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Adaptive robust simultaneous stabilization controller
with tuning parameters design for two dissipative

Hamiltonian systems

ZHONG CAO, XIAORONG HOU and WENJING ZHAO

This paper investigates the problem of adaptive robust simultaneous stabilization (ARSS)
of two dissipative Hamiltonian systems (DHSs), and proposes a number of results on the con-
troller parameterization design. Firstly, an adaptive H∞ control design approach is presented
by using the dissipative Hamiltonian structural for the case that there are both external distur-
bances and parametric uncertainties in two DHSs. Secondly, an algorithm for solving tuning
parameters of the controller is proposed using symbolic computation. The proposed controller
parameterization method avoids solving Hamilton-Jacobi-Issacs (HJI) equations and the ob-
tained controller is easier as compared to some existing ones. Finally, an illustrative example is
presented to show that the ARSS controller obtained in this paper works very well.

Key words: ARSS control, DHSs, symbolic computation, controller parameterization, tun-
ing parameters.

1. Introduction

In practical control systems design, the simultaneous stabilization control problem
has often to be considered because of system parameters’ uncertainty, controller failure
modes or systems with different modes of operation. It is a more economical approach
to such problem that designing a single controller to stabilize all of the systems simul-
taneously. So far, there are many important results for simultaneous stabilization control
in linear systems [1-4]. In general, designing simultaneous stabilization controller is

Zhong Cao, the corresponding author is with School of Physics and Electronic Engineering, Guangzhou
University, Guangzhou 510006, China and also with Guangdong Provincial Engineering and Tech-
nology Research Center for Mathematical Education Software, Guangzhou, 510006, China, e-mail:
zhongc@gzhu.edu.cn; Xiaorong Hou is with School of Energy Science and Engineering, University
of Electronic Science and Technology of China 611731, Chengdu, China, e-mail: houxr@uestc.edu.cn;
Wenjing Zhao is with Lab Center, Guangzhou University, Guangzhou 510006, China, e-mail: zhaowen-
jing@gzhu.edu.cn

This work was supported by the National Natural Science Foundation of China No. 61374001, National
High Technology Research and Development Program of China No.2015AA015408 and the scholarship
from China Scholarship Council (CSC) under the Grant CSC No. 201609945011.

Received 03.08.2017.

10.1515/acsc-2017-0030



506 ZHONG CAO , XIAORONG HOU, WENJING ZHAO

very difficult for a class of nonlinear systems, but it is a work worth doing for many
researchers. Some nice results were proposed for the existence of simultaneous stabi-
lization controller of a set of nonlinear systems [5]. Through using Lyapunov function
method, sufficient and necessary conditions for the existence of feedback time-invariant
simultaneous stabilization controllers in single-input nonlinear systems were derived [6].
In the area of robust nonlinear systems control, the simultaneous stabilization control
problem is one of important research topics, which has to be studied more and more.
Sufficient conditions for simultaneous stabilization control with and without H∞ perfor-
mance were proposed for a class of state-dependent polynomial systems [7]. The simul-
taneous stabilization control problem for a set of port-controlled Hamiltonian systems
was investigated and some results were proposed by using the Hamiltonian function
method [8, 9]. Ref. [10] proposed a number of results on design of parallel simultaneous
stabilization controllers for a set of port-controlled Hamiltonian systems with actuator
saturation. An adaptive robust parallel simultaneous stabilization of two uncertain port-
controlled Hamiltonian systems subject to input saturation had been presented [11].

As everyone knows, the control systems have two basic constraints, which are the
internal stability and the external disturbance attenuation. However, it’s crucial to sat-
isfy some desired control objectives in designing a practical control system. Finding the
parameterized controller is a sophisticated and efficient way for solving various control
problems. Therefore, controller parameterization is a basic problem in the control the-
ory, which has been received considerable attentions in recent decades [12-16]. Firstly,
Ref. [12] proposed polynomial parameterization of stabilizing controllers. A family of
nonlinear H∞ controller via output feedback had been proposed [13]. Yung, Ref. [14] pre-
sented a family of H∞ state-feedback controller for n-dimensional nonlinear system by
extending the state-space formulas. A family of reliable nonlinear H∞ controller had been
proposed via solving the Hamilton-Jacobi-Issacs (HJI) inequality (or equations) [15].
These controllers obtained in [12-16] are intended to solve a class of HJI inequalities (or
equations), which have actually imposed a considerable difficulty. Ref. [17] studied the
generalized Hamiltonian system and proposed a family of parameterized controller in
H∞ control. An H∞ controller with tuning parameters for polynomial Hamiltonian sys-
tems was proposed by using symbolic computation approach [18]. The methods in [17,
18], avoided solving HJI inequalities (or equations) through applying clear physical ex-
pression and good structure of dissipative Hamiltonian systems. But the parameterized
controller is intended to solve the control problem for just one system. There are fewer
works for ARSS control design of two DHSs.

Therefore, it is a challenging issue to design a controller with tuning parameters
to solve ARSS problem for two DHSs. In this paper, a novel and convenient method
to design an ARSS controller with tuning parameters for two DHSs is proposed. We
add some items containing tuning parameters into the controller, and solve the tuning
parameters ranges. Within parameters ranges, the controllers insure that the DHSs are
ARSS control and can optimize the robustness for all or part of DHSs.

The remainder of this paper is organized as follows. In Section 2, the problem of
ARSS for DHSs is formulated. The main contribution of this paper is then given in Sec-
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tion 3, in which ARSS controller with tuning parameters and an algorithm for solving
tuning parameters are provided, respectively. We present a numerical example for illus-
trating effectiveness and feasibility of controller in Section 4 and conclusions follow in
Section 5.

2. Problem formulation

Consider the following two DHSs [8]:

∑1 :


ẋ = [J1 (x, p1)−R1 (x, p1)]

∂H1 (x, p1)

∂x
+g1 (x)u+ ḡ1 (x)ω

y = g1
T (x)

∂H1 (x)
∂x

(1)

∑2 :


ξ̇ = [J2 (ξ, p2)−R2 (ξ, p2)]

∂H2 (ξ, p2)

∂ξ
+g2 (ξ)u+ ḡ2 (ξ)ω

η = g2
T (ξ)

∂H2 (ξ)
∂ξ

(2)

where x,ξ ∈ ℜn and y,η ∈ ℜm are the states vector and the outputs of the two
DHSs, respectively; p1 and p2 are constant unknown vectors in systems, which are
sufficiently small; u ∈ ℜm is the controller with tuning parameters; ω ∈ ℜs is the
disturbance; Ji (x,0) = Ji (x), Ri (x,0) = Ri (x) and Ji (x, pi) = −JT

i (x, pi) ∈ ℜn×n,
0 6 Ri (x, pi) ∈ ℜn×n; gi (x) ∈ ℜn×m and ḡi (x) ∈ ℜn×s are sufficiently smooth functions;
Hi (x,0) = Hi (x) and Hi(x) is the Hamiltonian function which has a local minimum at
the equilibrium x(i)e , i = 1,2, x(1)e = x0, x(2)e = ξ0.

Assumption 1 Hi
(
x(i)
)
∈ C2 and the Hessian matrix Hess

(
Hi

(
x(i)0

))
> 0 for system

(1) and system (2).

Given a disturbance attenuation level γ > 0, choose

z = Λ
(

gT
1 (x)

∂H1 (x)
∂x

+gT
2 (ξ)

∂H2 (ξ)
∂ξ

)
(3)

as the penalty function, where Λ ∈ ℜs×m is a weighting matrix with full column rank
and satisfying λ

(
ΛT Λ

)
6 1, where λ(·) denotes the eigenvalue of a matrix. Then, our

objective of this section is described as follows:

ARSS control: Design an L2 feedback controller u = α(x,ξ), (α(x0,ξ0) = 0), such that
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R1: The L2 gain (from ω to z) of the closed-loop system is less than γ.

R2: System (1) and system (2) are simultaneously asymptotically stable when ω van-
ishes.

hold simultaneously.
Then, a lemma and a definition required in next section are proposed.

Lemma 1 Consider a nonlinear system [19]:
ẋ = f (x)+g(x)ω = T (x)

∂H
∂x

+g(x) ω, f (x0) = 0

y = h1 (x)
z = h2 (x)

(4)

where x ∈ ℜn is the state vector, ω ∈ ℜs is the disturbances, z ∈ ℜq is the penalty and
H(x) has a local minimum at the equilibrium x0. If there exists the function V (x) > 0,
(V (x0) = 0) such that HJI inequality(

∂V
∂x

)T

f (x)+
1

2γ2

(
∂V
∂x

)T

g(x)g(x)T
(

∂V
∂x

)
+

1
2

h(x)T h(x)6 0 (5)

holds, it’s implied that the L2 gain of the closed-loop system (2) (from ω to z) is bounded
by γ, i.e.,

T∫
0

∥z∥2dt 6
T∫

0

γ2 ∥ω∥2
dt, ∀ω ∈ L2 [0,T] (6)

where γ is a positive number.

Definition 1 [20] System (4) is called zero-energy-gradient (ZEG) observable with re-
spect to y if y(t) = 0 and ω(t) = 0, ∀t  0, implies ∇H (x(t)) = 0, ∀t  0; sys-
tem (4) is called ZEG detectable with respect to y if y(t) = 0 and ω(t) = 0, ∀t  0,
implies limt→∞∇H (x(t)) = 0; system (4) is called generalized ZEG observable (de-
tectable) if y(t) = 0, z(t) = 0, ω(t) = 0, ∀t  0, implies ∇H (x(t)) = 0, ∀t  0,
(limt→∞∇H (x(t)) = 0).

3. Main results

In this section, firstly, an adaptive H∞ controller with tuning parameters for system
(1) and system (2) is proposed. Then, we present an algorithm for solving tuning param-
eters.
Notation 1: ∇H1 =

∂H1(x)
∂x , ∇H2 =

∂H2(ξ)
∂ξ , g1 = g1 (x), ḡ1 = ḡ1 (x), g2 = g2 (ξ), ḡ2 = ḡ2 (ξ).
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3.1. ARSS control of two DHSs

Assumption 2 There exits an n1 ×m matrix Ψ such that

[Ji (xi, pi)−Ri (xi, pi)]∆Hi (xi, pi) = giΨT θ (7)

where ∆Hi (xi, pi) =
∂Hi
∂xi

(xi, pi)− ∂Hi
∂xi

(xi) and θ ∈ ℜn1 is a constant unknown parameter
vector depending on pi, i = 1,2, x = x1, x2 = ξ.

Assumption 2 is a common assumption in the adaptive control of Hamiltonian sys-
tems. In most cases, we can find and such that (7) holds [20]. For the above ARSS control
problem, we have the following result.

Theorem 1 Considering system (1) and system (2), with the penalty function (3) and
the given disturbance attenuation level γ > 0, assume that system (1) and system (2) are
generalized ZEG detectable (when u = 0). If

• i) There exists a symmetric matrix K ∈ ℜm×m, satisfying

K
(

ΛT Λ+
1
γ2 Im

)
=

(
ΛT Λ+

1
γ2 Im

)
K

such that
R̃1 (x, p1) = R1 (x, p1)+K11 (x,x)−

1
2γ2 ḡ1ḡT

1 − 1
2

g1ΛT ΛgT
1 > 0

R̃2 (ξ, p2) = R2 (ξ, p2)−K22 (ξ,ξ)−
1

2γ2 ḡ2ḡT
2 − 1

2
g2ΛT ΛgT

2 > 0
(8)

where Ki j (x,ξ) = 1
2 gi (x)K

(
ΛT Λ+ 1

γ2 Im

)
gT

j (ξ), i, j = 1,2;

• ii)
g1gT

2 = 0 and ḡ1ḡT
2 = 0; (9)

• iii) [
∇HT

1 g1 +∇HT
2 g2
]

Φ(x,ξ,φ)6 0; (10)

hold simultaneously. Thenu =
1
2

K
(

ΛT Λ+
1
γ2 Im

)(
−gT

1 ∇H1 +gT
2∇H2

)
+Φ(x,ξ,φ)−ΨT θ̂

˙̂θ = QΨ
(
gT

1 ∇H1 +gT
2 ∇H2

) (11)

is an adaptive L2 disturbance attenuation controller, such that both R1 and R2 hold
simultaneously for system (1) and system (2), where Φ(x,ξ,φ) is a polynomial matrix
with a set of tuning parameters, φ is a set of tuning parameters and Im is an m×m unit
matrix.
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Proof Substituting controller (11) into system (1) and system (2), and Assumption
2 holds, we obtain the following closed-loop systems:

ẋ = [J1 (x, p1)−R1 (x, p1)]
∂H1 (x, p1)

∂x

+g1

[
1
2

K
(

ΛT Λ+
1
γ2 Im

)(
−gT

1 ∇H1 +gT
2 ∇H2

)
+Φ(x,ξ,φ)

]
−g1ΨT (θ− θ̂

)
+ ḡ1ω

ξ̇ = [J2 (ξ, p2)−R2 (ξ, p2)]
∂H2 (ξ, p2)

∂ξ

+g2

[
1
2

K
(

ΛT Λ+
1
γ2 Im

)(
−gT

1 ∇H1 +gT
2 ∇H2

)
+Φ(x,ξ,φ)

]
−g2ΨT (θ− θ̂

)
+ ḡ2ω

˙̂θ = QΨ
(
gT

1 ∇H1 +gT
2 ∇H2

)
(12)

The system (12) can rewrite as: ẋ
ξ̇
˙̂θ

=
J1 (x, p1)−R1 (x, p1)−K11 (x,x) K12 (x,ξ) −g1ΨT Q

−K21 (ξ,x) J2 (ξ, p2)−R2 (ξ, p2)+K22 (ξ,ξ) −g2ΨT Q(
g1ΨT Q

)T (
g2ΨT Q

)T 0



×


∂H1(x,p1)

∂x
∂H2(ξ,p2)

∂x

−Q−1
(
θ− θ̂

)
+

 g1 (x)
g2 (ξ)

0

Φ
(
x,ξ, θ̂

)
+

 ḡ1 (x)
ḡ2 (ξ)

0

ω

(13)
Let X =

[
xT ,ξT , θ̂T

]T
, Y =

[
yT ,ηT

]T ,

J̄ (X , p) =

 J1 (x, p1) K12 (x,ξ) −g1ΨT Q
−K21 (ξ,x) J2 (ξ, p2) −g2ΨT Q(
g1ΨT Q

)T (
g2ΨT Q

)T 0

,

R̄(X , p) =

 R1 (x, p1)+K11 (x,x) 0 0
0 R2 (ξ, p2)−K22 (ξ,ξ) 0
0 0 0

, G(X) =

 g1 (x)
g2 (ξ)

0

,

Ḡ(X) =

 ḡ1 (x)
ḡ2 (ξ)

0

, H̄ (X) = H1 (x)+H2 (ξ)+ 1
2

(
θ− θ̂

)T
Q−1

(
θ− θ̂

)
, where

∂H̄ (X)

∂X
=


∂H̄(X)

∂x
∂H̄(X)

∂ξ
∂H̄(X)

∂θ̂

=

 ∇H1

∇H2

∇H3

 , p =
[
p1

T , p2
T ]T , v = Φ(x,ξ,φ) .
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So, the systems (13) can be rewritten as:
Ẋ = [J̄ (X , p)− R̄(X , p)]

∂H̄ (X)

∂X
+G(X)v+ Ḡ(X)ω = f (X)+ Ḡ(X)ω

Y = M (X)
∂H̄ (X)

∂X
.

(14)

Obviously, J̄ (X , p) is a skew-symmetric matrix and R̄(X , p) is a positive semi-definite
matrix. Thus, the system (14) is a dissipative Hamiltonian system (DHS).

The output of the system (1) and system (2) can be rewritten as:

Y = M (X)
∂H̄ (X)

∂X
(15)

where M (X) =

 gT
1 (x) 0 0
0 gT

2 (ξ) 0
0 0 0

.

The penalty function can be expressed as:

z = ΛGT (X)
∂H̄ (X)

∂X
:= h(X) . (16)

Consider the candidate Lyapunov function V (X) = H̄ (X)−c> 0, where c= H̄ (X0).
With Lemma 1 and the conditions of the Theorem 1, we have(

∂V
∂X

)T

f (X)+
1

2γ2

(
∂V
∂X

)T

Ḡ(X) ḠT (X)

(
∂V
∂X

)
+

1
2

hT (X)h(X)

=−
(

∂H̄
∂X

)T

R̄(X , p)
∂H̄
∂X

+

(
∂H̄
∂X

)T

G(X)ν+
1

2γ2

(
∂H̄
∂X

)T

Ḡ(X) ḠT (X)

(
∂H̄
∂X

)
+

1
2

hT (X)h(X)

=−
[

∇HT
1 ∇HT

2 ∇HT
3

] R1 (x, p1)+K11 (x,x) 0 0
0 R2 (ξ, p2)−K22 (ξ,ξ) 0
0 0 0


 ∇H1

∇H2

∇H3



+
[

∇HT
1 ∇HT

2 ∇HT
3

] g1

g2

0

Φ(x,ξ,φ)
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+
1

2γ2

[
∇HT

1 ∇HT
2 ∇HT

3

] ḡ1

ḡ2

0

[ ḡT
1 ḡT

2 0
] ∇H1

∇H2

∇H3



+
1
2

[
∇HT

1 ∇HT
2 ∇HT

3

] g1

g2

0

ΛT Λ
[

gT
1 gT

2 0
] ∇H1

∇H2

∇H3


=−

(
∇HT

1 (R1 +K11)∇H1 +∇HT
2 (R2 −K22)∇H2

)
+
(
∇HT

1 g1 +∇HT
2 g2
)

Φ(x,ξ,φ)

+
1

2γ2

(
∇HT

1 ḡ1ḡT
1 ∇H1 +∇HT

2 ḡ2ḡT
1 ∇H1 +∇HT

1 ḡ1ḡT
2 ∇H2 +∇HT

2 ḡ2ḡT
2 ∇H2

)
+

1
2
(
∇HT

1 g1ΛT ΛgT
1 ∇H1 +∇HT

2 g2ΛT ΛgT
1 ∇H1

+∇HT
1 g1ΛT ΛgT

2 ∇H2 +∇HT
2 g2ΛT ΛgT

2 ∇H2
)

=−∇HT
1

(
R1 +K11 −

1
2γ2 ḡ1ḡT

1 − 1
2

g1ΛT ΛgT
1

)
∇H1

−∇HT
2

(
R2 −K22 −

1
2γ2 ḡ2ḡT

2 − 1
2

g2ΛT ΛgT
2

)
∇H2

+
(
∇HT

1 g1 +∇HT
2 g2
)

Φ(x,ξ,φ)6 0
(17)

According to Lemma 1, the L2 gain of system (14) (from ω to z) is no more than γ and
R1 holds.

Next, we prove that system (14) is asymptotically stable when ω = 0. When ω = 0,
it is easy to know from system (14) that

V̇ (X) =

(
∂V
∂X

)T

[J̄ (X , p)− R̄(X , p)]
(

∂V
∂X

)
+

(
∂V
∂X

)T

G(X)v

=−
(

∂H̄ (X)

∂X

)T

R̄(X , p)
(

∂H̄ (X)

∂X

)
+

(
∂H̄ (X)

∂X

)T

G(X)v

=−
[

∇HT
1 ∇HT

2 ∇HT
3

] R1 (x, p1)+K11 (x,x) 0 0
0 R2 (ξ, p2)−K22 (ξ,ξ) 0
0 0 0


 ∇H1

∇H2

∇H3



+
[

∇HT
1 ∇HT

2 ∇HT
3

] g1

g2

0

Φ(x,ξ,φ)
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=−∇HT
1

(
R1 +K11 −

1
2γ2 ḡ1ḡT

1 − 1
2

g1ΛT ΛgT
1

)
∇H1 −

1
2γ2 ∇HT

1 ḡ1ḡT
1 ∇H1

− 1
2

∇HT
1 g1ΛT ΛgT

1 ∇H1 −∇HT
2

(
R2 −K22 −

1
2γ2 ḡ2ḡT

2 − 1
2

g2ΛT ΛgT
2

)
∇H2

− 1
2γ2 ∇HT

2 ḡ2ḡT
2 ∇H2 −

1
2

∇HT
2 g2ΛT ΛgT

2 ∇H2

+
(
∇HT

1 g1 +∇HT
2 g2
)

Φ(x,ξ,φ)6 0

(18)

Thus, the solution of the closed-loop system converges to the largest invariant set con-
tained in

S =
{

X : V̇ (X) = 0
}
⊂
{

X : Y = M (X)∇H̄ ≡ 0,z = ΛGT (X)∇H̄ ≡ 0,∀t > 0
}

From the fact that system (14) is generalized ZEG detectable, we know that

lim
t→∞

∇H̄ (X (t)) = lim
t→∞

 ∇H (x(t))
∇H (ξ(t))

−Q−1
(
θ− θ̂(t)

)
=

 ∇H (limt→∞x(t))
∇H (limt→∞ξ(t))

limt→∞
[
−Q−1

(
θ− θ̂(t)

)]
= 0,

(19)
∀X ∈ S

Hence, the largest invariant set contains only one point, i.e., X0 =
[
xT

0 ,ξT
0 , θ̂T

]T
which

is the equilibrium point. From LaSalle’s invariance principle, the closed-loop system
(14) and controller (11) is asymptotically stable at its equilibrium and R2 holds. This
completes the proof.

Remark 1

1. In Theorem, when all of tuning parameters φ in controller (11) are zero (i.e.,
Φ(x,ξ,φ) = 0), the controller is same to the controller proposed [7], which is
a controller without parameter. However, the controller (11) obtained in this paper
is a parameterized controller, which has a set of tuning parameters.

2. The condition (8) and (9) in Theorem are not restrictive, and can be easily satisfied
in many systems.

3. Φ(x,ξ,φ) is a polynomial vector with tuning parameters. We can obtain the tuning
parameters range of via solving condition (10).

4. The proposed parameterization method can be used for a nonlinear control system,
and of course the first step in applying the method is to express the nonlinear
system as a DHS based on dissipative Hamiltonian realization methods [21, 22].
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3.2. Solving of tuning parameters (STP) algorithm

From condition (8), we can obtain the γ∗. Let γ > γ∗ such that condition (8) holds.
Then we propose an algorithm to find tuning parameters ranges of controller (11) via
solving tuning parameters of Φ(x,ξ,φ) in condition (10). The STP algorithm now
proceeds as follows.

STP Algorithm

INPUT: A set parameters of system Sys = {xiN ,N1,N2,r,∇H1,∇H2,G1,G2}. //xiN is the
state variable of two systems, N1 is the number of the state variable of system one, N2
is the number of state variable of system two and r is the highest order polynomial for
tuning parameters.

OUTPUT: A set of Tuning parameters’ ranges U . //U is empty set initially.

Step 1: Initialization

For i = 1 to l //l = N1

For k = 1 to r

{t = c(l + k−1,k); k = k1 + k2 + · · ·+ kl; Pil =
t
∑
j=1

ν jlx
k1
i1 xk2

i2 · · ·x
kl
il ;

Φa = Φa +Pil; }

//c(l + k−1,k) is the combinatorial function.

For i = 1 to l //l = N2

For k = 1 to r

{t = c(l + k−1,k); k = k1 + k2 + · · ·+ kl; Pil =
t
∑
j=1

ν jlx
k1
i1 xk2

i2 · · ·x
kl
il ;

Φb = Φb +Pil; }

Φ(X1,X2,ν) = [Φa,Φb]
T
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Step 2: Main body

Begin

S =−
[
∇HT

1 G1 +∇HT
2 G2

]
Φ(X1,X2,ν);

For j = 1 to nops(S); //nops(S) is the number of terms of polynomial S.

If (deg(S) is odd number); //deg(S) is degree of polynomial S.

Θ1 = {coe f (S,deg(S) = odd) = 0}; //Choose some terms, which degree is

odd number (deg(S) = odd) from S and let the coefficients of such terms be

zero. We can obtain a set of equations Θ1.

End If

U1 = {CylindricalAlgebraicDecompose(Θ1)} ; //Solve the Θ1 by using cylindri-

cal algebraic decompositions (CAD) algorithm [23] and obtain the solution set U1

of the tuning parameters.

S′ = subs(U1,S); // Substitute solution set U1 into S and obtain a new polynomial S′.

M = Matrix(S′); // Rewrite S′ as coefficient matrix M.

Θ2 = {Determinant (M)> 0}; //All principal minors of M must be positive

semi-definite [24] and we can obtain a set of inequalities Θ2.

U2 = {CylindricalAlgebraicDecompose(Θ2)}; // Solve the Θ2 by using CAD and

choose one solution set of tuning parameters ranges U2.

U =U1 ∪U2 and Return (U);

End. This completes the algorithm.



516 ZHONG CAO , XIAORONG HOU, WENJING ZHAO

Remark 2

1. The STP algorithm starts from r = 1 normally.

2. The CAD algorithm is given in Semi-Algebraic-Set-Tools of Regular-Chains in
Maple 16.

3. It is merely to simplify computation that we let some tuning parameters be zero
before using CAD algorithm. However, these tuning parameters are not necessar-
ily zero. The solution set of tuning parameters obtained by STP algorithm is a
subset of solutions.

4. Numerical experiments

Consider the following two DHSs with external disturbances and parametric uncer-
tainties described as:

ẋ = [J1 (x, p1)−R1 (x, p1)]
∂H1 (x, p1)

∂x
+g1 (x)u+ ḡ1 (x)ω

y = g1
T (x)

∂H1 (x)
∂x

(20)

where

J1(x, p1) =

 0 1 0
−1 0 −2
0 2 0

 , g1 =

 0 0
1 −1
1 −1

 , ḡ1 =

 0 0
1 1
0 0


R1 (x, p1) = Diag{1+ p1,1,2} , H1 (x, p1) =

1
2

x1
2 + x2

2 +
1
2
(1+ p1)x3

2, |p1|< 1.
ξ̇ = [J2 (ξ, p2)−R2 (ξ, p2)]

∂H2 (ξ, p2)

∂ξ
+g2 (ξ)u+ ḡ2 (ξ)ω

η = ḡT
2 (ξ)

∂H2 (ξ)
∂ξ

(21)

where

J2(ξ, p2) =

 0 −1 0
1 0 0
0 0 0

 , g2 =

 1 1
−1 −1
0 0

 , ḡ2 =

 1 −1
−1 1
0 0


R2 (ξ, p2) = Diag{1,2,1+ p2} , H2 (ξ, p2) = (1+ p2)ξ1

2 +2ξ2
2 +ξ3

2, |p2|< 1
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4.1. Controller design and solving tuning parameters

From system (20) and system (21), it is easy to get

Hess(H1 (x0)) =

 1 0 0
0 2 0
0 0 1+ p1

> 0, Hess(H2 (ξ0)) =

 2+2p2 0 0
0 4 0
0 0 2

> 0.

So Assumption 1 holds.
Given a disturbance attenuation level γ > 0, choose

z = Λ
(
gT

1 ∇H1 +gT
2 ∇H2

)
. (22)

Suppose K =

[
1 0
0 −1

]
, Λ =

[
1
2 0
0 1

2

]
. We have KT K =

[
1 0
0 1

]
, ΛT Λ =[

1
4 0
0 1

4

]
, K
(

ΛT Λ+ 1
γ2 Im

)
=
(

ΛT Λ+ 1
γ2 Im

)
K =

[
1
4 +

1
γ2 0

0 −1
4 −

1
γ2

]
. A straightfor-

ward computation shows that when γ > 2
√

15
5 ,

R̃1 (x) =

 1+ p1 0 0
0 3

4 −
1
γ2 −1

4

0 −1
4

7
4

> 0, R̃2 (ξ) =


3
4 −

1
γ2

1
4 +

1
γ2 0

1
4 +

1
γ2

7
4 −

1
γ2 0

0 0 1+ p2

> 0.

Thus, the condition (8) holds. From system (20) and system (21),

g1gT
2 =

 0 0 0
0 0 0
0 0 0

 , ḡ1ḡT
2 =

 0 0 0
0 0 0
0 0 0

 .
The condition (9) holds.

Let Φ(x,ξ,φ) =
[

Φ1 (x,φ1)

Φ2 (ξ,φ2)

]
. We know that n = 6 in system (20) and system (21).

Let r = 1, We have Φ1 (x,φ1) = a1x1 + a2x2 + a3x3, Φ2 (ξ,φ2) = b1ξ1 + b2ξ2 + b3ξ3,
where φ1 is the tuning parameters ai and φ2 is the tuning parameters bi, i = 1,2,3.

From system (20) and system (21), we obtain that[
∇HT

1 g1 +∇HT
2 g2
]
=
[

2x2 + x3 +2ξ1 −4ξ2 −2x2 − x3 +2ξ1 −4ξ2

]
.

Let S =−
[
∇HT

1 g1 +∇HT
2 g2
]

Φ(x,ξ), we have

S =−2a1x1x2 −a1x1x3 −2a1x1ξ1 +4a1x1ξ2 −2a2x2
2 − (a2 +2a3)x2x3 − (2a2 −2b1)x2ξ1

+(4a2 +2b2)x2ξ2 +2b3x2ξ3 −a3x2
3 − (2a3 −b1)x3ξ1 +(4a3 +b2)x3ξ2 +b3x3ξ3

−2b1ξ2
1 +(4b1 −2b2)ξ1ξ2 −2b3ξ1ξ3 +4b2ξ2

2 +4b3ξ2ξ3.
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S is a quadratic form and can be rewritten as a coefficient matrix (multiply constant 2 for
simplified calculation).

M =



0 −2a1 −a1 −2a1 4a1 0
−2a1 −4a2 −2a3 −a2 −2a2 +2b1 4a2 +2b2 2b3

−a1 −2a3 −a2 −2a3 −2a3 +b1 4a3 +b2 b3

−2a1 −2a2 +2b1 −2a3 +b1 −4b1 4b1 −2b2 −2b3

4a1 4a2 +2b2 4a3 +b2 4b1 −2b2 8b2 4b3

0 2b3 b3 −2b3 4b3 0


All the principal minors of M must be positive semi-definite. We have inequalities B

from M. From B, we can easily obtain that a3 ¬ 0, b1 ¬ 0.
Substituting U1 = {a1 = 0,b3 = 0,a2 = 2a3,b2 =−2b1} into inequalities B for sim-

plify computation, we obtain simplified inequalities B′. Solving inequalities B′ by using
CAD algorithm, we obtain a series of sets. Choose some sets, which satisfy inequalities
B′, and organize them. We have

[U =
{

a3 6 0,b1 6 0,12a3b1 −4a2
3 −b2

1 > 0
}
∪U1. (23)

From system (20) and system (21), we have[
−gT

1 ∇H1 +gT
2 ∇H2

]
=
[
−2x2 − x3 +2ξ1 −4ξ2 2x2 + x3 +2ξ1 −4ξ2

]T
,

[
gT

1 ∇H1 +gT
2 ∇H2

]
=
[

2x2 + x3 +2ξ1 −4ξ2 −2x2 − x3 +2ξ1 −4ξ2

]T
.

Substituting them and U into controller (11), we obtain the controller:
u =

 (1
8 +

1
2γ2

)
(−2x2 − x3 +2ξ1 −4ξ2)(

−1
8 −

1
2γ2

)
(2x2 + x3 +2ξ1 −4ξ2)

+[ 2a3x1 +a3x3

b1ξ1 −2b1ξ2

]
−ΨT θ̂

˙̂θ = QΨ

[
2x2 + x3 +2ξ1 −4ξ2

−2x2 − x3 +2ξ1 −4ξ2

] (24)

where a3 6 0,b1 6 0,12a3b1 −4a2
3 −b2

1 > 0.
We have the controller with tuning parameters for system (20) and system (21). The

controller (24) has a rather simple form.

4.2. Simulations and results

In order to evaluate the robustness of the controller (24), we set the disturbance
attenuation level of system (20) and system (21) as: γ =

√
3, and the tuning parameters
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of controller as: a3 =−1, b1 =−1. Choose

Ψ =

[
−ξ1 0 −x3

−ξ1 0 x3

]T

, θ =
[

p2 0 p1

]T
,

we have

[J1 (x, p1)−R1 (x, p1)]∆H (x, p1) = g1ΨT θ =
[

0 −2p1x3 −2p1x3

]T
,

[J2 (ξ, p2)−R2 (ξ, p2)]∆H (ξ, p2) = g2ΨT θ =
[
−2p2ξ1 2p2ξ1 0

]T
.

The Assumption 2 holds for system (20) and system (21). Suppose Q=Diag{1,1,1}
and we have the controller (25), which has a rather simple form.

u1 =−31
12

x2 −
31
24

x3 +
7
12

ξ1 −
7
6

ξ2 +ξ1θ̂1 + x3θ̂3

u2 =− 7
12

x2 −
7

24
x3 −

19
12

ξ1 +
19
6

ξ2 +ξ1θ̂1 − x3θ̂3

˙̂θ1 =−4ξ2
1 +8ξ1ξ2

˙̂θ3 =−4x2x3 −2x2
3

(25)

To illustrate the effectiveness of controller (25), we carry out some numerical simula-
tions with the following choices: x(0) = [0.6,0.2,1]T , ξ(0) = [0.5,1,0.2]T . To test the
robustness of the controller with respect to external disturbances, a square disturbance
ω = [2,3]T is added to systems in the time duration [2 ∼ 2.5s]. The parameter pertur-
bation p = [0.5,0.5]T . The simulation results are shown in Figures 1-4, which are the
responses of the state and control signal, respectively.

From Figures 1-4, we know that the controller (25) is very effective in ARSS control
for system (20) and system (21).

In order to evaluate the robustness optimization of the systems by adjusting the tun-
ing parameters of controller (24), we choose the parameters of system (20) and system
(21) as: a3 =−1, b1 =−100. We have the following controller:

u1 =−31
12

x2 −
31
24

x3 +
7
12

ξ1 −
7
6

ξ2 +ξ1θ̂1 + x3θ̂3

u2 =− 7
12

x2 −
7

24
x3 −

1207
12

ξ1 +
1207

6
ξ2 +ξ1θ̂1 − x3θ̂3

˙̂θ1 =−4ξ2
1 +8ξ1ξ2

˙̂θ3 =−4x2x3 −2x2
3

(26)

To illustrate the effectiveness of controller (26), the initial value of systems and param-
eter perturbation are same to above. We impose an external disturbance ω = [2,3]T on
system (20) and system (21) during the time period 2 2.5s.
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Figure 1: Swing curves of x

Figure 2: Swing curves of ξ

The simulation results are shown in Figure 5 and Figure 6, which are the response of
the state of system (20) and system (21) under controller (26), respectively.

From Figure 5 and Figure 6, we know that the controller (26) is very effective in
ARSS control for system (20) and system (21). From Figure 5, we can clearly see that
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Figure 3: Swing curves of θ̂

Figure 4: Swing curves of u

under controller (26), it takes 5.5 seconds for the system to back to the equilibrium
point (circle point in Figures), while under controller (25), it takes about 6.0 seconds
in Figure 1. The controller (26) is a little better in robust performance for system (20)
than controller (25). However, from Figure 6, we can clearly see that under controller
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Figure 5: Swing curves of x

Figure 6: Swing curves of ξ

(26), it takes 2.8 seconds for the system to back to the equilibrium point, while under
controller (25), it takes about 5.0 seconds in Figure 2. The time of state ξ back to the
equilibrium point is much shorter in Figure 6 than in Figure 2. With the adjustment
control parameters, the system achieved a more robust effect.
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Simulation shows that the controller with tuning parameters is effective as it can opti-
mize H∞ control by adjusting the tuning parameters values. Within the tuning parameters
ranges, the controllers insure that the dissipative systems are adaptive robust simultane-
ous stabilization control and can optimize the robustness for all or part of Hamiltonian
systems and insure that the others complex control objectives by adjusting the tuning
parameters values.

5. Conclusions

In this paper, we have investigated the ARSS problem for two DHSs, and proposed
an H∞ ARSS controller with tuning parameters design method. A controller with tuning
parameters has been obtained using Hamiltonian function method and an algorithm for
solving tuning parameters of the controller has been proposed with symbolic compu-
tation. The proposed controller parameterization method avoids solving HJI equations
and the obtained controller is easier as compared to some existing ones. The numerical
experiment and simulations show that the ARSS controller is strongly robust in distur-
bances and unknown parameters, and meanwhile the ARSS controller can optimize the
robustness of the system by adjusting tuning parameters.
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