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Cyclic flow shop scheduling problem with
two-machine cells

WOJCIECH BOŻEJKO, ANDRZEJ GNATOWSKI, RADOSŁAW IDZIKOWSKI and MIECZYSŁAW WODECKI

In the paper a variant of cyclic production with setups and two-machine cell is considered.
One of the stages of the problem solving consists of assigning each operation to the machine on
which it will be carried out. The total number of such assignments is exponential. We propose
a polynomial time algorithm finding the optimal operations to machines assignment.
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1. Introduction

Cells equipped with machines of the same types but with different efficiencies are
elements of various manufacturing systems. Workpieces flow through a cell in a deter-
mined order and are processed on an assigned machine. In cyclic scheduling problems,
a determined set of jobs (called MPS, Minimal Part Set) is performed multiple times at
constant intervals called the cycle time. In another words, each operation of the job is
executed on the same machine cyclically. A comprehensive introduction to the problems
of cyclic scheduling includes work of Kampmeyer [8].

Processing times of operations on an assigned machine have a direct influence onto
the length of the cycle (which is usually minimized). Additionally, machine setups be-
tween adjacent operations are considered, therefore minimal cycle time determination
constitutes an NP-hard optimization problem, as it comes down to solving a particular
traveling salesman problem (Bożejko, Uchroński, Wodecki [1]).

In the paper, we consider the cycle time minimization problem in two-machine cells,
which are elements of the non-permutational (the order of operations in each cell can
be different) Cyclic Flow Shop (FSP) manufacturing system. The problem, which will
be referred to as CFSAP in this paper, is obviously more complex then classic FSP,
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as one must determine (i) an operations to machines assignment and also (ii) an order
of operations execution on each machine; such that the cycle time (Bożejko, Wodecki
[4]) is minimal. A review of computational complexity of the algorithms solving cyclic
scheduling problems can be found in Levner i in. [9], similar makespan minimization
problem is researched in Sawik [11].

The cycle time in each cell is minimized as it can have an impact onto the cycle
time of the whole system. Because of the non-permutational aspect of the problem, each
cell can be solved separately. On a top level a modified Tabu Search algorithm is used
to determine the permutations in each cell. On the lower level, there are 2o possible
operations-to-machines assignments in each cell, where o is the number of operations.
The algorithm with polynomial computational complexity, determining (for a given per-
mutation of operations) the minimal cycle time in each two-machine cell is proposed.

2. Problem formulation

The considered problem consists of finding such permutations of operations in cells
and such assignment of operations to one of two machines in each cell, that the cycle
time of a manufacturing process is minimal. In the paper we consider non-permutational
flow shop scheduling problem with two-machine cells (CFSAP), where (i) the order of
operations in a cell is independent from other cells’ operations orders and (ii) optimiza-
tion criterion is a cycle time, which equals to the longest processing time of operations
in a cell of the whole system. Due to these two properties, any instance of CFSAP can be
divided into q independent, one-cell subproblems (Cyclic Permutation and Assignment
Problems, CPAPs), where q is the number of cells. Let Ti denote the minimal cycle time
obtained for the CPAP subproblem consisting of the cell i only. Then, the minimal cycle
time obtained for CFSAP can be obtained from equation T = min{Ti : i ∈ {1,2, . . . ,q}}.
For the sake of notation simplicity, hereinafter a single two-machine cell is considered
(CPAP).

CPAP can be formulated in a following way: a set of operations O = {1,2, . . . ,o},
which must be executed on machines from a set M = {1,2} (constituting a cell) is given.
The processing order of the operations (sometimes refereed to later as permutation) can
be represented as a tuple π = (π(1),π(2), . . . ,π(o)) ∈ Π, where Π is a set of all the
possible orders. Each operation i ∈ O must be being executed uninterruptible on the
assigned machine l ∈M for pl

i time, wherein in the cell at most one operation can be
processed at the same time. The assignment P = (Z1,Z2) is defined by the two disjoint
sets Z1,Z2 of operations executed on the machines 1 and 2 respectively (of course Z1∪
Z2 = O). The set of all the possible assignments

P =
∪

I∈℘(O)

{(Z1 = I, Z2 = O \{I})} , (1)
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where ℘(O) is an exponential set and has a cardinality of |P | = 2o. For a given assign-
ment P, a tuple

πl
P = (πl

P(1),π
l
P(2), . . . ,π

l
P(|πl

P|)), l ∈M , (2)

defines processing order of the operations a machine l, and vP(i) the machine on which
operation i is executed. Between each two adjacent operations on a machine l ∈M , a
setup with a duration of

sl
πl

P(i),π
l
P(i+1), l ∈M , i ∈ {1,2, . . . , |πl

P|−1}, (3)

must be done, when no other setups can take place, nor operations can be executed.
Additionally, due to the cyclic character of the problem, an initial setup

sl
πl

P(|πl
P|),1

, l ∈M , (4)

must be done before the first operations of each MPS on each machine.
The solution of CPAP consists of the operations-to-machines assignment and times

of operations starts and finishes in consecutive MPSes. Starting times of operations in x-
th MPS are denoted by Sx = (Sx

1,S
x
2, . . . ,S

x
o) and by Cx = (Cx

1,C
x
2, . . . ,C

x
o) finishing times.

These sequences must fulfill following constrains:

∀i ∈ {1,2, . . . ,o} Cx
π(i) = Sx

π(i)+ pvP(π(i))
π(i) , (5)

∀i ∈ {1,2, . . . ,o} Sx+1
π(i) = Sx

π(i)+T, (6)

∀i ∈ {2,3, . . . ,o} Sx
π(i) ­Cx

π(i−1)+ sπ
P(π(i−1)), (7)

Sx+1
π(1) ­Cx

π(o)+ sπ
P(π(o)), (8)

where x denotes the MPS number, T is the cycle time and

sπ
P(π

l
P(i)) =

{
sl

πl
P(i),π

l
P(i+1)

for i = {1,2, . . . , |πl
P|−1}

sl
πl

P(i),π
l
P(1)

for i = |πl
P|

, l ∈M , (9)

is the setup time before execution of an operation πl
P(i) ∈ Zl for an assignment P and

permutation π. The constrain (5) ensures the uninterruption of operations execution and
the equation(6) its cyclic character. The equation (7) represents setups within, and the
equation (8) between MPSes.

For an assignment P and permutation π, let T (P,π) denote the minimal time of a cell
work (cycle time), for which sequences Sx and Cx fulfilling constrains (5)–(8) exist. It is
easy to observe, that

T (P,π) =
o

∑
i=1

(
pvP(i)

i + sπ
P(i)

)
. (10)

The Cyclic Permutation and Assignment Problem boils down to finding such P∗ ∈ P and
π∗ ∈Π that minimizes equation (10).
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3. Graph model

As discussed in the previous section, each cell constitutes a separate subproblem
of finding the optimal order (permutation) and assignment of operations. In the paper,
two-level problem solving approach is devised:

Level 1 Search for the optimal permutation by altering the operations order of execu-
tion only. Evaluate each solution, assuming that the optimal assignment for
any given permutation is known.

Level 2 For a given permutation, calculate the optimal assignment minimizing equa-
tion (10).

In the following section, a graph model used in solving Level 2 is presented. There-
fore, without loss of generality, following assumptions constituting Cyclic Assignment
Problem (CAP) are taken: (i) there is only one cell (each cell is a separate subproblem);
(ii) the permutation is natural π = (1,2, . . . ,o) and therefore omitted (since operations in
the cell can be renumbered).

The graph presented below cannot be used to model the assignments in which all
the operations are executed on a single machine (constituting the set PZ , the assignments
from the set PZ can be evaluated in O(o) time). Therefore, from now on unless stated
otherwise, only the assignments from the set P \PZ are considered.

Directed graph A is defined as follows:

A = (W ∪W ′, E ∪E ′). (11)

where W i W ′ are sets of vertices, E and E ′ are sets of arcs, such that:

W =
∪

i∈M

o∪
j=1

{
ji} , W ′ =

∪
i∈M

2o∪
j=o+1

{
ji} , (12)

E =
∪

a∈M

o−1∪
i=1

o∪
j=i+1

{(
ia, jb

)}
, E ′ =

∪
a∈M

o∪
i=2

o−1+i∪
j=o

{(
ia, jb

)}
, (13)

where b ∈M \{a}. Vertex ia ∈W matches the operation i executed on the machine a,
while vertex ja ∈W ′, respectively, a copy of the operation j− o from next MPS. Set
E consists of arcs between the vertices of W ; E ′ between the vertices of the set W
and W ′. An example of the graph A for the number of operations o = 5 is presented in
Figure 1.

Vertices in a graph A have no weights. A weight of an arc
(
ia, jb

)
∈ E ∪E ′ is the

sum of execution and setup times of the operations (or their copies from the next MPS)
from i to j−1. The weights can be calculated from the formula

d
(

ia, jb
)
= p′ai + s′ai, j+1 +

j−1

∑
k=i+1

(
p′bk + s′bk,k+1

)
(14)
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Figure 1: Graph A for o = 5.

where

s′ai, j = sa
((i−1) mod o)+1, (( j−1) mod o)+1, a ∈M , i ∈ O, j ∈ O \{i}, (15)

is the setup time between operations matching the vertices ia and jb, while

p′ai = pa
((i−1) mod o)+1, a ∈M , i ∈ O (16)

is the execution time of the operation represented by the vertex ia.
For a given assignment P ∈ P \PZ , a tuple π′P = (π′P(1),π′P(2), . . . , π′P(|π′P|)) de-

notes all the operations with following operations executed on a different machine

∀i ∈ O \{o} vP(i) ̸=vP(i+1)⇒ i ∈ π′P, (17)
vP(o) ̸=vP(1)⇒ o ∈ π′P, (18)

preserving the order of executed operations from π.
For example, for P = ({2,3,5},{1,4,6}), π′P = (1,3,4)). Then, let

ν(P) = (ν1(P),ν2(P), . . . ,ν|π′P|+1(P)), (19)

where:

νk(P) =

{
π′P(k)vP(π′P(k)) for k ∈ {1,2, . . . , |π′P|},
(π′P(1)+o)vP(π′P(1)) for k = |π′P|+1.

(20)

be a path defined by its vertices in the graph A .

Definition 1 A path (ia,(i+1)b,(i+2)a, . . . ,(i+o)a), a,b ∈M , a ̸= b, i ∈ O \{o} in
the graph A is called the highlighted path. A set of all such paths is denoted by N .

An example of the highlighted path for the assignment P = ({1,4,6}, {2,3,5}) and the
number of operations o = 5 is presented in Figure 2. Black circles correspond to the
assignment.
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Figure 2: Exemplary highlighted path in graph A .

Lemma 1 For any highlighted path µ ∈N , corresponding assignment P ∈ P \PZ , such
that ν(P) = µ exists; i.e.

∀µ ∈N , ∃P ∈ P \PZ ν(P) = µ. (21)

Proof Let µ = (µ1 = ia,µ2, . . . ,µ|µ| = (i+o)a) be a highlighted path connecting vertices
ia and (i+o)a, 1¬ i¬ o, a ∈M . Sequences φ and γ are defined in such a way, that any
vertex from the path µk ∈ µ can be expressed as µk = φγk

k , k ∈ {1,2, . . . , |µ|}. It is easy to
see that for the assignment P = (Za,Zb), where

Za = {1, . . . ,φ1}∪{φ|φ|−1 +1, . . . ,n}∪
|φ|/2∪
k=1

φ2k∪
l=φ2k−1

{l} , (22)

Zb = O \Za, (23)

and a = γ1, there is ν(P) = µ.

Lemma 2 For any assignment P ∈ P \PZ , a path ν(P) in the graph A is a highlighted
path, i.e.:

∀P ∈ P \PZ, ∃µ ∈N ν(P) = µ. (24)

Proof The Lemma 2 results directly from the definition of path ν(P).

Theorem 1 Function f : P \PZ →N , f (P) = ν(P) is bijective.

Proof Function f must fulfill properties of bijection:

∀µ ∈N , ∃P ∈ P \PZ f (P) = ν(P) = µ, (25)

∀P ∈ P \PZ, ∃µ ∈N f (P) = ν(P) = µ, (26)

∀P1,P2 ∈ P \PZ f (P1) = f (P2)⇔ P1 = P2. (27)

From Lemmas 1 and 2, conditions (25) and (26) are met. Let us consider first
|ν(P)| − 1 vertices of a path ν(P). From the definition, νk(P) = π′P(k)vP(π′P(k)),
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k∈{1,2, . . . , |νP|−1}. Since permutation π′P includes all the operations followed by the
changes in the machine assignments, it is easy to see that

∀P1,P2 ∈ P (P1 = (Z1,Z2)∧P2 = (O \Z1,O \Z2)∨P1 = P2)⇔ π′P1
= π′P2

. (28)

The case P1 = (Z1,Z2), P2 = (O \Z1,O \Z2) can be rejected because then: vP1(k) ̸=
vP2(k), k ∈ O. Hence, the condition from the equation (27) is fulfilled.

The consequence of the Theorem 1 is an existence of the inverse function to f ,
g( f (P))=P, P∈P \PZ . Bijective function g assigns a highlighted path to an assignment
from the set P \PZ .

Lemma 3 For any assignment P∈ P \PZ , the sum of weights of arcs of highlighted path
ν(P) is equal to the minimal cycle time T (P)

d(ν(P)) = T (P). (29)

Proof The proof is based on calculation of sum of weights of arcs of path ν(P)

d(ν(P)) =
|π′|−1

∑
k=1

d((νk(P),νk+1(P)))︸ ︷︷ ︸
X(P)

+d((ν|π′|(P),ν|π′|+1(P)))︸ ︷︷ ︸
Y (P)

, (30)

where X(P) is the sum of weights of arcs belonging to set E and Y (P) to set E ′. Values
X(P) and Y (P) can be determined by Eq. (14). After transformations (described in detail
in report [7])

d(ν(P)) =X(P)+Y (P) =

=
π′P(|π′P|)−1

∑
k=π′P(1)

(
pvP(k)

k + sα
P(k)

)
+

o

∑
k=π′P(|π′P|)

(
pvP(k)

k + sα
P(k)

)
+

+
π′P(1)−1

∑
k=1

(
pvP(k)

k + sα
P(k)

)
=

=
o

∑
k=1

(
p′v(k)k + sα

P(k)
)
. (31)

right sides of Eqs. (31) and (10) are equal, therefore d(ν(P)) = T (P).

Theorem 2 In graph A , weight of highlighted path with the minimum weight is equal to
the minimal cycle time T (P) for P ∈ P \PZ; i.e.

argmax
µ∈N
{d(µ)}= ν(arg max

P∈P\PZ
{T (P)}). (32)
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Proof From Lemma 3 and Theorem 1

argmax
µ∈N
{d(µ)} th. 1

= arg max
µ∈

∪
P∈P\PZ

{ν(P)}
{d(µ)}=

= ν
(
arg max

P∈P\PZ
{d(ν(P))}

) lm. 3
= ν

(
arg max

P∈P\PZ
{T (P)}

)
.

The obvious consequence of Theorem 2 is the equation

max
µ∈N
{d(µ)}= max

P∈P\PZ
{T (P)}. (33)

4. Solving CAP

In this section, two CAP solving algorithms are presented and their computational
complexity is discussed.

4.1. The polynomial algorithm (PA)

Proposed algorithm utilizes graph A (described in previous section) to determine the
optimal assignment P∗ ∈ P , and therefore solve CAP. The algorithm is summarized in
Algorithm 1.

Algorithm 1 The polynomial algorithm (PA)

1: Construct graph A .
2: for all i ∈ O \{o} do
3: for all a ∈M do
4: Find the path with minimum weight from vertex ia to (i+o)a.
5: From paths obtained in steps 3–5, choose the path with minimal weight and deter-

mine the corresponding assignment P1 ∈ P \PZ .
6: Calculate the minimal cycle time T (P) of the individually analyzed cases P2 =

(Ø, O) and P3 = (O, Ø).
7: return P∗ = arg min

P∈{P1,P2,P3}
{T (P)}

In lines 2–5. the algorithm determines the highlighted path with minimal weight

min
P∈P\PZ

{d(ν(P))}= min
P∈P\PZ

{T (P)} (34)

and thus, by Theorem 2, the corresponding assignment from P \PZ with the minimal
cycle time. In line 7., the values of T (P) for P ∈ PZ are calculated, hence the algorithm
determines the optimal solution.
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Theorem 3 For the Cyclic Assignment Problem, the optimal assignment P∗ minimizing
the cycle time can be determined in O(o3) time.

Proof The proof is based on the analysis of the computational complexity of Alg. 1.
Constructing graph A from line 2. requires calculation of O(o2) weight of arcs, where
each weight is the sum of O(o) elements, hence the computational complexity is O(o3).
Line 5. can be realized by sequentially determining the longest path from initial vertex
to the following vertices (in topological order). Because there are O(o) in- and out-arcs
from each vertex, complexity of the lines 5. equals O(o2). The operations from line 5.
are performed O(o) times (lines 3–5.), resulting in O(o3) time complexity. Line 7. comes
down to determining the minimal cycle time for separately evaluated assignments from
PZ . They can be calculated from the formula (10) in O(o) time. Finally, the computa-
tional complexity of the algorithm equals O(o3)+O(o3)+O(o) = O(o3).

4.2. One Opt algorithm

One opt algorithm (1-Opt) is a heuristic for CAP. Pseudocode for the algorithm is
presented in Algorithm 2.

Algorithm 2 One Opt

1: for all i ∈ O do
2: P′← (ZvP(i) \{i}, Z{1,2}\vP(i)∪{i})
3: if T (P)> T (P′) then
4: P← P′

5: goto line 1.
6: return P

In each iteration, an assignment of each operation (one at a time) is temporarily
changed. If the change lowers the minimal cycle time, it becomes permanent. The al-
gorithms stops when no change in an assignment of a single operation can improve the
minimal cycle time.

Since there are 2o different assignments and T (P) can be calculated in O(o) time,
the total computational complexity of 1-Opt cannot exceed O(o · o · 2o) = O(o22o) =
O(2o). It is worth noting, that as shown in the computational experiments, in practical
applications, 1-Opt can be much faster then the PA algorithm (with O(o3) computational
complexity).

5. Solving CFSAP with Tabu Search algorithm

CFSAP consists of q independent subproblems, one for each cell. Therefore one
should focus on optimizing (which is done in this paper, with Tabu Search algorithm)
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the subproblem determining the total cycle time of the problem (bottleneck subproblem).
This strategy is implemented in Algorithm 3.

Algorithm 3 CFSAP solving strategy
1: For each cell, create a TS algorithm instance for solving one-cell subproblem.
2: Run 1 iteration of TS algorithm solving the subproblem with the longest minimal

cycle time i = arg max
i=1,2,...,q

{T (Pi,πi)}.
3: If the time for calculations is not over yet, go to line 2.

The Tabu Search (TS) algorithm is a local search metaheuristic, proposed for the first
time by Glover in [5]. Through years, the original idea has been modified repeatedly,
creating multiple variants of the TS algorithm; applied to a wide range of scheduling
problems (such as famous TSAB [10], neuro-tabu [2], or parallel TS [3]).

The algorithm used in the paper utilizes two types of a memory:

TL Tabu List, designed to avoid cycles and to leave local minimums. It consists of L
last moves. Whenever the capacity is exceeded, the oldest move is removed from
the list.

LTM Long-Term Memory, storing promising solutions (and associated TS states con-
sisting of: current solutions, tabu lists and neighbourhoods) to provide diversifi-
cation, each state can be used only once.

The algorithm (shown on Fig. 3) starts with generation of an initial solution. The so-
lution is provided by a simple heuristic — operations are scheduled in an ascending order
according to their number and assigned to a single machine. Then, a neighbourhood is
generated (the neighbour is defined by the swap move, e.g. unordered pair of operations
to be swapped in the permutation.) by the procedure described in Algorithm 4. Then, the

Algorithm 4 Neighnourhood creating procedure
1: Find a pair of consecutive operations with different machines assigned. Take the first

operation.
2: If line 1. provided no operations, take first and last operation from the permutation.
3: Create neighbours, by swapping in the permutations operations from line 1. or 2.

with α following and α preceding operations.
4: Remove duplicates (neighbours with the same pairs of operations to be swapped).

neighbours are evaluated by one of the three methods:

PA For all the neighbours, compute the exact value of the minimal cycle time,
using the polynomial algorithm.

1-Opt For all the neighbours, estimate the value of the minimal cycle time, using the
1-Opt heuristic.
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Hybrid perform the previously described 1-Opt method and then compute the exact
value of the minimal cycle time of the best β neighbours, using the polynomial
algorithm.

Figure 3: Schematic diagram of the Tabu Search algorithm.

The neighbours consisting of the moves from TL are removed, unless they im-
prove the best known value of the minimal cycle time (aspiration criterion). If all
the neighbours are removed, the last promising state is loaded from LTM. Then, the
neighbour with the lowest value of the minimal cycle time is chosen and the asso-
ciated move is added to TL. If the best solution found has not been improved since
1000+0.1 · iteration number iterations, the last promising state is loaded from LTM. If
the neighbour fulfills at least one of the following conditions:

• there are less then 5 states memorized;

• there are less then 200 states memorized and T ¬ 1.1 ·Tbest ;

• T < Tbest ;
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the current state of TS is saved in LTM. If time for calculations is not over yet, the move
is applied to the current solution, finishing an iteration.

6. Computational experiments

This section provides a description of an experimental evaluation of the proposed
algorithms. First, the comparison of speed and quality of the results obtained in various
scenarios by the CAP solving algorithms is presented. Then, effectiveness of the three
Tabu Search variants on benchmark instances is tested.

The algorithms were implemented in C++ programming language, compiled with
the default compiler of Microsoft Visual Studio 2015. The programs were executed on
PC equipped with Intel Core i7-4930K CPU @3.4GHz, 32GB RAM and Windows 10
Education.

6.1. CAP solving algorithms

The two Cyclic Assignment Problem solving algorithms (namely 1-Opt and PS)
were experimentally compared. Performance was measured on randomly generated in-
stances of the following sizes: o = 10, 20, 40, 80, 160, 320, 640, 1280, 2560. For each
size, 16 instances were generated (144 in total).

The algorithms were tested in three usage scenarios (as shown in Fig. 4), with dif-
ferent initial solutions for the experiments:

• experiments 1 and 2 – random solution;

• experiments 3 and 4 – optimal assignment, with a random swap move performed
on the permutation;

• experiments 5 and 6 – random solution processed by 1-Opt algorithm, with a ran-
dom swap move performed on the permutation.

Figure 4: Setup for the experiments on CAP solving algorithms.
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For each experiment and instance, computation times and the minimal cycle times
T were measured. The 1-Opt algorithm is a heuristic, therefore a gap ∆T between the
obtained cycle time T and the optimal cycle time T ∗ was also calculated

∆T =
T −T ∗

T ∗
·100%.

The results of the experiments are presented in Fig. 5 and Tab. 1. The computation
time of PA is almost unaffected by the initial solution and 2–4 times longer then 1-OPT
starting from a random solution. As shown in the experiments 2, 4, 6; the quality of the
results obtained by 1-OPT are dependent on the quality of the initial solution. With an
initial solution close to the optimal, 1-OPT provides relatively good results up to about
1000 times faster then PA.

Figure 5: Computation times of the algorithms from experiments 1–6.

6.2. CFSAP solving algorithms

Since the problem has not yet been researched before, no available benchmarks ex-
isted. The test instances were therefore generated and published online [6]. More details
on the data can be found in the report [7].In the paper, the first 120 instances were used
(gi0001–gi0120, as shown in Tab. 4). The values of TS algorithm parameters were ob-
tained experimentally (Tab. 2).

Three variants of the Tabu Search algorithm were tested with a time limit of 60
seconds for each instance. The minimal cycle time, mean neighbourhood size and a
number of iterations were measured. The instances were divided according to their sizes
into 12 groups. For each group, an average gap ∆T between obtained cycle time T and
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Table 1: The results of the CAP solving algorithms tests. Columns correspond to exper-
iments 1–6.

o
Mean computation time [s] Mean ∆T [%]

1 2 3 4 5 6 2 4 6
10 6.66E−6 3.66E−6 6.50E−6 1.78E−6 6.41E−6 1.24E−6 2.48 1.35E+0 2.07
20 3.79E−5 1.76E−5 3.77E−5 5.34E−6 3.70E−5 6.39E−6 1.56 2.18E−1 1.08
40 2.37E−4 1.02E−4 2.31E−4 1.84E−5 2.32E−4 1.60E−5 1.71 3.96E−1 1.67
80 1.66E−3 7.11E−4 1.64E−3 6.63E−5 1.67E−3 7.76E−5 1.39 9.68E−2 1.23

160 1.37E−2 5.47E−3 1.34E−2 2.21E−4 1.35E−2 2.95E−4 1.47 8.10E−2 1.49
320 1.24E−1 3.90E−2 1.23E−1 1.33E−3 1.24E−1 1.03E−3 1.70 5.43E−2 1.68
640 1.47E+0 3.91E−1 1.48E+0 5.53E−3 1.47E+0 5.63E−3 1.54 2.59E−2 1.56

1280 1.56E+1 4.94E+0 1.56E+1 2.24E−2 1.56E+1 2.91E−2 1.45 1.24E−2 1.45
2560 1.50E+2 4.72E+1 1.49E+2 1.42E−1 1.49E+2 1.09E−1 1.45 4.48E−3 1.45

Table 2: The CFSAP solving algo-
rithms parameters.

Algorithm L α β
PA 50 15 -

1-OPT 100 10 -
Hybrid 75 15 1

Table 3: An average gap to the best obtained re-
sult, grouped by an instance size.

Group ∆T [%]
n×q PA 1-OPT Hybrid
10×10 0 0 0
10×15 0 0 0
10×20 0.1393 0 0
20×10 0.1851 0.1044 0
20×15 0 0.0093 0
20×20 0.0206 0.1016 0
50×10 4.4533 0.4277 0.2084
50×15 5.4054 0.4060 0.2277
50×20 4.9372 0.6615 0.0787

100×10 21.2598 0.2158 0.1161
100×15 20.7294 0.4415 0.0994
100×20 20.3415 0.6333 0.2731

MEAN: 6.4560 0.2501 0.0836

the best cycle time across the three algorithms Tmin was calculated

∆T =
T −Tmin

Tmin
·100%.

The results of the experiments are summarized in Tables 3 and 4. The Hybrid TS
algorithm provided better results for the majority of instances, followed by the 1-Opt.
PA performance dropped significantly for the bigger instances, probably due to an in-
sufficient number of TS iterations (for n = 100, an average of 36 iterations; compared to
597 for 1-OPT and 594 for Hybrid).
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Table 4: The best results obtained for the instances gi001–gi120; 60 seconds of the com-
putation time for each instance.

name n×q T name n×q T name n×q T
gi001 10×10 608 gi041 20×15 992 gi081 50×20 2147
gi002 10×10 623 gi042 20×15 1097 gi082 50×20 2285
gi003 10×10 500 gi043 20×15 989 gi083 50×20 2270
gi004 10×10 585 gi044 20×15 1038 gi084 50×20 2264
gi005 10×10 549 gi045 20×15 998 gi085 50×20 2192
gi006 10×10 629 gi046 20×15 1077 gi086 50×20 2052
gi007 10×10 603 gi047 20×15 997 gi087 50×20 2130
gi008 10×10 506 gi048 20×15 921 gi088 50×20 2172
gi009 10×10 588 gi049 20×15 902 gi089 50×20 2530
gi010 10×10 493 gi050 20×15 1035 gi090 50×20 2498
gi011 10×15 597 gi051 20×20 914 gi091 100×10 4465
gi012 10×15 554 gi052 20×20 1019 gi092 100×10 4269
gi013 10×15 594 gi053 20×20 997 gi093 100×10 4201
gi014 10×15 505 gi054 20×20 928 gi094 100×10 4330
gi015 10×15 631 gi055 20×20 973 gi095 100×10 4158
gi016 10×15 626 gi056 20×20 1011 gi096 100×10 4355
gi017 10×15 585 gi057 20×20 943 gi097 100×10 4363
gi018 10×15 529 gi058 20×20 959 gi098 100×10 4268
gi019 10×15 649 gi059 20×20 1079 gi099 100×10 4143
gi020 10×15 561 gi060 20×20 940 gi100 100×10 4313
gi021 10×20 535 gi061 50×10 2176 gi101 100×15 4285
gi022 10×20 586 gi062 50×10 2100 gi102 100×15 4421
gi023 10×20 602 gi063 50×10 2147 gi103 100×15 4288
gi024 10×20 607 gi064 50×10 2289 gi104 100×15 4295
gi025 10×20 598 gi065 50×10 2171 gi105 100×15 4295
gi026 10×20 572 gi066 50×10 2185 gi106 100×15 4257
gi027 10×20 605 gi067 50×10 2152 gi107 100×15 4610
gi028 10×20 619 gi068 50×10 2321 gi108 100×15 4579
gi029 10×20 646 gi069 50×10 2173 gi109 100×15 4578
gi030 10×20 591 gi070 50×10 2242 gi110 100×15 4219
gi031 20×10 958 gi071 50×15 2222 gi111 100×20 4472
gi032 20×10 838 gi072 50×15 2403 gi112 100×20 4460
gi033 20×10 974 gi073 50×15 2305 gi113 100×20 4446
gi034 20×10 904 gi074 50×15 2279 gi114 100×20 4504
gi035 20×10 1002 gi075 50×15 2283 gi115 100×20 4417
gi036 20×10 998 gi076 50×15 2014 gi116 100×20 4503
gi037 20×10 988 gi077 50×15 2185 gi117 100×20 4442
gi038 20×10 872 gi078 50×15 2236 gi118 100×20 4411
gi039 20×10 1009 gi079 50×15 2223 gi119 100×20 4506
gi040 20×10 1000 gi080 50×15 2136 gi120 100×20 4556
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7. Final remarks

Cyclic work of a two-machine production cell with setup times is considered in the
paper. We proved, that the optimal operations to machines assignment (for a fixed order
of operations), can be determined in the polynomial time O(o3), where o is the number of
operations, despite the exponential number of all the possible assignments. In the further
research we plan to extend our considerations onto cells with the number of machines
greater than two.
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