Analysis and comparison of the stability of discrete-time and continuous-time linear systems

TADEUSZ KACZOREK

Abstract

The asymptotic stability of discrete-time and continuous-time linear systems described by the equations $x_{i+1}=\bar{A}^{k} x_{i}$ and $\dot{x}(t)=A^{k} x(t)$ for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix \bar{A}^{k} and of the continuous-time systems depends only on phases of the eigenvalues of the matrix $A^{k}, 2$) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.

Key words: analysis, comparison, stability, discrete-time, continuous-time, linear system.

1. Introduction

The asymptotic stability is one of the basic notions of the theory of dynamical systems $[1,8,10,12]$. It has been addressed in many books and papers [1, 3, 6, 10-12]. The approximation of positive standard and fractional stable continuous-time linear systems by suitable discrete-time systems has been analyzed in [3, 4]. Comparison of approximation methods of positive stable continuous-time linear systems by positive stable discrete-time systems has been presented in [5]. The influence of the value of discretization step on the stability of positive and fractional systems has been analyzed in [6]. Inverse systems of linear systems have been investigated in [7].

In this paper the asymptotic stability of discrete-time and continuous-time linear systems described by the equations $x_{i+1}=\bar{A}^{k} x_{i}$ and $\dot{x}(t)=A^{k} x(t)$ for k being integers and rational numbers will be investigated.

The paper is organized as follows. In section 2 the basic definitions and theorems concerning the asymptotic stability of continuous-time and discrete-time systems and theorem on the eigenvalues of the matrix function are recalled. The asymptotic stability

[^0]of the discrete-time linear systems for k being integers and rational numbers are investigated in section 3. Similar problems for continuous-time linear systems are analyzed in section 4. Comparison of the stability of discrete-time and continuous-time linear systems is presented in section 5 . Concluding remarks are given in section 6.

The following notation will be used: \mathfrak{R} - the set of real numbers, $\mathfrak{R}^{n \times m}$ - the set of $n \times m$ real matrices, I_{n} - the $n \times n$ identity matrix, Z_{+}— the set of nonnegative integers.

2. Preliminaries

Consider the autonomous continuous-time linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{1}
\end{equation*}
$$

where $x(t) \in \mathfrak{R}^{n}$ is the state vector and $A \in \mathfrak{R}^{n \times n}$. The solution of (1) for the given initial condition has the form $[1,8,10,12]$

$$
\begin{equation*}
x(t)=e^{A t} x_{0} \tag{2}
\end{equation*}
$$

Definition 1 The system (1) (or equivalently the matrix A) is called asymptotically stable if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=0 \text { for all } x_{0} \in \mathfrak{R}^{n} \tag{3}
\end{equation*}
$$

Theorem 3 [1, 8, 10, 12] The system (1) (the matrix A) is asymptotically stable if and only if

$$
\begin{equation*}
\operatorname{Re} s_{l}<0 \Leftrightarrow \frac{\pi}{2}<\phi<\frac{3 \pi}{2} \text { for all } l=1, \ldots, n, \tag{4}
\end{equation*}
$$

where $s_{l}=\left|s_{l}\right| e^{j \phi_{l}}, l=1, \ldots, n$ are the eigenvalues of the matrix A, i.e. the roots of the equation

$$
\begin{equation*}
\operatorname{det}\left[I_{n} s-A\right]=s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}=0 \tag{5}
\end{equation*}
$$

Similarly, let us consider the autonomous discrete-time linear system [1, 8, 10, 12]

$$
\begin{equation*}
x_{i+1}=\bar{A} x_{i}, \quad i \in Z_{+}=\{0,1, \ldots\} \tag{6}
\end{equation*}
$$

where $x_{i} \in \mathfrak{R}^{n}$ is the state vector and $\bar{A} \in \mathfrak{R}^{n \times n}$. The solution of (6) for the given initial condition x_{0} has the form [$1,8,10,12$]

$$
\begin{equation*}
x_{i}=\bar{A}^{i} 0, \quad i \in Z_{+} . \tag{7}
\end{equation*}
$$

Definition 2 The system 6 (or equivalently the matrix \bar{A}) is called asymptotically stable if

$$
\begin{equation*}
\lim _{i \rightarrow \infty} x_{i}=0 \text { for all } x_{0} \in \mathfrak{R}^{n} \tag{8}
\end{equation*}
$$

Theorem $4[1,8,10,12]$ The system (6) (the matrix \bar{A}) is asymptotically stable if and only if

$$
\begin{equation*}
\left|z_{l}\right|<1 \text { for all } l=1, \ldots, n, \tag{9}
\end{equation*}
$$

where $z_{i}, l=1, \ldots, n$ are the eigenvalues of the matrix \bar{A}, i.e. the roots of the equation

$$
\begin{equation*}
\operatorname{det}\left[I_{n} z-\bar{A}\right]=z^{n}+\bar{a}_{n-1} z^{n-1}+\ldots+\bar{a}_{1} z+\bar{a}_{0}=0 . \tag{10}
\end{equation*}
$$

Theorem 5 Let $s_{l}, l=1, \ldots, n$ be the eigenvalues of the matrix $A \in \mathfrak{R}^{n \times n}$ and $f\left(s_{l}\right)$ be well defined on the spectrum $\sigma_{A}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of the matrix A, i.e. $f\left(s_{l}\right)$ are finite for $l=1, \ldots, n$. Then $f\left(s_{l}\right), l=1, \ldots, n$ are the eigenvalues of the matrix $f(A)$.

Proof The proof is given in [2, 9].
For example if $s_{l}, l=1, \ldots, n$ are the nonzero eigenvalues (not necessary distinct) of the matrix $A \in \mathfrak{R}^{n \times n}$ then $s_{l}^{-1}, l=1, \ldots, n$ are the eigenvalues of the inverse matrix A^{-1}.

3. Discrete-time linear systems

In this section the asymptotic stability of the system

$$
\begin{equation*}
x_{i+1}=\bar{A}^{k} x_{i}, \quad i \in Z_{+} \tag{11}
\end{equation*}
$$

will be investigated for k being integers $(k= \pm 1, \pm 2, \ldots)$ and rational numbers $\left(k=\frac{p}{q}, p, q-\right.$ integers $)$.

For $k=1,2, \ldots$ we have the following theorem.
Theorem 6 The linear system (11) is asymptotically stable for $k=1,2, \ldots$ if and only if the linear system (6) is asymptotically stable.

Proof By Theorem 3 if $z_{l}, l=1, \ldots, n$ are the eigenvalues of the matrix \bar{A} then the eigenvalues of the matrix \bar{A}^{k} are $z_{l}, l=1, \ldots, n$. Note that $\left|z_{l}\right|<1$ for and $k=1,2, \ldots$ if and only if the condition (9) is satisfied. Therefore, by Theorem 4 the system (11) is asymptotically stable if and only if the system (6) is asymptotically stable.

Example 1 Consider the system (6) with

$$
\bar{A}=\left[\begin{array}{cc}
0 & 1 \tag{12}\\
\frac{1}{6} & \frac{1}{6}
\end{array}\right]
$$

The characteristic polynomial of (12) has the form

$$
\operatorname{det}\left[I_{2} z-\bar{A}\right]=\left|\begin{array}{cc}
z & -1 \tag{13}\\
-\frac{1}{6} & z-\frac{1}{6}
\end{array}\right|=z^{2}-\frac{1}{6} z-\frac{1}{6}
$$

and its zeros are $z_{1}=\frac{1}{2}$ and $z_{2}=-\frac{1}{3}$.
The eigenvalues of the matrix (12) satisfy the condition (9) and the system is asymptotically stable. By Theorem 6 the system (11) with (12) is also asymptotically stable for $k=2,3, \ldots$.

For $k=-1,-2, \ldots$ we have the following theorem.

Theorem 7 The linear system (11) is asymptotically stable for $k=-1,-2, \ldots$ if and only if the system (6) is unstable, i.e. the eigenvalues of the matrix \bar{A} satisfy the condition

$$
\begin{equation*}
\left|z_{j}\right|>1 \text { for } j=1, \ldots, n \tag{14}
\end{equation*}
$$

Proof By Theorem 5 if $z_{j}, j=1, \ldots, n$ are the eigenvalues of the matrix \bar{A} then the eigenvalues of the matrix \bar{A}^{k} for $k=-1,-2, \ldots$ are $z_{j}^{k}, k=1,2, \ldots$. Note that $\left|z_{j}\right|^{-k}<1$, $k=1,2, \ldots$ if and only if the condition (14) is satisfied. Therefore, by Theorem 4 the system (11) is asymptotically stable for $k=-1,-2, \ldots$ if and only if the system (6) is unstable.

Example 2 (Continuation of Example 1) The inverse matrix of (12) has the form

$$
\bar{A}^{-1}=\left[\begin{array}{cc}
-1 & 6 \tag{15}\\
1 & 0
\end{array}\right]
$$

and its eigenvalues are $\bar{z}_{1}=2, \bar{z}_{2}=-3$. Therefore, the discrete-time linear system with the matrix (15) is unstable.

Note that for (15) we obtain the matrix

$$
\bar{A}^{-2}=\left(\bar{A}^{-1}\right)^{2}=\left[\begin{array}{cc}
-1 & 6 \tag{16}\\
1 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
7 & -6 \\
-1 & 6
\end{array}\right]
$$

and its eigenvalues are $\bar{z}_{1}=4, \bar{z}_{2}=9$. The linear system (11) for with (16) is unstable. Similar results can be obtained for $k=-3,-4, \ldots$.

For $k= \pm \frac{p}{q}, p, q \in\{1,2, \ldots\}$ we have the following theorem
Theorem 8 The linear system (11) is asymptotically stable

1) for $k=\frac{p}{q}, p, q \in\{1,2, \ldots\}$ if and only if the linear system (6) is asymptotically stable,
2) for $k=-\frac{p}{q}, p, q \in\{1,2, \ldots\}$ if and only if the linear system is unstable.

Proof By Theorem 5 if $z_{j}, j=1, \ldots, n$, are the eigenvalues of the matrix \bar{A} then the eigenvalues of the matrix $\bar{A}^{ \pm \frac{p}{q}}$ are $z_{j}^{ \pm \frac{p}{q}}$ for $j=1, \ldots, n$ and

$$
\begin{equation*}
\ln \left|z_{j}\right|^{ \pm \frac{p}{q}}= \pm \frac{p}{q} \ln \left|z_{j}\right| \text { for } j=1, \ldots, n \tag{17}
\end{equation*}
$$

If $\frac{p}{q}>0$ and $\left|z_{j}\right|<1, j=1, \ldots, n$ then from (17) we have

$$
\begin{equation*}
\frac{p}{q} \ln \left|z_{j}\right|<0 \text { and }\left|z_{j}\right|^{\frac{p}{q}}<1 \text { for } j=1, \ldots, n . \tag{18}
\end{equation*}
$$

Therefore, the system (11) is asymptotically stable for $k=\frac{p}{q}>0$ if and only if the system (6) is asymptotically stable. Proof in the case 2) is similar.

Example 3 (Continuation of Example 1) Consider the system (6) with (12) for $p=3$, $q=2$. Using (12) we obtain the matrix

$$
\bar{A}^{3}=\frac{1}{6^{2}}\left[\begin{array}{cc}
1 & 7 \tag{19}\\
\frac{7}{6} & \frac{13}{6}
\end{array}\right]
$$

with the eigenvalues $z_{1}=\frac{1}{8}, z_{2}=-\frac{1}{27}$. The eigenvalues of the matrix

$$
\bar{A}^{\frac{3}{2}}=\left[\begin{array}{cc}
0 & 1 \tag{20}\\
\frac{1}{6} & \frac{1}{6}
\end{array}\right]^{\frac{3}{2}}
$$

are $\hat{z}_{1}=\left(\frac{1}{2}\right)^{\frac{3}{2}}, \hat{z}_{2}=\left(-\frac{1}{3}\right)^{\frac{3}{2}}$ and satisfy the condition (9). Therefore, by Theorem 7 the system (6) with (12) for $p=3, q=2$ is asymptotically stable.

Remark 1 The asymptotic stability of the discrete-time system (6) depends only on the modules of the eigenvalues of the matrix \bar{A} and it is independent of the phases of the eigenvalues.

Remark 2 The matrix $-\bar{A} \in \mathfrak{R}^{n \times n}$ is asymptotically stable if and only if the matrix $A \in \mathfrak{R}^{n \times n}$ is asymptotically stable since the eigenvalues of the matrices A and $-\bar{A}$ have the same modules.

4. Continuous-time linear systems

In this section the asymptotic stability of the continuous-time linear system

$$
\begin{equation*}
\dot{x}(t)=A^{k} x(t), \quad A \in \mathfrak{R}^{n \times n} \tag{21}
\end{equation*}
$$

will be investigated for k being integers $(k= \pm 1, \pm 2, \ldots)$ and rational numbers $\left(k=\frac{p}{q}, p, q-\right.$ integers $)$.

Theorem 9 Let $s_{l}=\left|s_{l}\right| e^{j \phi_{l}}, l=1, \ldots, n$ be the l-th eigenvalue of the matrix A. The system (6) is asymptotically stable if and only if

$$
\begin{equation*}
\frac{\pi}{2}<k \phi_{l}<\frac{3 \pi}{2} \text { for } l=1, \ldots, n \tag{22}
\end{equation*}
$$

Proof By Theorem 5 if s_{l} is the l-th eigenvalue of the matrix A then $s_{l}^{k}, l=1, \ldots, n$ are the eigenvalues of the matrix A^{k} and by Theorem 3 the system (21) is asymptotically stable if and only if the condition (22) is satisfied.

From the condition (22) of Theorem 9 we have the following conclusion.

Conclusion 1 The asymptotic stability of the system (21) for any k depends only on the phases of the eigenvalues $s_{l}, l=1, \ldots, n$ of the matrix A and it is independent of their modules.

Example 4 Consider the asymptotic stability of the continuous-time linear system (21) with the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{23}\\
-1 & -1
\end{array}\right]
$$

for $k=2,3$ and $k=-1,-2,-3$. The characteristic polynomial of the matrix (4.3) has the form

$$
\operatorname{det}\left[I_{2} s-A\right]=\left|\begin{array}{cc}
s & -1 \tag{24}\\
1 & s+1
\end{array}\right|=s^{2}+s+1
$$

and its zeros are

$$
\begin{equation*}
s_{1}=-\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j \frac{2 \pi}{3}}, \quad s_{1}=-\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{-j \frac{2 \pi}{3}} . \tag{25}
\end{equation*}
$$

Therefore, the system (21) with (23) for $k=1$ is asymptotically stable since (25) satisfy the condition (22).

It is easy to verify that for (23)

$$
A^{2}=A^{-1}=\left[\begin{array}{cc}
-1 & -1 \tag{26}\\
1 & 0
\end{array}\right], A^{-2}=A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]
$$

and the matrices have the same characteristic polynomial (24) and are asymptotically stable. Note that

$$
A^{3}=A^{-3}=\left[\begin{array}{ll}
1 & 0 \tag{27}\\
0 & 1
\end{array}\right]
$$

and the system (21) with (27) is unstable. The same result follows for (27) from the condition (22) since for (25) with $k= \pm 3$ we have the phases $\pm 3 \frac{2 \pi}{3}= \pm 2 \pi$.

Example 5. Consider the asymptotic stability of the system (21) with the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{28}\\
-2 & -3
\end{array}\right]
$$

for $k=-1,-2,-3,2,3, \frac{1}{2}$. The characteristic polynomial of the matrix (27) has the form

$$
\operatorname{det}\left[I_{2} s-A\right]=\left|\begin{array}{cc}
s & -1 \tag{29}\\
2 & s+3
\end{array}\right|=s^{2}+3 s+2
$$

and its zeros are $s_{1}=-1, s_{2}=-2$. Thus, the system for $k=1$ is asymptotically stable. For $k=-1$ we have

$$
A^{-1}=\left[\begin{array}{cc}
-\frac{3}{2} & -\frac{1}{2} \tag{30}\\
1 & 0
\end{array}\right]
$$

and

$$
\operatorname{det}\left[I_{2} s-A^{-1}\right]=\left|\begin{array}{cc}
s+\frac{3}{2} & \frac{1}{2} \tag{31}\\
-1 & s
\end{array}\right|=s^{2}+\frac{3}{2} s+\frac{1}{2}
$$

and the eigenvalues of (30) are $s_{1}=-1=e^{j 180^{\circ}}, s_{2}=-\frac{1}{2}=\frac{1}{2} e^{j 180^{\circ}}$. The system (21) with (30) for is asymptotically stable (the condition (22) is satisfied). For $k=-2$ we obtain the matrix

$$
A^{-2}=\left[\begin{array}{cc}
\frac{7}{4} & \frac{3}{4} \tag{32}\\
-\frac{3}{2} & -\frac{1}{2}
\end{array}\right]
$$

with the eigenvalues $s_{1}=1=e^{j 0^{\circ}}, s_{2}=\frac{1}{4}=\frac{1}{4} e^{j 0^{\circ}}$. Therefore, the system (21) with (32) is unstable.

The same result follows from (22) since $k \phi=-2 \cdot 180^{0}=0^{0}$. For $k=-3$ we obtain the matrix

$$
A^{-3}=\left[\begin{array}{cc}
-\frac{15}{8} & -\frac{7}{8} \tag{33}\\
7 & \frac{3}{4}
\end{array}\right]
$$

with the eigenvalues $s_{1}=-1=e^{j 180^{\circ}}, s_{2}=-\frac{1}{8}=\frac{1}{8} e^{j 180^{\circ}}$. Therefore, the system is asymptotically stable. The same result follows from (22). For $k=2$ we obtain the matrix

$$
A^{2}=\left[\begin{array}{cc}
-2 & -3 \tag{34}\\
6 & 7
\end{array}\right]
$$

with the eigenvalues $s_{1}=1=e^{j 0^{\circ}}, s_{2}=4=4 e^{j 0^{\circ}}$. The system (21) with (34) is unstable. For $k=3$ we have the matrix

$$
A^{3}=\left[\begin{array}{cc}
6 & 7 \tag{35}\\
-14 & -15
\end{array}\right]
$$

with the eigenvalues $s_{1}=-1=e^{j 180^{\circ}}, s_{2}=-8=8 e^{j 180^{\circ}}$. Therefore, the system for $k=3$ is asymptotically stable. In general case we obtain that the system (21) with (28) is asymptotically stable for $k= \pm(1+2 l), l=0,1, \ldots$ and unstable for $k= \pm 2 l, l=1,2, \ldots$

Theorem 10 If the matrix $A \in \Re^{n \times n}$ has at least one real positive eigenvalue then the system (21) is unstable for all values of k (integer and rational).

Proof By Theorem 5 if $s_{l}, l=1, \ldots, n$ are the real positive eigenvalues of the matrix A then $s_{l}^{k}, l=1, \ldots, n$, are the real positive eigenvalues of the matrix A^{k} and the system (21) is unstable.

Example 6 Consider the system (21) with the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{36}\\
0 & 0 & 1 \\
1 & -2 & 2
\end{array}\right]
$$

for $k=2$. The characteristic polynomial of the matrix (36) has the form

$$
\operatorname{det}\left[I_{3} s-A\right]=\left|\begin{array}{ccc}
s & -1 & 0 \tag{37}\\
0 & s & -1 \\
-1 & 2 & s-2
\end{array}\right|=s^{3}-2 s^{2}+2 s-1
$$

and its zeros are: $s_{1}=1=e^{j 0^{\circ}}, s_{2}=\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j 60^{\circ}}, s_{3}=\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{-j 60^{\circ}}$. The system (21) with (36) for is unstable. Using (36) we obtain the matrix

$$
A^{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{38}\\
1 & -2 & 2 \\
2 & -3 & 2
\end{array}\right]
$$

Characteristic polynomial of (38) has the form

$$
\operatorname{det}\left[I_{3} s-A^{2}\right]=\left[\begin{array}{ccc}
s & 0 & -1 \tag{39}\\
-1 & s+2 & -2 \\
-2 & 3 & s-2
\end{array}\right]
$$

and its zeros are $s_{1}=1=e^{j 0^{\circ}}, s_{2}=-\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j 120^{\circ}}, s_{3}=-\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{-j 120^{\circ}}$.
The system (21) with (36) for $k=2$ is unstable. By Theorem 10 it is unstable for any k. The following example shows that the system (21) can be unstable for $k=1,2$ and asymptotically stable for $k=3 l, l=1,2, \ldots$.

Example 7 Consider the system (21) with the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{40}\\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
$$

for $k=1,2,3, \ldots$. The characteristic polynomial of (40) has the form

$$
\operatorname{det}\left[I_{3} s-A\right]=\left|\begin{array}{ccc}
s & -1 & 0 \tag{41}\\
0 & s & -1 \\
1 & 0 & s
\end{array}\right|=s^{3}+1
$$

and its zeros are: $s_{1}=-1=e^{j 180^{\circ}}, s_{2}=\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j 60^{\circ}}, s_{3}=\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{-j 60^{\circ}}$. For $k=1$ the condition (22) is not satisfied and the system is unstable. For $k=2$ we have the matrix

$$
A^{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{42}\\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

with the eigenvalues $s_{1}=1=e^{j 0^{\circ}}, s_{2}=-\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j 120^{\circ}}, s_{3}=-\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{-j 120^{\circ}}$ and the system is also unstable.

For $k=3$ we obtain the matrix

$$
A^{3}=\left[\begin{array}{ccc}
-1 & 0 & 0 \tag{43}\\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

with the eigenvalues $s_{1}=s_{2}=s_{3}=-1=e^{j 180^{\circ}}$. Therefore, the system for $k=3$ is asymptotically stable.

It is easy to prove that the system is asymptotically stable for $k=3 l, l=1,2, \ldots$.

5. Comparison of the stability of discrete-time and continuous-time linear systems

From the conditions (4) and (9), Remark 1 and Conclusion 1 it follows that the asymptotic stability of the discrete-time linear systems depends only on the modules of the eigenvalues of the matrix \bar{A} and of the continuous-time linear systems only on the phases of the eigenvalues of the matrix A.

To obtain to the continuous-time linear system (1) the corresponding discrete-time linear system (6) we apply the approximation

$$
\begin{equation*}
\dot{x}(t) \approx \frac{x(t+h)-x(t)}{h}=\frac{x_{i+1}-x_{i}}{h}=A x_{i}, \quad i \in Z_{+} \tag{44}
\end{equation*}
$$

where $x_{i}=x(t), x_{i+1}=x(t+h), h=\Delta t>0$. From (44) we have

$$
\begin{equation*}
x_{i+1}=\bar{A} x_{i} \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{A}=I_{n}+h A . \tag{46}
\end{equation*}
$$

From Theorem 5 applied to (46) we obtain

$$
\begin{equation*}
z_{l}=1+h s_{l}, \quad l=1, \ldots, n \tag{47}
\end{equation*}
$$

where z_{l} are the eigenvalues of the matrix \bar{A} and s_{l} are the eigenvalues of the matrix A.
Theorem 11 The discrete-time linear system (45) is asymptotically stable for all admissible values of $h>0$ if and only if the continuous-time linear system (1) is asymptotically stable.

Proof From (47) we have

$$
\begin{equation*}
s_{l}=\frac{z_{l}-1}{h}=\frac{\left|z_{l}\right| e^{j \Psi_{l}}-1}{h}, \quad l=1, \ldots, n \tag{48}
\end{equation*}
$$

where $\left|z_{l}\right|$ and ψ_{l} are the module and phase of z_{l} and

$$
\begin{equation*}
\operatorname{Re} s_{l}=\frac{\left|z_{l}\right| \cos \psi_{l}-1}{h}, \quad l=1, \ldots, n \tag{49}
\end{equation*}
$$

From (49) it follows that $\operatorname{Re} s_{l}<0$ for any admissible $h>0$ if and only if $\left|z_{l}\right|<1$, i.e. the discrete-time system is asymptotically stable.

Similarly, from (47) for $s_{l}=\left|s_{l}\right| e^{j \phi_{l}}$ we have

$$
\begin{equation*}
\left|z_{l}\right|^{2}=\left|1+h s_{l}\right|^{2}=\left[1+h\left|s_{l}\right| \cos \phi_{l}\right]^{2}+\left[h\left|s_{l}\right| \sin \phi_{l}\right]^{2}=1+2 h\left|s_{l}\right| \cos \phi+h^{2}\left|s_{l}\right|^{2}<1 \tag{50}
\end{equation*}
$$

and $\left|z_{l}\right|^{2}<1$ if and only if $\cos \phi<0$ or equivalently the condition (4) is satisfied.
Note that the admissible value of $h>0$ should satisfy the condition (50).
Theorem 12 The discretization step h of the asymptotically stable systems satisfies the condition

$$
\begin{equation*}
h<\min _{1 \leqslant l \leqslant n} \frac{2 \alpha_{l}}{\alpha_{l}^{2}+\beta_{l}^{2}}, \tag{51}
\end{equation*}
$$

where $s_{l}=-\alpha_{l}+j \beta_{l}, l=1, \ldots, n$ are the eigenvalues of the matrix A.
Proof From (47) it follows that the discrete-time system (45) is asymptotically stable if and only if

$$
\begin{equation*}
\left|z_{l}\right|=\left|h s_{l}+1\right|=\left|1-h \alpha_{l}+j h \beta_{l}\right|<1 \text { for } l=1, \ldots, n . \tag{52}
\end{equation*}
$$

From (52) we have

$$
\begin{equation*}
\left(1-h \alpha_{l}\right)^{2}+\left(h \beta_{l}\right)^{2}<1 \tag{53}
\end{equation*}
$$

and solving (53) with respect to h we obtain (51).
Example 8 Consider the continuous-time linear system (1) with the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{54}\\
-2 & -3
\end{array}\right]
$$

The characteristic polynomial of (54) has the form

$$
\operatorname{det}\left[I_{2} s-A\right]=\left|\begin{array}{cc}
s & -1 \tag{55}\\
2 & s+3
\end{array}\right|=s^{2}+3 s+2
$$

and the eigenvalues of the matrix (54) are $s_{1}=-1, s_{2}=-2$. The system (1) with (54) is asymptotically stable. The eigenvalues of the corresponding matrix

$$
\bar{A}=I_{n}+h A=\left[\begin{array}{cc}
1 & h \tag{56}\\
-2 h & 1-3 h
\end{array}\right]
$$

of discrete-time system are $z_{1}=1-h, z_{1}=1-2 h$. The discrete-time system (45) with (56) is asymptotically stable for all $0<h<1$.

6. Concluding remarks

The asymptotic stability of discrete-time linear systems (11) and continuous-time linear systems (21) for k integers ($k= \pm 1, \pm 2, \ldots$) and rational ($\frac{p}{q}, p, q$ - integers) has been investigated. Necessary and sufficient conditions for the asymptotic stability of the systems have been established (Theorems $6,7,8,9,10$). It has been shown that:

1) The asymptotic stability of (11) depends only on the modules of the eigenvalues of the matrix \bar{A}^{k} and of (21) only on the phases of the eigenvalues of the matrix A^{k}.
2) The discrete-time systems (11) are asymptotically stable for all admissible values of h if and only if the continuous-time systems (21) are asymptotically stable.
3) The upper bounds of h depends on the eigenvalues of the matrix A.

The considerations have been illustrated by numerical examples of discrete-time and continuous-time linear systems.

The presented considerations can be extended to positive discrete-time and continuous-time linear systems. An open problem is an extension of the considerations to fractional linear systems.

References

[1] P.J. Antsaklis and A.N. Michel: Linear Systems, Birkhauser, Boston, 2006.
[2] F.R. Gantmacher: The Theory of Matrices, Chelsea Pub. Comp., London, 1959.
[3] T. KacZorek: Approximation of positive stable continuous-time linear systems by positive stable discrete-time systems. Pomiary Automatyka Robotyka, 2 (2013), 359-364.
[4] T. Kaczorek: Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems. Int. J. of Applied Mathematics and Computer Science, 23(3), (2013), 501-506.
[5] T. KACZOREK: Comparison of approximation methods of positive stable continuous-time linear systems by positive stable discrete-time systems.Archives of Electrical Engineering, 62(2), (2013), 345-355.
[6] T. KACZOREK: Influence of the value of discretization step on the stability of positive and fractional systems. Proc. National Conf. on Automation, Wroclaw, Poland, (2014), 1-8.
[7] T. KACZOREK: Inverse systems of linear systems. Archives of Electrical Engineering, 59(3-4), (2010), 203-216.
[8] T. Kaczorek: Linear Control Systems, vol. 1. Research Studies Press, J. Wiley, New York, 1992.
[9] T. Kaczorek: Vectors and Matrices in Automation and Electrotechnics. WNT, Warszawa, 1998 (in Polish).
[10] T. KAILATH: Linear Systems. Prentice-Hall, Englewood Cliffs, New York, 1980.
[11] H. Rosenbrock: State-Space and Multivariable Theory. J. Wiley, New York, 1970.
[12] S.H. ŻAK: Systems and Control. Oxford University Press, New York, 2003.

[^0]: The authors is with Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland. E-mail: kaczorek@ee.pw.edu.pl

 This work was supported by National Science Centre in Poland under work No. 2014/13/B/ST7/03467.
 Received 18.08.2016.

