken into account, besides
the classical force stress tensor. Yang et al. [10] suggested a modified couple
stress theory in which a new higher-order equilibrium equation, i.e., the moment
equilibrium equation of couple stresses, was considered, as well as the classical
equilibrium equations. This consideration causes the symmetry of the couple stress
tensor. In recent years, vast studies including the static, dynamic, and thermal anal-
yses have been accomplished on micro–structures (for instance, see these studies
based on the nonlocal [11, 12], strain gradient [13, 14], and non-Fourier heat
conduction theories, [15, 16]).

In what follows, some works are mentioned that investigated the size depen-
dent mechanical behavior of micro-beams using modified couple stress theory.
In this regards, Ke et al. [17, 18] studied the size effect on the dynamic stability
of functionally-graded micro beams, and nonlinear vibration behaviors of micro-
beams, respectively. Park and Gao [19], and Kong et al. [20] studied the static
and vibration analysis of size-dependent Bernoulli–Euler beams. Taati et al. [21]
developed a formulation for static behavior of the viscoelastic Euler-Bernoulli
micro-beams. Ma et al. [22] presented a microstructure-dependent Timoshenko
beam model, which can be used to obtain the static and free vibration parameters
of the simply supported micro-beams. Ke and Wang [17] studied the dynamic
stability of FG micro-beams based on the modified couple stress theory. Asghari
and Taati [23] developed a size-dependent formulation for mechanical analyses of
FG micro-plates based on the modified couple stress theory. The plate properties
can arbitrarily vary through the thickness. Moreover, the boundary conditions were
provided at smooth parts of the plate periphery and also at the sharp. Reddy and
Kim [24] formulated a general third-order model of FG plates with microstructure-
dependent length scale parameter and the von Kármán nonlinearity. This model
accounted for temperature dependent properties of the constituents in the func-
tionally graded material. Taati et al. [25] developed a size-dependent, explicit for-
mulation for coupled thermoelasticity addressing a Timoshenko microbeam. This
novel model combines modified couple stresses and non-Fourier heat conduction
to capture size effects in the micro-scale. Thai and Choi [26] presented size depen-
dent models for bending, buckling, and vibration of functionally graded Kirchhoff
and Mindlin plates utilizing a modified couple stress theory. The numerical results
showed that the small scale effect leads to a reduction in the magnitude of deflec-
tion. Taati [27] obtained analytical solutions for the buckling and post-buckling
analysis of FG micro-plates under different kinds of traction on the edges by the
modified couple stress theory. The static equilibrium equations of an FG rectangu-
lar microplate, as well as the boundary conditions, were derived using the principle
of minimum total potential energy. Eltaher et al. [28] studied vibration behavior
of a nonlocal Euler–Bernoulli beam by employing finite element method. They
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investigated the effects of nonlocal parameter, slenderness ratios, rotator inertia,
and boundary conditions on the natural frequencies of the beam. Akgöz et al. [29]
presented bending analysis of FG microbeams embedded in an elastic medium
based on modified strain gradient elasticity theory in conjunctions with various
beam theories. Togun et al. [30] analyzed nonlinear free and forced vibration of
a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli
beam theory. Civalek and Akgöz [31] developed a size-dependent beam model on
the basis of hyperbolic shear deformation beam andmodified strain gradient theory.
They provided the analytical solutions for the static bending and buckling loads of
simply supported microbeams embedded in an elastic medium. Civalek and Akgöz
[32] examined a microstructure-dependent trigonometric beam model for buckling
of microbeams using modified strain gradient theory. This model is able to take
into consideration size and shear deformation effects. Shafiei et al. [33] solved
the nonlinear size-dependent governing equations on vibration of a non-uniform
axially functionally graded (AFG) microbeam. Euler–Bernoulli beam theory, the
modified couple stress theory and von-Kármán’s geometric nonlinearity were as-
sumed in this study. Ansari et al. [34] investigated nonlinear vibration analysis of
Timoshenko nanobeams with different types of end conditions based on surface
stress elasticity theory. A numerical method was applied to solve the problem in
which the generalized differential quadrature method was used to discretize the
governing equations and boundary conditions. To the best of authors’ knowledge,
no study has been reported to deal with nonlinear free vibration analysis of micro-
beams resting on the viscoelastic foundation using nonclassical continuum theory.
This paper tries to fulfill the gap in the open literature by deriving the governing
equation of motion and the boundary conditions employing the Euler–Bernoulli
beam and the Hamilton’s principle. Furthermore, the Galerkin method is utilized
to solve the governing nonlinear differential equation and obtain the frequency-
amplitude algebraic equation. Eventually, the effects of various parameters such
as the mode number, aspect ratio of length to height, the normalized length scale
parameter and foundation parameters on the natural frequency-amplitude curves
of doubly simply supported beams are investigated.

2. Preliminary problem definition

Consider a micro-beam as shown in Fig. 1 with simply supported boundary
conditions at its two ends, which is rest on a viscoelastic foundation. The coordinate
system and geometric specifications of the micro-beam, including length L, and
the rectangular cross-section with width b, and thickness of h, is shown. Here, c
indicates the viscosity coefficient of the viscoelastic foundation.

The modified couple stress theory developed by Yang et al. [8] is employed to
present formulations. This theory is derived from the classical couple stress theory
[7], which has been well established by some researchers.
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Fig. 1. Coordinate system, and geometric dimensions of the micro-beam

Based on the theory, an additional equilibrium equation is considered for the
moments of the couple, which causes the couple stress tensor to be symmetric.
Moreover, the strain energy density function is only dependent on the strain and the
symmetric part of the curvature tensor, and hence, only one length scale parameter
is involved in the constitutive relations. According to the theory, the variation of
the strain energy for an anisotropic linear elastic material occupying region can be
written as [8]:

δU =
∫
Ω

(σi jδεi j + mi jδ χi j )dΩ. (1)

In Eq. (1), εi j and χi j denote the components of the strain tensor ε, and the
symmetric part of the curvature tensor χ, which are defined as:

εi j =
1
2

(
∂ui
∂x j
+
∂u j

∂xi

)
,

χi j =
1
2

(
∂θi
∂x j
+
∂θ j

∂xi

)
.

(2)

Also, the components of the infinitesimal rotation vector θ =
1
2

curl(u) are in-
troduced by θi. For linear isotropic elastic materials, constitutive relations of the
symmetric part of the force stress and the deviatoric part of the couple stress tensor
with the kinematic parameters are given as [8]:

σi j = λtr (ε)δi j + 2µεi j,
mi j = 2µl2 χi j,

(3)

where σi j and mi j are called the force and higher-order stresses, respectively.
Furthermore, the parameters λ and µ in the constitutive equation of the classical
stress σ are Lame constants. The parameter l, which appears in the constitutive
Eq. (4), is the material length scale parameter. It should be noticed that the Lame
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constants can be represented in terms of the Young’s modulus E, and Poisson’s
ratio ν as λ =

Eν
(1 + ν)(1 − 2ν)

and µ =
E

2(1 + ν)
.

3. Governing dynamic equilibrium equations

Based on Euler–Bernoulli beammodel, components of the displacement vector
field can be stated as:

u1 = u(x, t) − z
∂w(x, t)
∂x

,

u2 = 0,
u3 = w(x, t),

(4)

where, u(x, t) function indicates the in-plane displacement of the particles on the
mid-plane of the beam, which is perpendicular to the e3 direction. This mid-plane
is usually called the bending plate. The side cross-sections of the beam which are
under pure bending, just only have rotation around lines on the bending-plane.
Parameter Z indicates the distance of each point from the bending-plate (mid-
plane). Also, it is necessary to state that parameter t indicates time.

By substitution of Eq. (4) into Eq. (2), the non-zero component of strain is
calculated, as follows:

ε11 =
∂u
∂x
− z

∂2w

∂x2 . (5)

Regarding the fact that the analysis is non-linear, therefore non-linear strain terms
must be considered. Considering the boundary conditions of the beam and its
applications, in most analysis researches, the non-linear von Kármán term is used.
Therefore, we have:

ε11 =
∂u
∂x
− z

∂2w

∂x2 +
1
2

(
∂w

∂x

)2
. (6)

Substitution of Eq. (4) into equation θ =
1
2

curl(u) yields non-zero components of
rotation vector, as follows:

θ2 = −
∂w

∂x
. (7)

As a result, substitution of rotation component from equation θ =
1
2

curl(u) into
relation (2) delivers the non-zero component of curvature, as:

χ12 = χ21 = −
1
2
∂2w

∂x2 . (8)

Now, by substituting the non-zero components of strain and curvature from
relations (6) and (5) into the introduced constitutive Eq. of (3), the non-zero stress
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components are achieved as follows:

σ11 = E *
,

∂u
∂x
− z

∂2w

∂x2 +
1
2

(
∂w

∂x

)2
+
-
,

m12 = m21 = −µl2 ∂
2w

∂x2 .

(9)

Using the relation for variations of strain energy based on the modified couple
stress for linear elastic materials is stated in relation (1), and the relations for the
components of the strain and curvature, and variation of strain energy are stated as
follows:

δU =

L∫
0




N11δ *
,

∂u
∂x
+

1
2

(
∂w

∂x

)2
+
-
−

(
M11 + Mm

12

)
δ

(
∂2w

∂x2

)


dx. (10)

Force and moment resultants of stress in the above relation are defined as:

N11 =

∫
A

σ11dz = E A *
,

∂u
∂x
+

1
2

(
∂w

∂x

)2
+
-
,

M11 =

∫
A

σ11zdz = −EI
(
∂2w

∂x2

)
,

Mm
12 =

∫
A

m12dz = −µl2 A
(
∂2w

∂x2

)
,

(11)

where, in relation (11), A and I indicate the area of the cross-section and moment
of inertia of the beam, respectively, and are calculated as follows:

A =

h/2∫
−h/2

bdz = bh, I =
∫
A

z2dA =
bh3

12
. (12)

By taking part by part integration on Eq. (10), variation of strain energy is
achieved as follows:

δU=

L∫
0

{
−

(
∂N11
∂x

)
δu(x, t) −

(
∂

∂x

(
N11

∂w

∂x

)
+

∂2

∂x2

(
M11 + Mm

12

))
δw(x, t)

}
dx

+ (N11δu(x, t))x=Lx=0 +

((
N11

∂w

∂x
+

∂

∂x

(
M11 + Mm

12

))
δ(w(x, t))

)x=L
x=0

(13)

−

((
M11 + Mm

12

)
δ

(
∂w(x, t)
∂x

))x=L
x=0

.
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Kinetic energy of the beam is also achieved as:

T =
1
2

L∫
0

∫
A

ρ
(
(u̇1)2 + (u̇2)2 + (u̇3)2

)
dAdx

=
1
2

L∫
0

ρ *
,

A(u̇(x, t))2 + I
(
∂ẇ(x, t)
∂x

)2
+ A(ẇ(x, t))2+

-
dx.

(14)

Here, ρ indicates the density of the material, and as also stated earlier, I and A indi-
cate the moment of inertia and area of the cross-section of the beam, respectively.
Regarding relation (14), variation of the kinetic energy is seen as follows:

δT =

L∫
0

ρ

(
Au̇(x, t)δu̇(x, t) + I

(
∂ẇ(x, t)
∂x

)
δ

(
∂ẇ(x, t)
∂x

)

+ Aẇ(x, t)δẇ(x, t)
)
dx,

(15)

where, by taking part by part integration on the time variable of t in Eq. (15), it can
be rewritten as follows:

δT =

L∫
0

ρ

[
A

(
−ü(x, t)δu(x, t) +

∂

∂x
(
u̇(x, t)δu(x, t)

))

+ I
(
−

(
∂ẅ(x, t)
∂x

)
δ

(
∂w(x, t)
∂x

)
+
∂

∂t

((
∂ẇ(x, t)
∂x

)
δ

(
∂w(x, t)
∂x

)))
(16)

+ A
(
−ẅ(x, t)δw(x, t) +

∂

∂T
(
ẇ(x, t)δw(x, t)

)) ]
dx.

Later, similarly by applying the part by part integration on the variable x of the first
term of the above, the final form of the variation of kinetic energy is resulted as:

δT =

L∫
0

ρ

[
− A

(
ü(x, t)

)
δu(x, t) +

(
I
∂2ẅ(x, t)
∂x2 − Aẅ(x, t)

)
δw(x, t)

+
∂

∂t

(
I
(
∂ẅ(x, t)
∂x

)
δ

(
∂w(x, t)
∂x

)
+ (17)

+ A
(
u̇(x, t)δu(x, t) + ẇ(x, t)δw(x, t)

))]
dx.
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Finally, variations of the work done by the viscoelastic foundation can be
calculated by:

δW = −

L∫
0

(
kw(x, t) + cẇ(x, t)

)
δw(x, t)dx. (18)

Governing dynamic equations based on Hamilton’s principle stated as follows, can
be achieved by:

t2∫
t1

δ(T +W −U)dt = 0. (19)

By replacement of variations of strain energy (13), variations of kinetic energy (17),
and variations of the work done by external forces (18) in Hamilton’s principle (19),
and regarding the basic Lemma of the differential equation governing the dynamic
equilibrium is obtained as:

δu:
∂N11
∂x
− ρAü(x, t) = 0, (20)

δw:

∂2(M11 + Mm
12)

∂x2 +
∂

∂x

(
N11

∂w(x, t)
∂x

)
− kw(x, t)

− cẇ(x, t) + ρ
(
I
∂2ẅ(x, t)
∂x2 − Aẅ(x, t)

)
= 0.

(21)

Similarly, for the boundary conditions at both ends of the beam, we have:

N11 = 0, or δu(x, t) = 0,

M11 + Mm
12 = 0, or δ

(
∂w(x, t)
∂x

)
= 0,

∂

∂x

(
M11 + Mm

12

)
+ N11

∂w

∂x
= 0, or δw(x, t) = 0.

(22)

The dynamic equilibrium equation must be calculated in terms of side dis-
placement of w, and in order to do this, by substituting stress resultants from Eq.
(11) into the Eqs. (20) and (21), the equations are express in the following form:

δu:

E
∂

∂x



∂u(x, t)
∂x

+
1
2

(
∂w(x, t)
∂x

)2
− ρü(x, t) = 0, (23)
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δw:

−(EI + µl2 A)
∂4w(t, x)
∂x4 + E A

∂

∂x


*
,

∂u(x, t)
∂x

+
1
2

(
∂w(x, t)
∂x

)2
+
-

∂w(x, t)
∂x



−kw(x, t) − cẇ(x, t) + ρ
(
I
∂ẅ(x, t)
∂x2 − Aẅ(x, t)

)
= 0.

(24)

Similarly for the boundary conditions at the both ends of the beam, one can get:

∂u
∂x
+

1
2

(
∂w

∂x

)2
= 0 or δu(x, t) = 0,

∂2w

∂x2 = 0 or δ

(
∂w(x, t)
∂x

)
=0,

−(EI + µl2 A)
∂2w

∂x2 + E A *
,

∂u
∂x
+

1
2

(
∂w

∂x

)2
+
-

(
∂w

∂x

)
=0 or δw(x, t) = 0.

(25)

4. Solution of governing equations

For the solution of governing equations, first normalization must be carried
out, therefore the following non-dimensional parameters are defined:

(ζ, ũ) =
1
L

(x, u), w̃ =
w

h
,

η =
h
L
, τ =

t
L

√
E
ρ
.

(26)

Using the above non-dimensional parameters, Eqs (23), and (24) can be rewritten
as:

δũ:
∂

∂ζ



∂ũ(ζ, τ)
∂ζ

+
1
2
η2

(
∂w̃(ζ, τ)
∂ζ

)2
−
∂2ũ(ζ, τ)
∂τ2 = 0, (27)

δw̃:

−D̃η2 ∂
4w̃(ζ, τ)
∂ζ4 +

∂

∂ζ


*
,

∂ũ(ζ, τ)
∂ζ

+
1
2
η2

(
∂w̃(ζ, τ)
∂ζ

)2
+
-

∂w̃(ζ, τ)
∂ζ



−k̃w̃(ζ, τ) − c̃
∂w(ζ, τ)
∂τ

+
η2

12
∂4w̃(ζ, τ)
∂ζ2∂τ2 −

∂2w̃(ζ, τ)
∂τ2 = 0,

(28)
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where, in Eq. (28), we have:

D̃ = *
,

1
12
+
µ

E

(
l
h

)2
+
-
,

k̃ =
kL
k∗
, in which k∗ =

E A
L
, (29)

c̃ =
cL
c∗
, in which c∗ = A

√
ρe.

Similarly, for the boundary conditions, one can get:

∂ũ
∂ζ
+
η2

2

(
∂w̃

∂ζ

)2
= 0 or δũ(ζ, τ) = 0,

∂2w̃

∂ζ2 = 0 or δ

(
∂w̃(ζ, τ)
∂ζ

)
= 0,

−D̃η2 ∂
2w̃

∂ζ2 +
*
,

∂ũ
∂ζ
+
η2

2

(
∂w̃

∂ζ

)2
+
-

(
∂w̃

∂ζ

)
= 0, or δw̃(ζ, τ) = 0.

(30)

For this study, it is considered that the micro-beams have two ends of simply
supported boundary conditions are expressed, as follows:

ũ(ζ = 0, τ) = w̃(ζ = 0, τ) =
∂2w̃(ζ = 0, τ)

∂ζ2 = 0,

ũ(ζ = 1, τ) = w̃(ζ = 1, τ) =
∂2w̃(ζ = 1, τ)

∂ζ2 = 0.
(31)

Since the kinematic variable ũ is considered to be in the form of a harmonic
function such that no sign of the axial displacement at any point of the beam
happens during deformation. Regarding the boundary conditions presented in (31),
for the displacement components we will have:

ũ(ζ, τ) = Λũ
n sin(nπζ ) cos2(Ωnτ),

w̃(ζ, τ) = Λw̃
n sin(nπζ ) cos(Ωnτ).

(32)

Based on Galerkin method, the integral form of Eqs. (27) and (28) are presented
as:

1∫
0

2π∫
0




∂

∂ζ



∂ũ(ζ, τ)
∂ζ

+
1
2
η2

(
∂w̃(ζ, τ)
∂ζ

)2

−
∂2ũ(ζ, τ)
∂τ2

}
sin(nπζ ) cos2(Ωnτ)dτ dζ = 0, (33)
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1∫
0

2π∫
0



−D̃η2 ∂

4w̃(ζ, τ)
∂ζ4 +

∂

∂ζ


*
,

∂ũ(ζ, τ)
∂ζ

+
1
2
η2

(
∂w̃(ζ, τ)
∂ζ

)2
+
-

∂w̃(ζ, τ)
∂ζ



− k̃w̃(ζ, τ) − c̃
∂w̃(ζ, τ)
∂τ

+
η2

12
∂4w̃(ζ, τ)
∂ζ2∂τ2 (34)

−
∂2w̃(ζ, τ)
∂τ2

}
sin(nπζ ) cos(Ωnτ)dτ dζ = 0,

where, by substitution of displacement component s from Eq. (32) into Eqs. (33)
and (34), one gets:

(
g1 + g2Ω

2
n

)
Λ
ũ
n + g3

(
Λ
w̃
n ,

)2
= 0, (35)

g4Λ
w̃
n Λ

ũ
n +

(
g5 + g6Ωn + g7Ω

2
n

)
Λ
w̃
n + g8

(
Λ
w̃
n

)3
= 0, (36)

where, in relations (35) and (36), we have:

g1 = −(nπ)2
1∫

0

2π∫
0

sin2(nπζ ) cos4(Ωnτ)dτ dζ = −
3π
8

(nπ)2,

g2 = 2
1∫

0

2π∫
0

sin2(nπζ ) cos(2Ωnτ) cos2(Ωnτ)dτ dζ =
1
4
,

g3 = −
1
2
η2(nπ)3

1∫
0

2π∫
0

sin3(nπζ ) cos4(Ωnτ)dτ dζ =

−
π

4
η2(nπ)3(1 + (−1)n+1),

g4 = −(nπ)2
1∫

0

2π∫
0

sin(2nπζ ) sin(nπζ ) cos4(Ωnτ)dτ dζ = 0,

g5 = −(D̃η2(nπ)4 + k̃)

1∫
0

2π∫
0

sin2(nπζ ) cos2(Ωnτ)dτ dζ =

−
π

2
(D̃η2(nπ)4 + k̃),

g6 = −4c̃

1∫
0

π/2∫
0

sin2(nπζ ) sin(Ωnτ) cos(Ωnτ)dτ dζ = −4c̃π,

(37)
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g7 =

(
η2

12
(nπ)2 + 1

) 1∫
0

2π∫
0

sin2(nπζ ) cos2(Ωnτ)dτ dζ =

π

2

(
η2

12
(nπ)2 + 1

)
,

g8 = −
3
2
η2(nπ)3

1∫
0

2π∫
0

sin2(nπζ ) cos2(nπζ ) cos2(Ωnτ)dτ dζ =

−
3π
16
η2(nπ)3.

Considering Eqs. (35) and (36), we will have:

[A]



Λ
ũ
n

Λ
w̃
n



= 0,

[A] =


g1 + g2Ω
2
n g3Λ

w̃
n

g4Λ
w̃
n g5 + g6Ωn + g7Ω

2
n + g8(Λw̃

n )2


.

(38)

By equating the determinant of [A] matrix to zero, the frequency equation in terms
of different values of maximum displacement domain is produced:

a1Ω
4
n + a2Ω

3
n + a3Ω

2
n + a4Ω

2
n(Λw̃

n )2 + a5Ωn + a6(Λw̃
n )2 + a7 = 0, (39)

a1 = g2g7, a2 = g2g6, a3 = g2g5 + g1g7,

a4 = g2g8, a5 = g1g6, a6 = g1g8 − g3g4,

a7 = g1g5.

(40)

5. Numerical results

In this section, the numerical results are presented for the micro-beam is made
of Silicon with properties specified in Table 1.

Table 1.
Mechanical properties of Silicon material [13, 25]

ρ (kg/m3) E (N/m2) ν

2330 169e9 0.22

Since the natural frequencies ofmicro beam resting on the viscoelastic have not
been reported, the linear and nonlinear frequencies of micro-beam without foun-
dation are employed to valid results of this study. In Table 2, the linear frequencies
of micro-beam for various values of the normalized length scale parameter are
compared to Kong’s study [20].
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Table 2.
The linear frequencies of micro-beam for various values of the normalized length scale parameter

Study l/h = 0 l/h = 0.1 l/h = 0.2 l/h = 0.4
Present 0.5607 0.5743 0.6133 0.7495
Kong et a. [20] 0.598 0.5837 0.6234 0.7617

Table 3.
The nonlinear frequencies of a size dependent micro-beam for various values of the maximum

amplitude
Λ
w̃
n /h Present study Wang et al. [35]
0.2 1.04 1.02
0.6 1.181 1.177
0.8 1.31 1.30

A comparison of nonlinear frequencies of a size dependent micro-beam with
l/h = 0.5, b/h = 2, L/h = 20 is given in Table 3.

In the results delivered as a graph, if the problem parameters are constant, their
values are shown in Table 4.

Table 4.
Values of design parameters

k̃ c̃ b/h L/h l/h h Mode shape (1)
1 1 3 5 0.3 1e-6 1

Variations of the maximum amplitude versus the normalized frequency of the
micro-beams for values of mode shapes are shown in Figs. 2 and 3. As can be seen,
the values of normalized frequencies become larger when the number of mode
shape and the normalized length scale parameter l/h are increased. Moreover, the
length scale parameter has more significant influence for larger mode shapes.
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Fig. 2. Variations of the maximum amplitude versus normalized frequency in mode shapes of n = 1
and n = 2
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Fig. 3. Variations of the maximum amplitude versus normalized frequency in mode shapes of n = 3
and n = 4

In Fig. 4, the effect of the length scale parameter on curves of the maximum
amplitude versus normalized frequency is studied. From this figure, it can be readily
concluded that values of the maximum amplitude are reduced by increase of l/h at
any natural frequency.
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Fig. 4. Variations of the maximum amplitude versus normalized frequency for various values of the
normalized length scale parameters

In Fig. 5, curves of the maximum amplitude versus normalized frequency are
demonstrated for different values of aspect ratio L/h. To this figure, it can be readily
found that values of the normalized nonlinear frequencies are decreased as aspect
ratio L/h increase at any maximum amplitude.

In Figs. 6 and 7, the effects of the normalized elastic k̃ and viscoelastic c̃
foundation coefficients, respectively, on curves of the maximum amplitude versus
normalized frequency are investigated for different values of the normalized length
scale parameter l/h. As can be observed, the values of the normalized nonlinear
frequencies are strongly varied by increase in values of k̃ and c̃ for any value of the
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Fig. 5. Variations of the maximum amplitude versus normalized frequency for various values of
aspect ratio L/h
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Fig. 6. Variations of the maximum amplitude versus normalized frequency for various values of k̃
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Fig. 7. Variations of the maximum amplitude versus normalized frequency for various values of c̃

normalized length scale parameter. Furthermore, the influences of the normalized
elastic foundation coefficients on the normalized nonlinear frequencies are many
times more impressive than that of l/h.
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6. Conclusion

In this work, the nonlinear free vibration behavior of micro-beams resting on
the viscoelastic foundation has been investigated using the modified couple stress
theory. The dynamic equilibrium equation as well as the boundary conditions
was derived by means of the Euler–Bernoulli beam and the Hamilton’s principle.
In addition, the Galerkin method was applied to solve the governing nonlinear
differential equation and obtain the frequency-amplitude algebraic equation. Also,
the numerical results were presented to illustrate the effects of important parameters
such as the mode number, aspect ratio of length to height, the normalized length
scale parameter and foundation parameters on the natural frequency-amplitude
curves. The findings indicated that

• The values of normalized frequencies become larger when the number of
mode shape and the normalized length scale parameter l/h are increased.

• The length scale parameter has more significant influence for larger mode
shapes.

• Values of the normalized nonlinear frequencies are decreased as aspect ratio
L/h increase at any maximum amplitude.

• The values of the normalized nonlinear frequencies are strongly varied by
the increase in values of k̃ and c̃ for any value of the normalized length scale
parameter.

• The influences of the normalized elastic foundation coefficients on the nor-
malized nonlinear frequencies are many times more impressive than other
parameters.

Manuscript received by Editorial Board, March 05, 2016;
final version, March 18, 2017.
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