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This study is devoted to the instantaneous acoustic heating of a shear-thinning
fluid. Apparent viscosity of a shear-thinning fluid depends on the shear rate. That
feature distinguishes it from a viscous Newtonian fluid. The special linear combi-
nation of conservation equations in the differential form makes it possible to derive
dynamic equations governing both the sound and non-wave entropy mode induced
in the field of sound. These equations are valid in a weakly nonlinear flow of a shear-
thinning fluid over an unbounded volume. They both are instantaneous, and do not
require a periodic sound. An example of a sound waveform with a piecewise constant
shear rate is considered as a source of acoustic heating.
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1. Introduction

Time-independent fluids constitute the class of fluids characterized by the
fact that their shear rate depends only on the shear stress and is a single valued
function of it (Collyer, 1973; Cheremisihoff, 1988;Wilkinson, 1960). Solu-
tions of melts of high molecular weight, particular high polymers and suspensions
of solids in liquids fall into this group. In contrast with Newtonian fluids, the
non-Newtonian properties of many fluids from this group are caused by the vis-
cous dissipation of energy due to collisions between large particles or colloidal
structures. The non-Newtonian group consists of the following types of fluids:
shear-thinning, shear-thickening (for them, the flow curve is nonlinear, i.e., the
curve describing dependence of the shear stress on the shear rate departs from
a straight line, see Fig. 1), plastic (Benito, Bruneau et al., 2008), Bingham
plastic (Bingham, 1916), and fluids with a yield stress and nonlinear flow curve
(Barnes, 1999).
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Fig. 1. Flow curves for some time independent fluids.

A shear-thinning material is one in which viscosity decreases with an in-
crease in the rate of shear. Materials that exhibit shear-thinning are called pseu-
doplastic. This property is found in certain complex solutions, such as lava,
ketchup, whipped cream, blood, paint, and nail polish. It is also a common prop-
erty of polymer solutions and molten polymers. The logarithmic plot between
shear stress and shear rate is generally linear for these fluids, of the slope n
less than unity. For Newtonian fluids, n = 1. The shear-thickening fluids are
far less common than the shear-thinning varieties, and they behave in the op-
posite manner, namely, their apparent viscosity increases with the increase in
the shear rate. Shear-thickening materials were first recognized by Reynolds in
1885 (Reynolds, 1885), and he called them dilatant fluids because the model
he used to describe their properties requires a dilation upon shearing. For shear-
thickening fluids, n > 1.
It is well known that sound attenuates linearly in the standard thermovis-

cous flow of a Newtonian fluid. Acoustic heating is an increase of the ambient
fluid temperature caused by nonlinear losses in acoustic energy. It is not an
acoustic quantity but a value referred to the entropy, or thermal mode. Acoustic
heating in the standard thermoviscous fluid flows is well studied theoretically
and experimentally for the cases where periodic sound is the origin of heat-
ing (Rudenko, Soluyan, 1977; Makarov, Ochmann, 1996). Acoustic heat-
ing originates from attenuation and nonlinearity. Interest in acoustic heating
of non-Newtonian fluids has grown in the recent years in connection with many
biomedical and technical applications. They require accurate estimations of heat-
ing during medical therapy which applies sound of different kinds including non-
periodic ones, in particular, impulses (Hartman et al., 1992; Rudenko, 2007).
Not only biological, but many technical liquids belong to the shear-thinning
group, such as the already mentioned dilute solutions of high polymers, printing
ink, soap solution and glycerol, cellulose, acetate and napalm, paper pulp and
detergent slurries, as well as many food products like mayonnaise (Collyer,
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1973). Some of them are very shear-thinning fluids, for example, concentrated
cement slurries, mineral suspensions, oil-well cements (Barnes, 1999; Roberts
et al., 2001).
This study is devoted to the nonlinear dissipation of sound energy in a shear-

thinning fluid. The mathematical technique has been worked out and applied pre-
viously by the author in some problems of thermoviscous nonlinear flow (Pere-
lomova, 2003; 2006; 2008). It allowed to separate individual equations governing
sound, vorticity and entropy modes in Newtonian and non-Newtonian (relaxing)
fluids. The method and results concerning the flow over a shear-thinning fluid
are described in Secs. 3, 4. The formal correspondence of the governing equations
of both the sound and entropy mode induced by it to that in a Newtonian fluid
at n = 1 is traced (Sec. 5). A simple example considers sound waveforms with
a piecewise constant shear rate.

2. Dynamic equations governing shear-thinning fluid flow

The continuity, momentum and energy conservation equations describing a
thermoviscous fluid flow without external forces are:

∂ρ

∂t
+∇ · (ρv) = 0,

∂v

∂t
+ (v ·∇)v =

1

ρ
(−∇p+Div P) ,

∂e

∂t
+ (v ·∇)e =

1

ρ
(−p(∇ · v) + χ∆T +P : Grad v) ,

(1)

where v denotes velocity of fluid, ρ, p are density and pressure, e, T mark in-
ternal energy per unit mass and temperature, correspondingly, χ is the thermal
conductivity, xi, t are spatial coordinates and time. Operator Div denotes tensor
divergency and Grad is a dyad gradient. P is the tensor of viscous stress. In the
model of a shear-thinning fluid, the viscous stress tensor relates to the shear rate
in the following manner (Collyer, 1973; Wilkinson, 1960):

Pi,k =





η

2

(
∂vi
∂xk

+
∂vk
∂xi

)n

,

(
∂vi
∂xk

+
∂vk
∂xi

)
≥ 0,

−η
2

∣∣∣∣
∂vi
∂xk

+
∂vk
∂xi

∣∣∣∣
n

,

(
∂vi
∂xk

+
∂vk
∂xi

)
< 0,

0 < n < 1, η = const. (2)

Two thermodynamic functions e(p, ρ), T (p, ρ) complement the system (1). They
may be written as a series of excess internal energy e′ = e− e0 and temperature
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T ′ = T − T0 in powers of excess pressure and density p
′ = p − p0, ρ

′ = ρ − ρ0
(ambient quantities are marked by index 0):

e′ =
E1

ρ0
p′ +

E2p0
ρ20

ρ′ +
E3

p0ρ0
p′2 +

E4p0
ρ30

ρ′2 +
E5

ρ20
ρ′p′,

T ′ =
Θ1

ρ0CV
p′ +

Θ2p0
ρ20CV

ρ′ +
Θ3

p0ρ0CV
p′2 +

Θ4p0
ρ30CV

ρ′2 +
Θ5

ρ20CV
ρ′p′,

(3)

where E1, . . . , E5, Θ1, . . . , Θ5 are dimensionless coefficients, CV marks the heat
capacity per unit mass under constant volume. Series (3) allows to consider
a wide variety of Newtonian or non-Newtonian fluids in the general form: the
discrepancy is manifested by the coefficients different for different fluids. The
common practice in nonlinear acoustics is to focus on the equations of the sec-
ond order of acoustic Mach number M = v0/c0, where v0 is the magnitude of

fluid velocity, c0 =

√
(1− E2)p0
E1ρ0

is the infinitively small signal velocity (without

account for thermoviscous phenomena), respectively. The present study is also
confined by considering of nonlinearity not higher than the second order, so that
in the series (3) only terms up to the second order are held. As it will be con-
cluded below, the acoustic force of heating includes terms caused by a thermal
conductivity proportional to χM2, and terms caused by a viscosity proportional
to ηMn. They are large as compared with those caused by the thermal conduc-
tion in a shear-thinning fluid. The expressions for coefficients E1 and E2 in terms
of compressibility, κ, and thermal expansion β, are as follows:

E1 =
ρ0CV κ

β
,

E2 = −Cpρ0
βp0

+ 1,

(4)

Cp denotes the heat capacity per unit mass under constant pressure,

κ = − 1

V

(
∂V

∂p

)

T

=
1

ρ

(
∂ρ

∂p

)

T

,

β =
1

V

(
∂V

∂T

)

p

= −1

ρ

(
∂ρ

∂T

)

p

.

(5)

A small variation in entropy is a total differential that provides a relationship
between the first coefficients in the series (3):

Θ2 =
CV ρ0T0
E1p0

− (1− E2)Θ1

E1
. (6)
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We shall consider small dimensionless parameters responsible for viscosity, µ =

ηΩ/(ρ0c
2
0), and thermal conductivity, δ =

χT0Ω

c40E
2
1ρ0
(Ω is the characteristic fre-

quency of perturbation). They are supposed to be of the same order as M . That
means that the considered domain of characteristic frequencies provides a weak
absorption of signals in a medium. We shall consider weakly nonlinear flows dis-
carding cubic and higher order nonlinear terms in all expansions. The resulting
model equations will account for the combined effects of nonlinearity, viscosity
and thermal conductivity.

3. Definition of modes in the planar flow of infinitely-small amplitude

Let us consider the one-dimensional flow along the axis OX. The multidimen-
sional flow in regard to the problem of acoustic heating will be briefly discussed in
Concluding Remarks. All the formulae further below in the text, including links
of modes and governing equations, are written in the leading order with respect
to powers of the small parameters M , µ and δ. It is convenient to rearrange the
formulae in the dimensionless quantities in the following way:

p∗ =
p′

c20 · ρ0
, ρ∗ =

ρ′

ρ0
, v∗ =

v

c0
, x∗ =

Ωx

c0
, t∗ = Ωt. (7)

Starting from Eq. (8), the upper indexes (asterisks) denoting the dimensionless
quantities will be omitted everywhere in the text. In the dimensionless quantities,
Eqs. (1) with a account for Eqs. (2), (3) read:

∂v

∂t
+
∂p

∂x︸ ︷︷ ︸
linear

= −v ∂v
∂x

+ ρ
∂p

∂x︸ ︷︷ ︸
O(M2)

+2n−1nµ

∣∣∣∣
∂v

∂x

∣∣∣∣
n−1(∂2v

∂x2

)

︸ ︷︷ ︸
O(Mn+1)

,

∂p

∂t
+
∂v

∂x
− δ1

∂2p

∂x2
− δ2

∂2ρ

∂x2︸ ︷︷ ︸
linear

= −v ∂p
∂x

+ (D1p+D2ρ)
∂v

∂x︸ ︷︷ ︸
O(M2)

+2n−1 µ

E1

∣∣∣∣
∂v

∂x

∣∣∣∣
n+1

︸ ︷︷ ︸
O(Mn+2)

+ δ3
∂2p2

∂x2
+ δ4

∂2ρ2

∂x2
+ δ5

∂2(ρp)

∂x2︸ ︷︷ ︸
O(M3)

,

∂ρ

∂t
+
∂v

∂x︸ ︷︷ ︸
linear

= −v ∂ρ
∂x

− ρ
∂v

∂x︸ ︷︷ ︸
O(M2)

.

(8)

The right-hand side of the set (8) consists of leading-order nonlinear terms.
The dynamic equations in the rearranged form include dimensionless quantities
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δ1 =
χΘ1Ω

ρ0c
2
0CVE1

,

δ2 =
χΘ2Ω

ρ0c
2
0CV (1− E2)

,

δ3 =
Θ3χΩ

E1ρ0c20CV

1− E2

E1
,

δ4 =
Θ4χΩ

(1− E2)ρ0c20CV
,

δ5 =
Θ5χΩ

E1ρ0c20CV
,

D1 =
1

E1

(
−1 + 2

1− E2

E1
E3 + E5

)
,

D2 =
1

1− E2

(
1 + E2 + 2E4 +

1− E2

E1
E5

)
.

(9)

The sum of the two first coefficients is the linear attenuation due to the thermal
conductivity, δ = δ1 + δ2. The linearized version of Eq. (8) describes a flow of an
infinitely-small magnitude, when M → 0:

∂v

∂t
+
∂p

∂x
= 0,

∂p

∂t
+
∂v

∂x
− δ1

∂2p

∂x2
− δ2

∂2ρ

∂x2
= 0,

∂ρ

∂t
+
∂v

∂x
= 0.

(10)

The dispersion equation follows from Eq. (10). Its roots determine three indepen-
dent modes (or types of the linear flow) of infinitely small-signal disturbances in
an unbounded fluid. In one dimension, there exist the acoustic (two branches) and
the thermal (or entropy) modes. In general, any perturbation of the field variables
contains contributions from any of the three modes. That allows decomposition
of the equations which govern individual modes in the linear part using the spe-
cific properties of modes, namely, relationships between components of velocity
and excess quantities of two thermodynamic functions, for example, pressure
and density. The method developed by the author in the studies (Perelomova,
2003; 2006; 2008), makes it possible to split the initial system (1) into individual
dynamic equations for every mode. Studies of motions of infinitely-small ampli-
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tudes begin usually with representing of all perturbations as planar waves, where
ε̃(k) is the Fourier-transform of any perturbation ε′:

ε′(x, t) = ε̃ exp i(ωt− kx). (11)

Every type of motion is determined in fact by one of the roots of the dispersion
equation, ω(k) (k is the wave number) (Rudenko, Soluyan, 1977; Makarov,
Ochmann, 1996; Chu, Kovasznay, 1958). This then fixes the relationships
between the hydrodynamic perturbations. They are independent on time and
derived in the articles (Perelomova, 2003; 2006; 2008). The dispersion relations
describing the sound progressive in the positive or negative direction of the axis
OX will be marked by indices 1 and 2, and that for the entropy mode will be
marked by index 3. They take the following form:

ωa,1 = k + i
δk2

2
, ωa,2 = −k + i

δk2

2
, ωe = −ik2δ2. (12)

They uniquely determine relations of velocity, excess density and pressure at-
tributable to any mode valid in any time of a hydrodynamic field evolution,

ψa,1 =



va,1
pa,1
ρa,1


 =




1− δ

2

∂

∂x

1− δ
∂

∂x
1


 ρa,1,

ψa,2 =




−1− δ

2

∂

∂x

−1 + δ
∂

∂x
1


 ρa,2,

ψe =



δ2
∂

∂x

0
1


 ρe.

(13)

The linear equation describing a fluid’s excess density in propagating in the
positive direction of the axis OX acoustic wave agrees with ωa,1 from Eq. (12)
and takes the form:

∂ρa,1
∂t

+
∂ρa,1
∂x

− δ

2

∂2ρa,1
∂x2

= 0. (14)

It may be readily rearranged into the diffusion equation by special choice of
new variables, the retarded time τ = t − x and the slow varying distance from
a transducer, Mx (Rudenko, Soluyan, 1977). In the leading order, it takes
the form

∂ρa,1
∂τ

− δ

2

∂2ρa,1
∂x2

= 0. (15)
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The density perturbation in the entropy motion also satisfies the diffusion equa-
tion (δ2 is negative for any fluid):

∂ρe
∂t

+ δ2
∂2ρe
∂x2

= 0. (16)

Equations for every type of motion may be also extracted from the system (8)
in accordance to relationships specific for each mode. That may be formally
proceeded by means of projecting of the equations into specific sub-spaces. The
linear dynamic equations are obviously independent.

4. Dynamic equations in a weakly nonlinear flow

4.1. Weakly nonlinear dynamic equation of sound

The nonlinear terms in every equation from the right-hand side of system (8)
include parts attributable to every mode. We fix relations determining any mode
in a linear flow and will consider every excess quantity as a sum of specific excess
quantities of all modes. For example, total perturbation of density is a sum of
specific parts,

ρ = ρa,1 + ρa,2 + ρe. (17)

The consequent decomposing of the governing equations for both branches of
sound and the thermal mode may be still done by means of linear projecting, see
for details (Perelomova, 2008). Projecting points out the way of linear combi-
nation of equations. This way allows to keep terms belonging to the appropriate
mode in the linear part and to reduce all other terms there. In respect to the
first (rightwards progressive) acoustic mode, the scheme for deriving the dynamic

equation in terms of excess density is as follows: apply
1

2
+
δ

2

∂

∂x
to the first equa-

tion from the set from Eqs. (8),
1

2
+
δ2
2

∂

∂x
to the second equation, and −δ2

2

∂

∂x
to

the third equation and take their sum. The linear terms of the second acoustic
and the entropy modes become completely reduced. Expressing all acoustic quan-
tities in terms of excess density by use of links (ψa,1 from Eqs. (13)) one readily
obtains the leading-order equation analogous to the well-known Burgers one:

∂ρa,1
∂t

+
∂ρa,1
∂x

− δ

2

∂2ρa,1
∂x2

= −1−D1 −D2

2
ρa,1

∂ρa,1
∂x

+ 2n−2nµ

∣∣∣∣
∂ρa,1
∂x

∣∣∣∣
n−1(∂2ρa,1

∂x2

)
. (18)

The nonlinear term in the right-hand side of Eq. (18) may be considered as a re-
sult of self-action of sound which corrects the linear equation governing sound
(14) by nonlinear terms. For the flow over a shear-thinning fluid, the last term
in the right-hand side of Eq. (18) is large as compared with the first one. It is
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of importance that Eq. (18) does tend to the Burgers equation with a non-zero
standard viscosity when n tends to 1 (limit of a Newtonian fluid). In this case,
the last term becomes linear and may be united with this one standing by δ,

∂ρa,1
∂t

+
∂ρa,1
∂x

− µ+ δ

2

∂2ρa,1
∂x2

= −1−D1 −D2

2
ρa,1

∂ρa,1
∂x

. (19)

The dynamics of sound in a newtonian fluid depends therefore on the total at-
tenuation, µ+ δ (Rudenko, Soluyan, 1977; Makarov, Ochmann, 1996).

4.2. The thermal mode induced by sound

In the context of acoustic heating, the magnitude of an excess density specific
for the entropy mode is small as compared with that for sound. We consider the
ratio of amplitudes of excess densities specifying the entropy motion and sound
of order M . Modes (13) satisfy in the leading order the equality as follows:

(
−δ ∂

∂x
− 1 1

)


va,1 + va,2 + ve

pa,1 + pa,2 + pe

ρa,1 + ρa,2 + ρe


 = ρe, (20)

which points out a way of combination of Eqs. (8) in order to reduce all acoustic
quantities in the linear part of equations. The important property of projection is
not only to decompose specific perturbations in the linear part of equations, but
to distribute nonlinear terms correctly between different dynamic equations. The
links inside the sound should be supplemented by nonlinear quadratic terms mak-
ing sound isentropic in the leading order. These corrections in a shear-thinning
fluid are similar to the ones specific for the Riemann wave in an ideal gas. They
were derived by Riemann (Riemann, 1953):

va,1 = ρa,1 −
δ

2

∂ρa,1
∂x

− 1

4
(3 +D1 +D2)ρ

2
a,1,

pa,1 = ρa,1 − δ
∂ρa,1
∂x

− 1

2
(1 +D1 +D2)ρ

2
a,1,

(21)

but involve additional terms proportional to δ. The nonlinear corrections of the
second (and higher than second) order depend on the equation of state. For
simplicity, let the sound be progressive in the positive direction of OX: pa = pa,1,
ρa = ρa,1, va = va,1. Linear combination of the left-hand sides of the equations
in (8) in accordance to (20), (21) results in the leading-order equality

∂

∂t

(
ρ− p− δ

∂v

∂x

)
− δ

∂2p

∂x2
+ δ1

∂2p

∂x2
+ δ2

∂2ρ

∂x2
=
∂ρe
∂t

+ δ2
∂2ρe
∂x2

− δ

4
(3 +D1 +D2)

∂2ρ2a
∂x2

+ (1 +D1 +D2)

(
−ρa

∂ρa
∂x

+
δ2
2

∂2ρ2a
∂x2

)
. (22)
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In the simple evaluations above, the corrected links (21) are used, as well as the
dynamic equation (18) to exclude the partial derivative with respect to time in
the nonlinear terms. In the context of acoustic heating, the sound is dominative,
so that only acoustic quadratic terms should remain. Combining in a similar way
the right-hand sides of the equations from the set (8), and comparing the result
with Eq. (22), one obtains the dynamic equation governing an excess density
attributable to the entropy mode,

∂ρe
∂t

+ δ2
∂2ρe
∂x2

− δ

4
(3 +D1 +D2)

∂2ρ2a
∂x2

+ (1 +D1 +D2)

(
−ρa

∂ρa
∂x

+
δ2
2

∂2ρ2a
∂x2

)
= −(1 +D1 +D2)

(
ρa
∂ρa
∂x

)

− 2n−1 µ

E1

∣∣∣∣
∂ρa
∂x

∣∣∣∣
n+1

+ δ

(
D1

(
∂ρa
∂x

)2

− ρa
∂2ρa
∂x2

)

− (δ3 + δ4 + δ5)

(
∂2ρ2a
∂x2

)
, (23)

which becomes simpler after ordering:

∂ρe
∂t

+ δ2
∂2ρe
∂x2

= −2n−1 µ

E1

∣∣∣∣
∂ρa
∂x

∣∣∣∣
n+1

+

((
δ

2
− δ2

)
(1 +D1 +D2)− 2(δ3 + δ4 + δ5)

)
ρa
∂2ρa
∂x2

+

(
δ

2
(3D1 +D2 + 3)− δ2(1 +D1 +D2)− 2(δ3 + δ4 + δ5)

)(
∂ρa
∂x

)2

. (24)

It is remarkable, that the dynamic equation for acoustic heating is a result of
combining of energy and continuity equations in the absence of the thermal
conduction. Otherwise, it is a result of combining of energy, continuity, and
momentum equations accordingly to Eq. (20). The acoustic terms of the left-
wards propagating sound become completely reduced in the linear part of the
final equation. Consideration is restricted to an acoustic field represented by the
rightwards progressive sound (i.e., in the positive direction of OX). It may be
easily expanded on the leftwards one or any mixture of two acoustic branches.

5. Acoustic heating

5.1. An ideal gas

Solution of Eq. (24) governing the decrease in the ambient density ρe, is
a fairly complex problem, because an excess acoustic density itself must satisfy
Eq. (18). Both dynamic equations are nonlinear and account for attenuation due
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to the thermal conduction and viscosity which depends on the shear rate. The
equation governing dynamics of ρe includes nonlinear acoustic terms standing by
dissipative coefficients. They form the nonlinear source of acoustic heating and
reflect the fact that the reason for the phenomenon are both nonlinearity and
absorption. The diffusion equation (24) is instantaneous, it describes dynamics
of the thermal mode in any time and does not require periodicity of sound.
Although the shear-thinning fluid is certainly not a perfect gas, it would be
useful to trace a governing formula for the sound and entropy mode in this limit.
The coefficients participating in Eqs. (9) take the following form (Perelomova,
2006):

δ1 =
γδ

γ − 1
, δ2 = − δ

γ − 1
, δ3 = 0, δ4 =

δ

γ − 1
,

δ5 = − γδ

γ − 1
, E1 =

1

γ − 1
, D1 = −γ, D2 = 0,

(25)

where γ = Cp/CV is the ratio of specific heats of an ideal gas. Equations (18),
(24) may be readily rearranged into the equations

∂ρa
∂t

+
∂ρa
∂x

− δ

2

∂2ρa
∂x2

+
γ + 1

2
ρa
∂ρa
∂x

− 2n−2nµ

∣∣∣∣
∂ρa,1
∂x

∣∣∣∣
n−1(∂2ρa,1

∂x2

)
= 0, (26)

∂ρe
∂t

− δ

γ − 1

∂2ρe
∂x2

= −γδ
(
∂ρa
∂x

)2

− δρa
∂2ρa
∂x2

− δ
γ − 5

4

∂2ρ2a
∂x2

− 2n−1µ(γ − 1)

∣∣∣∣
∂ρa
∂x

∣∣∣∣
n+1

. (27)

The periodic sound satisfying Eq. (26) with n = 1 (i.e., in a Newtonian fluid)
starting from some distances from a transducer where the Reynolds number is
small enough (Rudenko, Soluyan, 1977) is

ρa,1 =M exp(−(µ + δ)x/2) sin(t− x). (28)

Substituting ρa,1 into Eq. (27) and averaging the right-hand part over the di-
mensionless sound period 2π, yield

〈
∂ρe
∂t

− δ

γ − 1

∂2ρe
∂x2

〉
= −M2µ+ δ

2
(γ − 1) exp((−µ− δ)x). (29)

The angled brackets denote the averaged quantities. Equations (28), (29) refer-
ring to ideal gases, standard attenuation in Newtonian fluids and periodic sound,
are well-known in the theory of heating (Rudenko, Soluyan, 1977;Makarov,
Ochmann, 1996).
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5.2. Acoustic heating relating exclusively to the non-Newtonian behavior
of a shear-thinning fluid

Let us consider effects of only non-Newtonian viscous behavior in both gov-
erning equations, discarding those of thermal conductivity, which are well studied
in regard to standard absorbing flows. Equations (18), (24) take the form

∂ρa
∂t

+
∂ρa
∂x

− 2n−2nµ

∣∣∣∣
∂ρa
∂x

∣∣∣∣
n−1 ∂2ρa

∂x2
= 0, (30)

−∂ρe
∂t

= −CV ρ0
Θ2p0

∂Te
∂t

= β
∂Te
∂t

=2n−1 µ

E1

∣∣∣∣
∂ρa
∂x

∣∣∣∣
n+1

. (31)

The hydrodynamic nonlinearity in equation for sound, Eq. (30), will be also
ignored. The shear- thinning fluids manifest a greater heating than the standard
absorbing fluid. The acoustic force of heating in this latter is proportional to
µM2, but in the shear-thinning fluid it is proportional to µMn+1. It is positive
and provides an increase in temperature associated with the thermal mode, Te.
The simplest case for illustration is an acoustic excess density consisting of

domains of linear functions such as ∂2ρa/∂x
2 = 0. In this case, the acoustic wave-

forms propagates without a change of its form with the dimensionless velocity 1.
That yields a piecewise constant acoustic force of heating. Even simplified equa-
tions in partial derivatives, (30), (31), which do not account for the thermal
conductivity, are hardly expected to be solved analytically due to nonlinearity.
The validity of this system is also limited by the initial point that the magnitude
of an excess acoustic density is much greater than that of the entropy mode and
the leftwards propagating sound.

6. Concluding remarks

The main result of this study is the equation governing acoustic heating,
Eq. (24), along with the dynamic equation for the sound, Eq. (18). They are the
result of a consequent decomposition of weakly nonlinear equations governing
sound and the entropy mode. This study considers the one-dimensional flow of
a shear-thinning fluid. One can readily generalize the results in the quasi-planar
flow along the axis OX. The dynamic equation which governs a weakly diffracted
sound beam propagating in the positive direction of axis OX takes the form:

∂

∂τ

(
∂ρa
∂x

− 1−D1 −D2

2
ρa
∂ρa
∂τ

− δ

2

∂2ρa,1
∂τ2

− 2n−2nµ

∣∣∣∣
∂ρa,1
∂x

∣∣∣∣
n−1 ∂2ρa

∂τ2

)

=
1

2
∆⊥ρa, (32)

where ∆⊥ is the Laplacian operating in the perpendicular to the axis OX plane.
Equation (32) recalls the famous Kuznetsov–Zabolotskaya–Kuznetsov equation
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(Hamilton, Morfey, 1998; Kuznetsov, 1971). The equation governing the
entropy mode, Eq. (24), remains unchanged in the leading order. The acoustic
heating grows with the increase of acoustic Mach number M and parameters
responsible for attenuation, µ and δ.
As for the shear-thickening fluids, the thermal conductivity dominates over

viscosity in the total attenuation. The interesting features of nonlinear sound
propagation and nonlinear interactions of modes are expected in other kinds
of non-Newtonian fluids such as Bingham plastic and fluids with a yield stress
and non-linear flow curve (Collyer, 1973). These fluids are characterized by
non-zero yield stress influencing even on the linear sound velocity.
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