
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

VOL. LXIV 2017 Number 4

DOI: 10.1515/meceng-2017-0027
Key words: thermal shock, circumferential crack, functionally graded materials, thick-walled hollow cylinder

MOHAMMAD REZA GHAFOOR ELAHI1, MASOUD MAHDIZADEH ROKHI1

CALCULATION OF STRESS INTENSITY FACTOR FOR AN
INTERNAL CIRCUMFERENTIAL CRACK IN A ROTATING

FUNCTIONALLY GRADED THICK-WALLED HOLLOW CIRCULAR
CYLINDER UNDER THERMAL SHOCK

In this article, the fracture behavior of functionally graded thick-walled cylinder
under thermo-mechanical shock is investigated. For this purpose, classical coupled
thermoelastic equations are used in calculations. First, these equations are discretized
with extended finite element method (XFEM) in the space domain and then they
are solved by the Newmark method in the time domain. The most general form
of interaction integral is extracted for axially symmetric circumferential crack in a
cylinder under thermal and mechanical loads in functionally graded materials and is
used to calculate dynamic stress intensity factors (SIFs). The problem solution has
been implemented in MATLAB software.

1. Introduction

Functionally graded materials (FGMs) have an important role in the design of
various modern structures. The unique features provided of FGMs have induced
scientists to study them [1]. These materials are used extensively in applications,
such as thermal barrier coatings, in which they are exposed to severe stress gra-
dients including thermal and/or mechanical loading. FGMs can be used in the
construction of tanks and cylindrical furnace, such as cement kiln. Circumferen-
tial cracks are occasionally developed in cylindrical structures during service or
production [2].

Numerous researches have been conducted on the behavior of cracked cylinder.
Meshii and Watanabe [3] achieved the closed-form SIFs for limited homogenous
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cylinder with a circumferential crack. They also examined the effects of the cylinder
length and crack position on these factors. Seifi [4] studied the stress intensity
factors for surface cracks inside the cylinder made of functional materials by
employing the weight function method. Eshraghi and Soltani [5] obtained the
stress intensity factors for circumferential cracks inside cylinder made of functional
materials using a weight function method. Varfolomeyev et al. [6] calculated mode
I stress intensity factors and opening internal crack faces using a weight function
for cylinder under axisymmetric uniform loading via employing boundary element
method. Chen [7] achieved SIFs and displacements for two different length tracks
in the limited cylinder under tension stress.

Jones [8] achieved stress intensity factors due to transient thermal load on
the cylinder with internal circumferential crack through implementing the weight
function. Birinci et al. [9] investigated a cylinder with various internal and external
metal cladding and achieved SIFs for cylinder under axial loading. Grebner and
Strathmeier [10] studied a cracked pipe with finite length using FEM. Mode II
SIFs were calculated for this pipe under tension loading. Tran and Geniaut [11]
studied SIFs for circumferential cracked cylinder by employing the XFEM and
energy method. Lewis and Wang [12] analyzed cracked cylinder under various
linear loads and calculated T-stress by using FEM and weight function. Ghajar
and Nabavi [13] presented the closed-solution of thermal stress intensity fac-
tors for thick and thin wall cylinders with internal circumferential crack under
steady state thermal loads in which they used the weight function method. Nabavi
and Kamyab [14] determined the closed-solution of thermal stress intensity fac-
tors using weight function in a thick wall cylinder with circumferential crack.
Shariati et al. [15] investigated SIFs four cylinders with circumferential crack made
of functional material under dynamic and static loading. The Galerkin method
was employed to discretize the motion equations. Tehrani and Talebian [16] stud-
ied the analysis of cylindrical pressure vessels made of FGMs under mechanical
and thermal loads.

Among the studies which have been done on dynamic fracture of functional
graded materials (FGMs) so far, few number concern the annular circumferential
cracks in the thick-walled cylinders under heat shocks using classic coupled ther-
moelastic equations numerically, therefore it is investigated in the present article.
The rule of mixture is used to simulate the FGM in this study. The equations are
discretized and assembled in the form of a matrix using the extended finite element
method (XFEM) in the place domain. Newmarkmethod is used in solving extracted
matrix equations. In addition, general formulation for the interaction integral is ex-
tracted in the FGM cylinder under mechanical and thermal loading in cylindrical
coordinates and the dynamic stress intensity factors are obtained by interaction
integral. A few examples which verify the accuracy and precision of written code
in MATLAB programming environment have been presented. Finally, the effects
of changing the FGM properties, crack depth and rotation of FGM cylinder made
of ZrO2/Ti 6Al-4V are investigated.
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2. General problem formulation

2.1. Governing Equations

In this paper, an axisymmetric problem is considered. The cylinders are formed
by rotation a plane around an axis. In axially symmetric problems it is enough
to analyze these transverse plates. Generally, in the axially symmetric problems,
properties, load and boundary conditions have to be axisymmetric. Basic equations,
which govern the coupled thermoelasticity problems, are presented as the equations
of motion and the First Law of Thermodynamics (energy equation), as [17]

σi j, j + Bi = ρüi (1)

(ki jT, j ),i + ρct θ̇ + T0

(
1 +

θ

T0

)
βi j ε̇i j = R (2)

In above equation, ki j is thermal conductivity, ct – specific heat, θ – temper-
ature change, R – rate of heat production. The equations of motion in cylindrical
coordinates can be expressed as follows [18]:

∂

∂r
(rσr ) − σθ + r

∂τrz
∂z
+ r fr = ρr

∂2ur
∂t2 (3)

∂(rτrz )
∂r

+ r
∂σz

∂z
+ r fz = ρr

∂2uz
∂t2 (4)

Stress equations in terms of displacement are expressed as follows [18]:

σi j = λδi j div u + 2µei j (5)

In this equation:

div u =
1
r
∂(ru)
∂r
+
∂w

∂z
(6)

λ =
Eν

(1 + ν)(1 − 2ν)
(7)

µ =
E

2(1 + ν)
(8)

In these two equations λ and µ are Lamé constants and ν is Poisson’s ratio.
According to the Fourier heat conduction law, equation (2) can be rewritten in
cylindrical coordinates as follows:

∂

∂r
(rqr ) + r

∂qz
∂z
+ r ρcθ̇ + rT0

(
1 +

θ

T0

)
βε̇ii − r R = 0 (9)
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If the temperature change θ is small comparing with the initial temperature of
T0, equation (9) can be simplified as below:

∂

∂r
(rqr ) + r

∂qz
∂z
+ r ρcT + rT0 βε̇ii − r R = 0 (10)

2.2. Space discretization

One of the methods of crack analysis is using the extended finite element
method (XFEM). The base of XFEM is the finite element method, which has been
developed for discontinuity such as cracks. This method uses local enrichment.
Consider a crack in the finite element model according to Fig. 1. All grid nodes
of finite element model are determined as NA. Additionally, the nodes of elements
around the crack tip (enriched nodes of crack tip) are specified with NC , which are
selected by the user. The set of nodes of elements, which are cropped by the crack
(enriched nodes), is determined by NH . It is worth mentioning that although an
element for modeling the crack tip is sufficient, the use of multiple elements can
achieve more accurate achieved [19].

 

Crack path 

Fig. 1. Selection of enriched nodes for edge crack. Circled nodes are enriched by the discontinuity
function whereas the squared nodes are enriched by the crack tip enrichment functions [20]

The displacement field in the XFEM for a fully enriched can be shown as
follows [19]:

u(x, y, t) =
∑
n∈NA

Nn(x, y)an(t) +
∑

n∈NH

Nn(x, y) [H (Z ) − H (Zn)] bn(t)

+
∑
m

∑
n∈NC

Nn(x, y)
[
Fm(r, ϕ) − Fm(rn, ϕn)

]
cnm(t) (11)

In this equation an(t), bn(t) and cnm(t) will be the nodal unknown vectors which
are the functions of time and are defined as follow:

an(t) =
{
au
n (t), av

n(t)
}T (12)
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bn(t) =
{
bun (t), bvn(t)

}T (13)

cnm(t) =
{
cunm(t), cvnm(t)

}T (14)
H (Z ) and Fm represent Heaviside and crack tip enrichment functions, respec-

tively.

H (Z ) =



1, z > 0
0, z 6 0

(15)

{Fm} =
√

r
{
sin

(
ϕ

2

)
, cos

(
ϕ

2

)
, sin(ϕ) sin

(
ϕ

2

)
, sin(ϕ) cos

(
ϕ

2

)}
(16)

Finally, the components of the displacement field in XFEM for global x and y
coordinates can be written as follows [19]:

u(x, y, t) =
∑
n∈NA

Nn(x, y)au
n (t) +

∑
n∈NH

Nn(x, y) [H (Z ) − H (Zn)] bun (t)

+
∑

n∈NC

Nn(x, y)
[√

r sin
(
ϕ

2

)
−
√

rn sin
(
ϕn
2

)]
cun1(t)

+
∑

n∈NC

Nn(x, y)
[√

r cos
(
ϕ

2

)
−
√

rn cos
(
ϕn
2

)]
cun2(t) (17)

+
∑

n∈NC

Nn(x, y)
[√

r sin(ϕ) sin
(
ϕ

2

)
−
√

rn sin(ϕn) sin
(
ϕn
2

)]
cun3(t)

+
∑

n∈NC

Nn(x, y)
[√

r sin(ϕ) cos
(
ϕ

2

)
−
√

rn sin(ϕn) cos
(
ϕn
2

)]
cvn4(t)

If the crack is assumed insulated, the temperature field along the cracks will
be discontinuous, and heat flux at the crack tip will be singular. So, to consider the
temperature discontinuities, the Heaviside function can be employed. To enrich the
crack tip, its temperature fields, which is similar to the displacement field for the
crack rupture mode (Mode III), must be checked [19]

T = −
KT

k

√
2r
π

sin
(
ϕ

2

)
. (18)

In this equation, k is the thermal conductivity and KT is the thermal stress intensity
factor. Considering the equation above, the temperature field can be discrete, such
as displacement field, with the exception that only the first function of the equation
(16) is used to enrich the crack tip nodes. So the temperature gradient can be written
as follows:

θ(x, y, t) =
∑
n∈NA

Nn(x, y)aTn (t) +
∑

n∈NH

Nn(x, y) [H (Z ) − H (Zn)] bTn (t)

+
∑

n∈NC

Nn(x, y)
[√

r sin
(
ϕ

2

)
−
√

rn sin
(
ϕn
2

)]
cTn (t) (19)
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aTn (t), bTn (t) and cTn (t) are the amount of temperature change in nods for respective
shape function in eq. (19). These equations can be written as [19]:

u(x, y, t) =
∑
n∈NA

Nn(x, y)au
n (t) +

∑
n∈NH

Φn(x, y)bun (t)

+

4∑
m=1

∑
n∈NC

ψnm(x, y)cunm(t) (20)

v(x, y, t) =
∑
n∈NA

Nn(x, y)av
n(t) +

∑
n∈NH

Φn(x, y)bvn(t)

+

4∑
m=1

∑
n∈NC

ψnm(x, y)cvnm(t) (21)

θ(x, y, t) =
∑
n∈NA

Nn(x, y)aTn (t) +
∑

n∈NH

Φn(x, y)bTn (t)

+

4∑
m=1

ψn1(x, y)cTn1(t) (22)

In these equations Φ and ψ are the enrichment statements of temperature and
displacement fields that are responsible for the enrichment of crack path and crack
tip, respectively as follows [19]:

Φn(x, y) = Nn(x, y)
[
H (x, y) − H (xn − yn)

]
(23)

ψn(x, y) =Nn(x, y)
[√

r sin
(
ϕ

2

)
−
√

rn sin
(
ϕn
2

)
,
√

r cos
(
ϕ

2

)
−
√

rn cos
(
ϕn
2

)
,

√
r sin(ϕ) sin

(
ϕ

2

)
−
√

rn sin(ϕn) sin
(
ϕn
2

)
, (24)

√
r sin(ϕ) cos

(
ϕ

2

)
−
√

rn sin(ϕn) cos
(
ϕn
2

)]

To solve the equations of motion, the finite element formulation, which is
based on Galerkin method can use the. In this method, the space and time functions
are divided into distinctive functions. By applying the ratio of residual weighted
integrals to weighting function Sl (r, z), approximation of Galerkin will be the form
of following equations:∫

V

(
∂(rσr )
∂r

− σθ + r
∂τrz
∂z
+ r fr − r ρü

)
Sl dV = 0 (25)
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V

(
∂(rτrz )
∂r

− r
∂σz

∂z
+ r fz − r ρẅ

)
Sl dV = 0, l = 1, 2, . . . , ns (26)

In these equations Sl (r, z) is the XFEM shape function. This means that we
have:

Sl = (N1, N2, N3, N4, ϕ1, ϕ2, ϕ3, ϕ4, ψ1m, ψ2m, ψ3m, ψ4m) , m = 1, 2, 3, 4 (27)

Galerkin approximation of the energy equation (10) can be written as follows:∫
V (e)

(
∂

∂r
(rqr ) + r

∂qz
∂z
+ r ρcθ̇ + rT0ε̇ii − r R

)
SldV = 0 (28)

Integral formulation of energy equation (28) for two-dimensional problems
can be stated as∫

A(e)

(rqrnr )SldA −
∫

V (e)

rqrSl,rdV +
∫
A(e)

(rqznz )SldA

−

∫
V (e)

rqzSl,zdV +
∫

V (e)

(r ρcθ̇)SldV +
∫

V (e)

(rT0 βε̇ii)SldV (29)

+

∫
V (e)

(r R)SldV = 0, l = 1, 2, . . . , ns

∫
V (e)

rkθ,rSl,rdV +
∫

V (e)

rkθ,zSl,zdV +
∫

V (e)

(r ρcθ̇SldV

+

∫
V (e)

rT0 βS
(
u̇
r
+
∂u̇
∂r
+
∂w

∂z

)
SldV = −

∫
A(e)

(rqrnr )SldA (30)

−

∫
A(e)

(rqznz )SldA −
∫

V (e)

(r R)SldV = 0, l = 1, 2, . . . , ns

Equations (19) and (20) can be assembled in the form of a matrix equation.
This equation is the coupled XFEM equation, which is obtained as below

[M]{∆̈} + [C]{∆̇} + [K]{∆} = {F} (31)

In this equation [M], [C] and [K] are matrices of mass, damping and stiffness,
respectively. {∆} and {F} are nodal unknown vectors and nodal forces vector,
respectively. Matrices and vectors used in these equations for a four-node element
are presented in appendix.
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Properties matrix in the case of axially symmetric is such as plane strain case
that it will show as follows:

[D] =
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0

0 0 0
1 − 2ν

2



(32)

2.3. Time integration

Using step-by-step numerical methods is very frequent especially in nonlinear
dynamical analysis. The most common methods are the direct time methods, so
that the equilibrium equations can be solved at discrete times. Choosing the size of
time step used for step-by-step calculation of system dynamic response is limited to
the stability or accuracy of the algorithm. Newmark method is one of the numerical
methods for second order differential equations.

[M]{∆̈n+1} + [C]{∆̇n+1} + [K]{∆n+1} = {Fn+1} (33)

{∆n+1} = {∆n} + ∆t{∆̇n} + ∆t2(1/2 − ζ ){∆̈n} + ∆t2ζ {∆̈n+1} (34)

{∆̇n+1} = {∆̇n} + ∆t(1 − γ){∆̈n} + ∆tγ{∆̈n+1} (35)

Average-acceleration method for dynamic structures is one of the most com-
mon methods, which is unconditionally stable. In this method, the values are
considered as γ = 0.5 and ζ = 0.25 [19]. When the XFEM is used to simulate
dynamic crack, network does not change over time tn to tn+1. However, the new
forms of functions are added to the model to simulate crack.

3. Interaction integral

Modes I and II of stress intensity factors cannot be calculated separately by
calculating the integral J. In fact, interaction integral is the interaction of two in-
dependent and acceptable loading for cracks in structures, which is created in the
elasticity conservative integral. In fact, integral interaction is an accurate formu-
lation that enables us to calculate stress intensity factors in functional materials
[19]. Implementation of interaction integral requires the use of auxiliary fields of
displacement vector uaux, strain εaux and stress σaux tensors. There are different
choices for the auxiliary fields. In this study, the non-equilibrium formula to cal-
culate interaction integral and stress intensity factors of functional materials will
be used.
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Interaction integral formula can be written as [21]:

I = −
1
R

∫ [
tr (p · ∇q) + (∇ · pT )q

]
rdA (36)

where R is the radius of the crack tip, A is the integration domain area (Fig. 2)
and I represents the volume integral. Thermal strain, inertia and inhomogeneity
∇ · pT are zero in the absence of volume forces. The energy momentum tensor p
and vector ~q(r, z) are introduced according to Nahata and Moran [21] activities on
the energy release rate for small cracks from equation (36).

pl j = wδl j − σi jui,l (37)

w is density of strain energy, σi j and ui,l are components of stress tensor and
displacement vector, respectively. Here ~q is considered as follows in cylindrical
coordinates:

~q =



qr
qθ
qz


=



q
0
0


(38)

 

X1 

X2 

ω 

φ 

x1 

x2 

r 

Crack 

Fig. 2. Local (x1, x2) and global (X1, X2) coordinate systems [22]

In the most general case, interaction integral in cylindrical coordinates for a
functional material can be stated as follows:

MI =
1
rc

∫ {(
σiruaux

i,r +σ
aux
ir ui,r−σi jε

aux
i j

)
q,r+

(
σaux
θ

ur
r
+σθ

uaux
r

r
−σi jε

aux
i j

)
q
r

+
(
σizuaux

i,r + σ
aux
iz ui,r

)
q,z −

[
Ci jkl,rε

m
klε

aux
i j − (ρüi − Bi)uaux

i,r

− σaux
i j, jui,r − σ

aux
kk

(
α,rθ + αθ,r

)
(39)

+
1
r

(
σaux
θ

ur
r
+ σθ

uaux
r

r
− σiruaux

i,r − σ
aux
ir ui,r

) ]
q
}

dA
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The relation between the interaction integral and stress intensity factors for
crack in plane strain case is as follows:

MIl =
2

E∗
(
KIKaux

I + KIIKaux
II

)
(40)

E∗ for axially symmetric problems is calculated identical to the plane strain prob-
lems.

E∗ =
Etip

(1 − ν2
tip)

(41)

In this relation, Etip and νtip areYoung’smodulus andPoisson’s ratio at the crack
tip, respectively. This relationship can be used for axial symmetrical problems. Put
Kaux
I I = 0 and Kaux

I = 1 to calculate KI and consider Kaux
I I = 1 and Kaux

I = 0 to
calculate KI I in the above equation.

4. Modeling of functional materials

In this study, it is assumed thatmaterial properties change occurs in the cylinder
radial direction. In addition, it is assumed that the functional material is made of
two components, matrix and the material added to it. In this study, the volume
fraction of inclusion Vi (r) follows the following exponential function.

Vi (r) =
(
r − R
w

)n
, R 6 r 6 R + w (42)

w is the cylinder thickness along the radius axis r . R is the internal radius of the
cylinder. Exponent n determines the profile of the change of thematerial properties.
Volume fraction of matrix is:

Vm(r) = 1 − Vi (r) (43)

The density ρ, the specific heat capacity ct , thermal expansion coefficient α,
and thermal conductivity coefficient k are calculated using the rule of mixture in
the functional material as equations from (44) to (47).

ρ = Vi ρi + Vmρm (44)

ct = Victi + Vmctm (45)

α = Viαi + Vmαm (46)

k = Viki + Vmkm (47)
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The shear rigidity modulus of matrix and inclusion is obtained as follows:

µi =
Ei

2(1 + νi)
(48)

µm =
Em

2(1 + νm)
(49)

where E and ν are theYoung’smodulus and Poisson’s ratio respectively. In addition,
i and m specified inclusion and matrix respectively. K is the bulk modulus and
calculates as follows:

Ki =
Ei

3(1 − 2νi)
(50)

Km =
Em

3(1 − 2νm)
(51)

To incorporate these relations into the XFE model, the value of each mate-
rial property is calculated at each individual node based on the rule of mixture.
Utilizing the generalized isoparametric graded finite elements, introduced by Kim
and Paulino [23], material properties gradation is considered in an element. In
the generalized isoparametric formulation, material properties at each Gaussian
integration point can be interpolated from the nodal material properties of the el-
ement using the isoparametric shape functions which are the same for the spatial
coordinates and displacements. Thus, material properties such as elastic modulus
(E), Poisson’s ratio (ν), and mass density (ρ) at Gauss points will be interpolated
as follows [23]

E =
4∑
i=1

NiEi, ν =

4∑
i=1

Niνi, ρ =

4∑
i=1

Ni ρ1 (52)

For getting more information about precision of this formulation, one can refer to
reference [23].

5. Validation

For the verification of the written code, four examples are discussed. The
effect of heat and parameter n in functional material has been investigated in the
first example. In the second example, the effect of rotation in the homogeneous
material has been studied. In the third example, the effect of simple tension in
a homogeneous cylinder with circumferential crack is investigated. In the fourth
example, stress intensity factor for a cylinder under simple tension was examined
and verified.
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5.1. Thick-walled cylinder exposed to thermal shock transient

Takabi [1] studied cylinder under mechanical and thermal load as numerical
and analytical methods. This thick-walled cylinder was made of functional material
with inner wall of the ceramic (SiO2) and the outer wall of the metal (Al). The
boundary conditions were: pin = 100 MPa, pout = 10 MPa, Tin = 100 ◦C and
Tout = 0 ◦C. In this article as the first step, the cylinder in homogeneous case was
studied at the period of 1000 seconds. The number of elements is 200 × 50. The
mechanical properties of cylinder material are represented in Table 1.

Table 1.
Mechanical properties in the inner and outer wall [1]

ρ E K α · 10−6 C
ν

(kg/m3) (GPa) (W/mK) (1/K) (J/kgK)
r1 = 0.1 m 5730 210 3.03 10.2 450 0.3
r2 = 0.2 m 7800 208 2 12 25.6 0.3

Distribution of temperature and radial stress along the thickness of cylinder are
compared with results of reference [1] in Fig. 3 and Fig. 4 respectively. Comparison
of results shows that the obtained temperature distribution and radial stress is very
close to the intended article.
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5.2. Thick-walled rotary FGM cylinder under dynamic loading

Hearn [24] presented the formula for circumferential and radial stress analysis
in homogeneous rotary hollow cylinder as follows:

σr =

(
3 +

ν

1 − ν

) (
ρω2

8

)
*
,

R2
o + R2

i −
R2
oR2

i

r2 − r2+
-

(53)
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σH =

(
ρω2

8

) 

(
3 +

ν

1 − ν

)
*
,

R2
o + R2

i −
R2
oR2

i

r2
+
-
−

(
1 +

3ν
1 − ν

)
r2


(54)

For this cylinder, the inner radius, wall thickness and the number of elements
are selected as r1 = 0.4 m , t = 0.2 m and 200 × 50, respectively. The angular
velocity is considered ω = 70 rad/sec. The material properties of cylinder are in
accordance with the Table 2. Distribution of temperature and hoop stress along
the thickness of cylinder are illustrated in Fig. 5 and Fig. 6. In these figures,
comparisons between the obtained results and analytical solution are done, which
demonstrate the accuracy of the written code.

Table 2.
Isotropic cylinder properties

ρ E K α · 10−6 C
ν

(kg/m3) (GPa) (W/mK) (1/K) (J/kgK)
7850 200 2 12 25.6 0.3
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5.3. Isotropic thick-walled cylinders with circumferential crack under axial
tension

Anderson [25] has provided the following formula for the stress intensity factor
in a cylinder with circumferential crack under uniform tension.

KI = σt

√
πaFt (55)

Ft = 1.1 + A
[
1.948

( a
t

)1.5
+ 0.3342

( a
t

)4.2]
(56)

if : 5 6
Ri

t
6 10 A =

(
0.125

Ri

t
− 0.25

)0.25
(57)

if : 10 6
Ri

t
6 20 A =

(
0.4

Ri

t
− 3

)0.25
(58)

where KI is the first mode stress intensity factor, σt is the uniform axial stress,
also a, t and Ri are circumferential crack depth, the cylinder thickness and internal
radius of cylinder, respectively. In this example, Ri = 1 m, t = 0.1m, σt = 1 MPa
and a = 0.05 m were assumed. A rectangular grid with 31 × 61 element is used.
Isotropic material properties are presented in Table 2. The stress intensity factor
gained in exact solution of Anderson Equation and written program are KI = 0.716
MPa·m0.5 and KI = 0.689 MPa·m0.5, respectively. There is an about three percent
difference between these results.

5.4. Thin pipe with internal circumferential crack under uniform tension

Grebner and Strathmeier [10] examined a pipe with through crack. In this
study, a pipe with infinite length was put under axial loading. In this study, internal
radius Ri = 50 mm, pipe thickness t = 5 mm, crack depth a = 2.5 mm Poisson’s
ratio ν = 0.3 and Young’s modulus E = 2 · 105 MPa were assumed. The axial
stress on the pipe was 105 MPa. After inserting mentioned parameters and running
the program, KI was found KI = 557.41 Nmm−1.5. Grebner [10] reported that this
value was 520 Nmm−1.5. As you can see, the amount of stress intensity factor in
the first mode of failure in the written program is very close to the values reported.

6. Numerical example

In this section, we study the effects of pressure, temperature and angular veloc-
ity on the stress intensity factor in a FGM cylinder that includes a circumferential
crack (Fig. 7). This cylinder was made of metal Ti-6Al-4V and ceramic ZrO2. The
material properties have been chosen according to Table 3. The inner radius is
made of ZrO2 and the change of properties happens in r direction.
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Fig. 7. Circumferential crack in a pressurized cylinder subject to transient thermal shock

Table 3.
The mechanical properties of titanium (metal) and zirconium (ceramic)

ρ E K α · 10−6 C
ν

(kg/m3) (GPa) (W/mK) (1/K) (J/kgK)
Ri = 0.1 m 5600 117 2.03 7.11 516.6 0.33
Ro = 0.2 m 4410 66.2 18.1 10.3 808.3 0.32

The change in the volume fraction ofmetal (Ti-6Al-4V) is calculated according
to the formulas (42). Cylinder dimensions are: Ri = 0.1m, Ro = 0.2m and cylinder
height H = 0.2 m. A grid with 12161 four-node rectangular elements is used to
mesh the cylinder. To calculate the interaction integral, a square with four elements
of length and width is considered.

6.1. First example: Effect of material gradient parameter (n) on the stress
intensity factor

In this example, we put the cylinder under cooling shock. The initial temper-
ature is 400 ◦C, at the moment t = 0 sec. A cooling shock of 200 ◦C is applied
to the inner wall of cylinder. Crack depth is assumed a = 0.05 m. Mechanical
properties are shown in Table 3. Cylinder dimensions are Ri = 0.1 m, Ro = 0.2 m
and cylinder height is H = 0.2 m.

The values of calculated stress intensity factors for various values of parameter
n are plotted as a curve in Fig. 8.

As shown, with the increasing n for a given crack depth, the stress intensity
factor is decreased in the first mode. The simulation stops before the reflected waves
from the edges of the plate reach up to the crack tip. Therefore, the simulation time
and applied time step will be t = 600 s and 10 seconds, respectively. Increasing
parameter n reduces the volume percentage of the metal and increases the ceramic
phase within the cylinder. Thermal conductivity of ceramic is less than metal and
this causes less heat flow to be transferred in the material. As a result, the stress



470 MOHAMMAD REZA GHAFOOR ELAHI, MASOUD MAHDIZADEH ROKHI

intensity factor is reduced. Fig. 9 shows the stress intensity factor in terms of time
for n = 0.6 and crack depth a = 0.05 m.

By applying the thermal load in the internal wall of cylinder so as to achieve a
stress wave up to the crack tip, the stress intensity factor increases and after passing
the stress wave, this factor drops.
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Fig. 8. Stress intensity factor versus various parameters n
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Fig. 9. The stress intensity factor in term of time for a = 0.05 m , n = 0.6

6.2. Second example: Effect of the different cracks depth on the stress
intensity factor

In this example, we tend to study the first mode stress intensity factor for
various crack depths (a = 0.02, a = 0.03, a = 0.04, a = 0.05 and a = 0.06). The
initial temperature is 400 ◦C. At the moment t = 0 a cooling shock of 200 ◦C is
applied to the inner wall of cylinder. Changes in the stress intensity factor versus
changes of parameter n and the depth of crack are shown in Fig. 10. For any specific
parameter n, increasing the depth of cracks reduces the stress intensity factor in the
first mode.

With increasing the crack depth, the temperature in crack tip is reduced (be-
cause of the heat dissipation inside thematerial). This can reduce the stress intensity
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Fig. 10. 3D plot of maximum values of stress intensity factor in terms of crack depth and parameter n

factor. At any constant depth of crack, increasing parameter n reduces the stress
intensity factor. By increasing the parameter n, the percentage of the metal in the
material reduces. The reducing metal phase leads to the thermal conductivity re-
duction in material and heat waves move slower in the cylinder and reduce the
stress intensity factor.

6.3. Third example: Effect of angular velocity on the stress intensity factor

We put the cylinder under constant rotation ω = 50 rad/sec. The depth of
circumferential crack is a = 0.05m.The analysis timewas 300 sec. The temperature
of the cylinder during the analysis was 200 ◦C. The maximum values of stress
intensity factor versus parameter n curve is plotted in Fig. 11. Increasing parameter
n for a constant crack depth increases the stress intensity factor as shown in the
Fig. 11.
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Fig. 11. The maximum amount of stress intensity factors for different parameter n

In this section we consider different crack depths. The cylinder is exposed to
constant angular velocity ω = 500 rad/sec. Changes in the stress intensity factor
versus changes of parameter n and the depth of crack ars shown in Fig. 12.
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Obviously, increasing the depth of crack for a specific n can increase the stress
intensity factor. Now we consider the effects of different angular velocity on the
maximum amount of stress intensity factor. The curve of maximum values of stress
intensity factor versus angular velocity for a = 0.05 and n = 0.6 is plotted in
Fig. 13.
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Fig. 13. The maximum amount of stress intensity factor changes vs. angular velocity

Temperature contours and radial and circumferential stresses with assumed
ω = 1000 rad/sec and n = 0.6 at the time t = 500 sec are shown in Figs. 14 and
15, respectively.

 

Fig. 14. Temperature contour (◦C) for ω = 1000 rad/sec and n = 0.6
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Fig. 15. a) Radial stress contour (Pa) b) Circumferential stress contour (Pa) for ω = 1000 rad/sec
and n = 0.6

6.4. Fourth example: Effect of combined loading; pressure, thermal shock
and rotation

In this study, the assumptions are: the internal radius of cylinder ri = 0.1m,
cylinder thickness t = 0.1 m, angular velocity ω = 10 rad/sec, internal pressure
Pin = 100 MPa and initial temperature T1 = 273 ◦C and the temperature of internal
wall of cylinder T2 is 0 ◦C. We extract the stress intensity factor for crack depth
a = 0.05 m at t = 600 s for various parameters n. The simulation is done in a
manner in which the reflected thermal waves from the edges do not reach up to
the crack tip. The number of elements is 121 × 61. Also, the FGM is made of
Ti-6Al-4V and ZrO2. Stress intensity factor changes in terms of time for various
parameter n are illustrated in Fig. 16.
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Fig. 16. Stress intensity factor vs. time curves for various parameters n
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By increasing the parameter n in a given angular velocity, the first mode stress
intensity factor is reduced under internal pressure. Now we study the effect of
different cracks depths on the stress intensity factor at a given parameter n. The
stress intensity factor curves in terms of time for different crack depths are plotted
in Fig. 17.

It is shown that increasing the crack depth, while the parameter n is constant,
decreases the mode I stress intensity factor extremely.
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Fig. 17. Stress intensity factor changes in terms of time for different crack depths and a) n = 0,
b) n = 0.3, c) n = 0.5

In the following, the effect of angular velocity changes on the stress intensity
factor is investigated. For this purpose a circumferential crack with depth a = 0.05
m is considered. The parameter n is 0.6 and analyses are done in compliance with
all the initial presented assumptions.

The stress intensity factor vs. time curves are shown in Fig. 18. The results
show that an increase in angular velocity increases the stress intensity factor.
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Fig. 18. Stress intensity factor variations in terms of time for a = 0.05 m, n = 0.6 and different
angular velocity

6.5. Fifth example: Effect of external pressure on stress intensity factor

In this section, analyses are done with different external pressures, Po = 10,
100, 200 MPa, internal pressure Pi = 10 MPa and initial temperature T1 = 273
◦C. The internal wall is subjected to a constant temperature cooling shock T2 = 0
◦C. The default angular velocity is ω = 10 rad/sec. The stress intensity factor vs.
time curves are shown in Fig. 19. The first mode stress intensity factor is reduced
with increasing external pressure, as shown in Fig. 19. External pressure is partly
responsible for opening the cracks.
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7. Conclusion

In this paper, a circumferential crack in FGMcylinder under thermo-mechanical
loading was studied. The classical coupled thermoelastic equations in cylindrical
coordinates were solved by extended finite element and Newmark methods. FG
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material of cylinder was consisted of metal ZrO2 and ceramic Ti-6Al-4V. The
inner radius was made of ZrO2 and the change of properties happened in the r
direction. The results of this study are as follows:

1. By increasing the parameter n, stress intensity factor decreases in the cylin-
der that has a circumferential crack with constant depth under axial tension.

2. When a cooling thermal shock is exerted on the inner wall, increasing the
depth of crack with a given parameter n reduces the stress intensity factor.

3. Under thermal shock, the stress intensity factor is reduced by increasing the
parameter n.

4. At a given crack depth and a parameter n, increasing angular velocity
increases the stress intensity factor in the cylinder.

5. At a given angular velocity and a parameter n, increasing the depth of crack
increases the stress intensity factor.

6. In rotating cylinder with a specific crack depth, increasing the parameter n
increases the stress intensity factor.

7. At a given parameter n and the constant crack depth, by increasing internal
pressure one can decrease the stress intensity factor.

A. Appendix

Mass, damping and stiffness matrices, which are extracted from discretization
of classical coupled thermoelastic equations.
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