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Stabilization of discrete-time LTI positive systems

DUŠAN KROKAVEC and ANNA FILASOVÁ

The paper mitigates the existing conditions reported in the previous literature for control
design of discrete-time linear positive systems. Incorporating an associated structure of linear
matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability
of discrete-time positive system structures, new conditions are presented with which the state-
feedback controllers and the system state observers can be designed. Associated solutions of
the proposed design conditions are illustrated by numerical illustrative examples.

Key words: state feedback stabilization, positive discrete-time observers, linear discrete-
time positive systems, linear matrix inequalities, asymptotic stability.

1. Introduction

Positive systems are often found in the modeling and control of engineering and
industrial processes, whose state variables represent quantities that do not have meaning
unless they are nonnegative [1]. The mathematical theory of Metzler matrices has a close
relationship to the theory of positive linear time-invariant (LTI) dynamical systems, since
in the state-space description form the system dynamics matrix of a positive systems
is Metzler and the system input and output matrices are nonnegative matrices. Other
references can find, e.g., in [2], [3], [4], [5].

The problem of Metzlerian system stabilization and observer design has been previ-
ously studied, especially for single input and single output (SISO) continuous-time linear
systems, as well as discrete-time linear systems, which have minimal degree of freedom
to ensure that a solution exists (see [6], [7], [8], [9] and the references therein). Appli-
cable methods for stabilization of positive linear discrete-time systems, maintaining its
positivity when using linear state feedback, are given in [10], [11], [12].

The synthesis problem of state-feedback controllers, guaranteeing the closed-loop
system to be asymptotically stable and positive has been investigated by a linear matrix
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inequality (LMI) and the linear programming approach in [13], [14], but as far as the
authors know, there is no literature on design of controllers and observers for positive
continuous-time or discrete-time linear systems, in which the design conditions are built
only on LMIs. The main motivation issue of this paper is to reformulate design condi-
tions for stabilization of linear positive discrete-time systems by using a state-feedback,
as well as the conditions for state observers design in the same system structures, by us-
ing LMIs. Considering the stable strictly positive matrix structure, algebraic constraints
implying from linear programming approach are reformulated as a set of LMIs, which
is extended by an LMI, reflecting the Lyapunov stability condition.

The paper is organized as follows. Within the frame of preliminaries, the standard
declaration for discrete-time positive systems is presented in Sec. 2 A newly introduced
set of LMIs, describing the design conditions for strictly positive SISO discrete-time
linear systems, is theoretically substantiated in Sec. 3 and, subsequently, the design con-
ditions for strictly positive multi input, multi-output (MIMO) discrete-time systems are
generalized in Sec. 4 An example is provided to demonstrate the proposed approach in
Sec. 5, while Sec. 6 draws some conclusions.

Used notations are conventional so that xxxT , XXXT denotes transpose of the vector xxx
and matrix XXX , respectively, xxx+, XXX+ indicates a nonnegative vector and a nonnegative
matrix, XXX = XXXT ≻ 0 means that XXX is a symmetric positive definite matrix, ρ(XXX) reports
the eigenvalue spectrum of the square matrix XXX , the symbol IIIn marks the n-th order
unit matrix, diag[ · ] enters up a diagonal matrix, ℜn, ℜn×r refers to the set of all n-
dimensional real vectors and n× r real matrices, respectively, ℜn

n, ℜn×r
+ signifies the

set of all n-dimensional real non-negative vectors and n× r real non-negative matrices,
respectively, and Z+ is the set of all positive integers.

2. System description

In the paper is considered the discrete-time positive linear dynamical systems, which
state-space description is

qqq(i+1) = FFFqqq(i)+GGGuuu(i) , (1)

yyy(i) =CCCqqq(i) , (2)

where qqq(i) ∈ ℜn
+, uuu(i) ∈ ℜr

+, yyy(i) ∈ ℜm
+ stands for state, control input and measurable

output, respectively, FFF ∈ ℜn×n
+ , GGG ∈ ℜn×r

+ , CCC ∈ ℜm×n
+ and i ∈ Z+.

Definition 7 [15] (positive linear system) The linear system (1), (2) is said to be positive
if and only if for every nonnegative initial state and for every nonnegative input its state
and output are nonnegative.

Definition 8 [16] A matrix XXX ∈ ℜp×q
+ and a vector xxx ∈ ℜp

+ are said to be nonnegative
if all its entries are nonnegative and at least one is positive.
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Definition 9 [17] A square matrix FFF ∈ ℜn×n
+ is positive if its elements are nonnegative.

A square matrix FFF ∈ℜn×n
+ is stable strictly positive matrix if is Schur and all its elements

are positive.

Remark 3 Considering a strictly Metzlerian continuous-time systems, then all diagonal
elements of the matrix AAA are negative, all off-diagonal elements of AAA are positive and the
matrix BBB is nonnegative [18]. Taking this continuous system pair (AAA,BBB), the associated
discrete-time system pair is [19]

FFF = IIIn +AAA
ts
1!

+AAA2 t2
s

2!
+ · · ·+AAAn tn

s

n!
+ · · · , (3)

GGG =

(
IIIn

ts
1!

+AAA
t2
s

2!
+ · · ·+AAAn−1 tn

s

n!
+ · · ·

)
BBB , (4)

where ts is the sampling period. Obviously, for a sufficiently small sampling period, all
elements of FFF are positive if AAA is strictly Metzler matrix and GGG is nonnegative if BBB is
nonnegative.

Proposition 1 [20] A positive matrix FFF is stable if and only if is diagonally dominant.

Proposition 2 [21] A solution qqq(i) of (1) is asymptotically stable and positive, i.e.,
limi→∞ qqq(i) = 000 while qqq(i) ∈ ℜn

+ for uuu(i) ∈ ℜr
+ and the initial value qqq(0) ∈ ℜn

+, if FFF
is a stable positive matrix and GGG ∈ ℜn×r

+ is a non-negative matrix. The linear system
(1), (2) is asymptotically stable and positive if FFF is a stable positive matrix, GGG ∈ ℜn×r

+ ,
CCC ∈ ℜm×n

+ are non-negative matrices and yyy(i) ∈ ℜm
+ for uuu(i) ∈ ℜr

+ and the initial value
qqq(0) ∈ ℜ+. The linear system (1), (2) is asymptotically stable and internally positive if
FFF is a stable positive matrix and GGG ∈ ℜn×r

+ , CCC ∈ ℜm×n
+ are non-negative matrices.

Proposition 3 [22] (Lyapunov inequalities) Autonomous system (1) is asymptotically
stable if there exist symmetric positive definite matrices PPP,QQQ ∈ ℜn×n or VVV ,UUU ∈ ℜn×n

such that

PPP = PPPT ≻ 0 , QQQ = QQQT ≻ 0 ,
[
−PPP+QQQ PPPFFFT

FFFPPP −PPP

]
≺ 0 , (5)

VVV =VVV T ≻ 0 , UUU =UUUT ≻ 0 ,
[
−VVV +UUU FFFTVVV

VVV FFF −VVV

]
≺ 0 . (6)

Proposition 4 [23] If XXX ∈ ℜn×n is a symmetric positive definite matrix it yields the
following relation

XXX = XXXT ≻ 0 ⇔ 1
2

XXX +
1
2

XXXT ≻ 0 . (7)
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Definition 10 [24] (congruent modulo n) Let n be a fixed positive integer. Two integers
j and h are congruent modulo n if they differ by an integral multiple of the integer n (they
leave the same remainder when divided by n). If j and h are congruent modulo n, the
expression ( j = h)mod n is called a congruence, and the number n is called the modulus
of the congruence.

The statement ( j = h)mod n is equivalent to the statement ”( j−h) is divisible by n”
or to the statement ”there is an integer m for which j−h = mn” and the word ”modulo”
generally means ”to the modulus”.

Definition 11 [25] Let S = {0,1,2, . . . ,n− 1} be the complete set of residues for any
positive integer n. The addition modulo n on S is ( j+h)mod n = r, where r is the element
of S to which the result of the usual sum of integers j and h is congruent modulo n.

Corollary 1 The problem of indexing in this paper is that the rows and columns of a
square matrix of dimension n× n are generally denoted from 1 to n and not from 0 to
n− 1. From this reason let S = {0,1,2, . . . ,n} be the complete set of residues for any
positive integer n+ 1. Then, the addition modulo n+ 1 on S is in the following defined
as ( j+h)mod n+1 = r+1, where r is the element of S to which the result of the usual sum
of integers j and k is congruent modulo n+1. The used shorthand symbolical notation
for ( j+h)mod n+1 = r+1 is so ( j+h)(1↔n)/n = r+1.

3. Strictly positive SISO systems

The systems under consideration in this section are linear discrete-time SISO dy-
namical systems represented in state-space form as

qqq(i+1) = FFFqqq(i)+gggu(i) , (8)

y(i) = cccT qqq(i) , (9)

where qqq(i) ∈ ℜn
+ is the vector of the system state variables, u(i) ∈ ℜ+, y(i) ∈ ℜ+ are the

input and output variables, FFF ∈ ℜn×n
+ is a strictly positive matrix, ggg ∈ ℜn

+, ccc ∈ ℜn
c are

non-negative vectors, the pair (FFF ,ggg) is controllable an the pair (FFF ,cccT ) is observable.
Considering the system (8), (9), the full state control law is defined as

uuu(i) =−kkkT qqq(i) , (10)

where kkk ∈ ℜn
+ is the control law gain vector. Thus, using (8), (10), it yields

qqq(i) = (FFF −gggkkkT )qqq(i) = FFFcqqq(i) , (11)

y(i) = cccT qqq(i) , (12)



STABILIZATION OF DISCRETE-TIME LTI POSITIVE SYSTEMS 579

where
FFFc = FFF −gggkkkT (13)

is the closed-loop system dynamics matrix.
Considering the observable system (8), (9), the Luenberger observer is given as

q̇qqe(t) = AAAqqqe(t)+bbbuuu(t)+ jjj(y(t)− ye(t)) , (14)

ye(t) = cccT qqqe(t) , (15)

where jjj ∈ ℜn
+ is the observer gain vector. Using (8), (9) and (14), (15) it yields

ėee(t) = (FFF − jjjcccT )eee(t) = FFFeeee(t) , (16)

where
eee(t) = qqq(t)−qqqe(t), FFFe = FFF − jjjcccT , (17)

qqqe(t) ∈ ℜn
+ is the vector of the system state estimate and ye(t) ∈ ℜ+ the output variable

estimate.
Note, the controller has to be designed not only to stabilize the system, but also to

render the closed-loop system matrix FFFc strictly positive and Schur. In the same way, the
observer has to be designed so that the observer system matrix FFFe is strictly positive and
Schur.

Theorem 3 The closed-loop system (11), (12) is stable strictly positive if the system (8),
(9) is strictly positive and there exists positive definite diagonal matrices PPP,QQQ,RRR ∈ ℜn×n

such that for h = 0,1,2, . . .n−1[
−PPP+QQQ ∗∗∗

FFFPPP−gggrrrT −PPP

]
≺ 0 , (18)

1
2
(TTT hFFF( j, j+h)(1↔n)/nTTT hT PPP−TTT hGGGdTTT hT RRR)+(∗∗∗)≻ 0 , (19)

PPP = diag
[

p1 p2 · · · pn
]
≻ 0 , (20)

QQQ = diag
[

q1 q2 · · · qn
]
≻ 0 , (21)

RRR = diag
[

r1 r2 · · · rn
]
≻ 0 , (22)

rrrT =
[

r1 r2 · · · rn
]
= lllT RRR, lll = [1 1 · · · 1 ]T , (23)

where

TTT =


0 0 · · · 0 1
1 0 · · · 0 0

. . .
0 0 · · · 1 0

 , TTT−1 = TTT T , (24)
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gggT =
[

g1 g2 · · · gn
]
, (25)

GGGd = diag
[

g1 g2 · · · gn
]
= diag [{g j} j=1,...,n ] , (26)

FFF( j, j+h)(1↔n)/n = diag
[

f1,1+h f2,2+h · · · fn−h,n fn−h+1,1 · · · fn,h
]
, (27)

while FFF( j, j+h)(1↔n)/n, TTT ,GGGd ∈ ℜn×n
+ .

When the above conditions hold, the control law gain vector kkkT is given as

KKKd = RRRPPP−1, kkkT = lllT KKKd , (28)

where KKKd ∈ ℜn×n
+ .

Hereafter, ∗∗∗ denotes the symmetric item in a symmetric matrix.

Proof Writing the closed-loop system matrix FFFc as follows
f11 f12 · · · f1n
f21 f22 · · · f2n

. . .
fn1 fn2 · · · fnn

−


g1
g2
...

gn

[ k1 k2 · · · kn
]
≺ 0 , (29)

it is evident that FFFc be a strictly positive matrix if all its elements are positive, i.e.,

f j j −g jk j > 0 for all j = 1,2, . . . ,n (30)

f jl −g jkl > 0 for all j, l = 1,2, . . . ,n, j ̸= l . (31)

To solve by an LMI solver, LMIs have to be symmetric and so, using the notations
(26), (27), then (30) can be rewritten in the diagonal matrix structure

FFF( j, j)(1↔n)/n −GGGdKKKd ≻ 0 , (32)

where KKKd = diag[{k j} j=1,...,n] is a diagonal matrix variable.
Rewriting (29) as

f12 f13 · · · f1n f11
f22 f23 · · · f2n f21

...
fn2 fn3 · · · fnn fn1

−


g1
g2
...

gn

[ k2 k3 · · · kn k1
]
, (33)

it can set for the diagonal elements of (33)

FFF( j, j+1)(1↔n)/n −GGGdKKKdc1 ≻ 0 , (34)

where KKKdc1 is the diagonal matrix KKKd with one circular shift of its diagonal elements.
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Repeating this procedure h-times, it can be obtained from (29) that
f1,1+h · · · f1,n f1,1 · · · f1,h
f2,i+h · · · f2,n f2,1 · · · f2,h

...
. . .

...
...

. . .
...

fn,i+h · · · fn,n fn,1 · · · fn,h

−


g1
g2
...

gn

[ k1+h k2+h · · · kh
]

(35)

and so, consequently,
FFF( j, j+h)(1↔n)/n −GGGdKKKdch ≻ 0 , (36)

where KKKdch is the diagonal matrix KKKd with h circular shifts of its diagonal elements.
Using the permutation matrix TTT [26] of the structure (24), it can be easily verified

that for h = 0,1,2, . . .n−1 yields the following realation

KKKd = TTT hKKKdchTTT−h = TTT hKKKdchTTT hT . (37)

Thus, pre-multiplying the right side by TTT hT and post-multiplying the left side by TTT h then
(36) leads to

TTT hFFF( j, j+h)(1↔n)/nTTT hT −TTT hGGGdTTT hT TTT hKKKdchTTT hT =

= TTT hFFF( j, j+h)(1↔n)/nTTT hT −TTT hGGGdTTT hT KKKd ≻ 0
(38)

and, since (38) is a symmetric matrix, using (7), then (38) can be rewritten as

1
2
(TTT hFFF( j, j+h)(1↔n)/nTTT hT −TTT hGGGdTTT hT KKKd)+(∗∗∗)≻ 0 , (39)

Multiplying the right side of (39) by a positive definite diagonal matrix PPP ∈ ℜn×n
+

gives
1
2
(TTT hAAA( j, j+h)(1↔n)/nTTT hT PPP−TTT hBBBdTTT hT KKKdPPP)+(∗∗∗)≻ 0 (40)

and with the notation
RRR = KKKdPPP (41)

then (39) implies (19).
Inserting the closed-loop system matrix (13) into (5) means[

−PPP+QQQ PPP(FFF −gggkkkT )T

(FFF −gggkkkT )PPP −PPP

]
≺ 0 (42)

and since (41) gives
rrrT = kkkT PPP, (43)

then (42) implies (18). This concludes proof.
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Remark 4 It can be noted, conditions (18)–(22) are all LMIs that is, they are convex in
the defined matrix variables. Moreover, the necessary diagonal matrix variable structure
of KKKc directly implies the diagonal matrix variable strictures of PPP, RRR in Theorem 3. Since,
in the terms of the Krasovskii theorem [27], the matrices QQQ, UUU in Proposition 3 can be
zero matrices, or a symmetric positive definite matrices, this way can be also applied in
(18), as well as in the inequalities exploited this proposition properties in the following
parts of the paper.

To simplify obtaining relation in AAA( j, j + h)(1↔n)/n it is possible to construct the
following matrix

FFF◦ =
[

FFF FFF
]
=

 f11 f12 · · · f1n f11 f12 · · · f2n
...

. . .
...

. . .
f11 f12 · · · f1n f11 f12 · · · f1n

 . (44)

Then, using the main diagonal elements and the set of n − 1 upper sub-diagonals of
dimension of n, the matrices AAA( j, j+ h)(1↔n)/n can be sequentially constructed for h =
0,1,2, . . .n−1 from (44).

Theorem 4 The Luenberger observer (14), (15) is stable strictly positive if the system
(8), (9) is strictly positive and there exists a positive definite diagonal matrices UUU ,VVV ,WWW ∈
ℜn×n such that for h = 0,1,2, . . .n−1[

−VVV +UUU FFFTVVV − cccwwwT

∗∗∗ −VVV

]
≺ 0 , (45)

1
2
(VVV TTT hFFF( j+h, j)(1↔n)/nTTT hT −WWWTTT hCCCdTTT hT )+(∗∗∗)≻ 0 , (46)

VVV = diag
[

v1 v2 · · · vn
]
≻ 0 , (47)

WWW = diag
[

w1 w2 · · · wn
]
≻ 0 , (48)

UUU = diag
[

u1 u2 · · · un
]
≻ 0 , (49)

wwwT =
[

w1 w2 · · · wn
]
= lllTWWW , lll = [1 1 · · · 1 ]T , (50)

where TTT is defined in (21),

cccT =
[

c1 c2 · · · cn
]
, (51)

CCCd = diag
[

c1 c2 · · · cn
]
= diag [{ci}i=1,...,n ] , (52)

FFF( j+h, j)(1↔n)/n = diag
[

f1+h,1 f2+h,2 · · · fn,n−h f1,n−h+1 · · · fh,n
]
, (53)

while FFF( j+h, j)(1↔n)/n,CCCd ∈ ℜn×n
+ .

When the above conditions hold, the observer gain vector jjj is given as

JJJd =VVV−1WWW , jjj = JJJd lll , (54)

where JJJd ∈ ℜn×n
+ .
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Proof Since the duality principle can be applied in observer design, while the triple
(FFFT ,ccc,gggT ) is dual to the triple (FFF ,ggg,cccT ), the duality has to be applied at first order on
the structure of (44).

Because FFFe be a strictly positive matrix if

f j j − j jc j > 0 for all j = 1,2, . . . ,n , (55)

a jk − j jck > 0 for all j,k = 1,2, . . . ,n, i ̸= j , (56)

respecting the duality principle, the condition (55) can be written as (compare with (32))

FFF( j, j)(1↔n)/n − JJJdCCCd ≻ 0 , (57)

where JJJd = diag[{ jl}l=1,...,n] is the diagonal matrix variable.
Applying the duality principle on (44) it can obtain with respect to (38) the dual form

FFF( j+h, j)(1↔n)/n − JJJdchCCCd ≻ 0 (58)

and using the matrix TTT of the structure (24) it yields for h = 0,1,2, . . .n−1 that

JJJd = TTT hJJJdchTTT−h = TTT hJJJdchTTT hT . (59)

Pre-multiplying the left side by TTT h and post-multiplying the right side by TTT hT then
the symmetric structure (58) gives

TTT hFFF( j+h, j)(1↔n)/nTTT hT −TTT hJJJdchTTT hT TTT hCCCdTTT hT =

= TTT hFFF( j+h, j)(1↔n)/nTTT hT − JJJdTTT hCCCdTTT hT ≻ 0 ,
(60)

which means that

1
2
(TTT hFFF( j+h, j)(1↔n)/nTTT hT − JJJdTTT hCCCdTTT hT )+(∗∗∗)≻ 0 . (61)

Therefore, multiplying the left side of (61) by VVV gives

1
2
(VVV TTT hFFF( j+h, j)(1↔n)/nTTT hT −VVV JJJdTTT hCCCdTTT hT )+(∗∗∗)≻ 0 (62)

and with the notation
WWW =VVV JJJd (63)

then (62) implies (46).
Inserting the observer system matrix (17) into (6) leads to[

−VVV +UUU (FFF − jjjcccT )TVVV
VVV (FFF − jjjcccT ) −VVV

]
≺ 0 (64)

and since (63) gives
www =VVV jjj , wwwT = jjjTVVV , (65)
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then (64) implies (45). This concludes proof.
Also the conditions (45)–(49) are all LMIs that is, they are convex in the defined

matrix variables.
To support the duality principle it is possible to construct the matrix

FFF⋄ =

[
FFF
FFF

]
=



f11 f12 · · · f1n
f21 f22 · · · f2n
...

. . .
fn1 fn2 · · · fnn
f11 f12 · · · f1n
f21 f22 · · · f2n
...

. . .
fn1 fn2 · · · fnn


(66)

and exploiting the main diagonal as well as the set of n − 1 lower sub-diagonals of
dimension of n it can construct sequentially the matrices FFF( j + h, j)(1↔n)/n for h =
0,1,2, . . .n−1 from (66).

4. Strictly positive MIMO systems

Linear discrete-time closed-loop MIMO dynamical systems, obtained from the con-
trollable system (1), (2) by using the state control law

uuu(i) =−KKKqqq(i) , KKK ∈ ℜr×n
+ , (67)

is described by the state-space equations

qqq(i+1) = (FFF −GGGKKK)qqq(i) = FFFcqqq(i) , (68)

yyy(i) =CCCqqq(i) , (69)

where

GGG =
[

ggg1 · · · gggr
]
, KKKT =

[
kkk1 · · · kkkr

]
, FFFc = FFF −

r

∑
k=1

ggggkkkT
k . (70)

In the same manner, the MIMO Luenberger observer, associated with the observable
system (1), (2), is given as

qqqe(i+1) = FFFqqqe(i)+GGGuuu(i)+ JJJ(yyy(i)− yyye(i)) , (71)

yyye(i) =CCCqqqe(i) , (72)

eee(i+1) = (FFF − JJJCCC)eee(i) = FFFeeee(i) , (73)
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where
eee(i) = qqq(i)−qqqe(i) , (74)

CCCT =
[

ccc1 · · · cccr
]
, FFFe = FFF −

r

∑
k=1

jjjkcccT
k , (75)

JJJ =
[

jjj1 · · · jjjm
]
, JJJ ∈ ℜn×m

+ . (76)

Naturally, if FFF ∈ ℜn×n
+ is a strictly positive matrix, and GGG ∈ ℜn×r

+ , CCC ∈ ℜm×n
+ are

non-negative matrices, the system (1), (2) is positive system. Thus, it is necessary to
render the closed-loop system matrix FFFc and observer system matrix FFFe be stable strictly
positive matrices.

Theorem 5 The closed-loop system (11), (12) is stable strictly positive if the system (1),
(2) is strictly positive and there exists positive definite diagonal matrices PPP,RRRk,QQQ∈ℜn×n

such that for h = 0,1,2, . . .n−1, k = 1,2, . . .r, −PPP+QQQ ∗∗∗
FFFPPP−

r
∑

k=1
gggkrrrT

k −PPP

≺ 0 , (77)

1
2
(TTT hFFF( j, j+h)(1↔n)/nTTT hT PPP−

r

∑
k=1

TTT hGGGdkTTT hT RRRk)+(∗∗∗)≻ 0 , (78)

PPP = diag
[

p1 p2 · · · pn
]
≻ 0 , (79)

QQQ = diag
[

q1 q2 · · · qn
]
≻ 0 , (80)

RRRk = diag
[

rk1 rk2 · · · rkn
]
≻ 0 , (81)

rrrT
k =

[
rk1 rk2 · · · rkn

]
= lllT RRRk, lll = [1 1 · · · 1 ]T , (82)

where TTT is defined in (25), FFF( j, j+1)(1↔n)/n in (27),

GGG =
[

ggg1 ggg2 · · · gggr
]
=


g11 g12 · · · g1r
g21 g22 · · · g2r

...
gn1 gn2 · · · gnr

 , (83)

GGGdk = diag
[

g1k g2k · · · gnk
]
= diag [{glk}l=1,...,n ] , (84)

while GGGdk ∈ ℜn×n
+ .

When the above conditions hold, the control gain matrix KKK is given as

KKKdk = RRRkPPP−1, kkkT
k = lllT KKKdk, KKK =

 kkkT
1
...

kkkT
r

 . (85)

where KKK ∈ ℜr×n
+ .
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Proof In analogy with (30), (31) it is evident that FFFc be a strictly positive matrix if all
its elements satisfy the conditions

f jl −
r

∑
k=1

gk jkkl > 0 for all j, l = 1,2, . . . ,n. (86)

Thus, denoting,

KKKdk = diag
[

kk1 kk2 · · · kkn
]
=
[
{kk j} j=1,...,n

]
, k = 1,2 . . . ,r , (87)

in the same way as above then (86) can be interpreted for h = 0,1,2,. . . n-1 as

TTT hFFF( j, j+h)(1↔n)/nTTT hT −
r

∑
k=1

TTT hGGGdkTTT hT KKKdk ≻ 0 . (88)

Since multiplying the right side of (88) by PPP leads to

TTT hFFF( j, j+h)(1↔n)/nTTT hT PPP−
r

∑
k=1

TTT hGGGdkTTT hT KKKdkPPP ≻ 0 , (89)

with the notation
RRRk = KKKdkPPP (90)

then (89) implies (78).
Inserting the closed-loop system matrix (70) into (5) gives −PPP+QQQ PPP(FFF −

r
∑

k=1
gggkkkkT

k )
T

(FFF −
r
∑

k=1
gggkkkkT

k )PPP −PPP

≺ 0 , (91)

and using from (90) implying notation

rrrT
k = kkkT

k PPP , (92)

(91) implies (77). This concludes the proof.

Theorem 6 The Luenberger observer (71), (72) is stable strictly positive if the sys-
tem (1), (2) is strictly positive and there exists a positive definite diagonal matrices
UUU ,VVV ,WWW k ∈ ℜn×n such that for h = 0,1,2, . . .n−1, k = 1,2, . . .m, −VVV +UUU FFFTVVV −

m
∑

k=1
ccckwwwk

∗∗∗ −VVV

≺ 0 (93)

1
2
(VVV TTT hFFF(i+h, i)(1↔n)/nTTT hT −

m

∑
k=1

WWW kTTT hCCCdkTTT hT )+(∗∗∗)≻ 0 , (94)
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VVV = diag
[

v1 v2 · · · vn
]
≻ 0 , (95)

UUU = diag
[

u1 u2 · · · un
]
≻ 0 , (96)

WWW k = diag
[

wk1 wk2 · · · wkn
]
≻ 0 , (97)

wwwT
k =

[
wk1 wk2 · · · wkn

]
= lllTWWW k, lll = [1 1 · · · 1 ]T , (98)

where TTT is defined in (24), AAA(i+h, i)(1↔n)/n is introduced in (53),

CCC =


c11 c12 · · · c1n
c21 c22 · · · c2n

...
cm1 cm2 · · · cmn

 , (99)

CCCdk = diag
[

ck1 ck2 · · · ckn
]
= diag [{ckl}l=1,...,n ] , , k = 1,2 . . . ,m , (100)

while CCCdk ∈ ℜn×n.
When the above conditions hold, the observer gain matrix JJJ is given as

JJJdk =VVV−1WWW k, jjjk = JJJdklll, JJJ =
[

jjj1 · · · jjjm
]
. (101)

where JJJ ∈ ℜn×m
+ .

Proof In analogy with (55), (55) it is evident that FFFe be a positive matrix if

fl j −
m

∑
k=1

jklck j > 0 for all l, j = 1,2, . . . ,n . (102)

Thus, denoting,

JJJdk = diag
[

j1k j2k · · · jnk
]
= [{ jlk}l=1,...,n ] , k = 1,2 . . . ,m, (103)

and, using the above notations then (102) implies for h = 0,1,2, . . .n−1 that

TTT hFFF(i, i+h)(1↔n)/nTTT hT −
m

∑
k=1

JJJdkTTT hCCCdkTTT hT ≻ 0 . (104)

Since multiplying the left side of (104) by VVV leads to

VVV TTT hFFF(i, i+h)(1↔n)/nTTT hT −
m

∑
k=1

VVV JJJdkTTT hCCCdkTTT hT ≻ 0 , (105)

with the notation
WWW k =VVV JJJdk (106)

then (105) implies (94).
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Inserting the observer system matrix (75) into (6) gives −VVV +UUU (FFF −
m
∑

k=1
jjjkcccT

k )
TVVV

VVV (FFF −
m
∑

k=1
jjjkcccT

k ) −VVV

≺ 0 (107)

and using the notation
wwwk =VVV jjjk , wwwT

k = jjjT
k VVV , (108)

then (107) implies (93). This concludes the proof.

5. Illustrative example

The generating strictly Metzlerian system is represented by the continuous-time lin-
ear state-space model with the parameters

AAA =


−3.3800 0.2080 6.7150 5.6760

0.5810 −4.2900 0.0100 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040

 , BBB =


0.4000 0.1888
0.5679 0.2030
0.1136 0.3146
0.1136 0.1701

 ,
CCC =

[
4 0 1 0
0 0 0 1

]
.

It is possible to verify that the Metzler matrix AAA is instable with the eigenvalue spectrum

ρ(AAA) =
{

1.5599, −8.7316, −4.6282±1.7583i
}
.

Converting for the sampling period ts = 0.02s, the discrete-time system parameters
are

FFF =


0.9361 0.0139 0.1230 0.1150
0.0108 0.9184 0.0011 0.0133
0.0198 0.0814 0.8782 0.1098
0.0016 0.0813 0.0247 0.9609

 , GGG =


0.0081 0.0043
0.0109 0.0039
0.0028 0.0063
0.0027 0.0036

 ,
where

ρ(FFF) =
{

1.0317, 0.8398, 0.9110±0.0321i
}

is the unstable eigenvalue spectrum of FFF .
To solve the stabilization task, the auxiliary parameters are constructed as

TTT =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,
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FFF(i, i)(1↔4) =


0.9361

0.9184
0.8782

0.9609



FFF(i, i+1)(1↔4)/4 =


0.0139

0.0011
0.1098

0.0016

 ,

FFF(i, i+2)(1↔4)/4 =


0.1230

0.0133
0.0198

0.0813

 ,

FFF(i, i+3)(1↔4)/4 =


0.1150

0.0108
0.0814

0.0247

 .
Using the SeDuMi package [28] to solve the given set of LMIs (77)–(83) in MAT-

LAB environment the LMI variables are

PPP = diag
[

0.5779 0.0082 0.1425 0.0417
]
,

QQQ = diag
[

0.8228 0.0121 0.1168 0.0144
]
∗10−3,

RRR1 = diag
[

0.3403 0.0018 0.0016 0.0005
]
,

RRR2 = diag
[

0.0040 0.0226 0.0322 0.1391
]
.

The control law gain matrix KKK ∈ ℜ2×4, computed by using (84), is positive matrix,
since

kkkT
1 =

[
0.5889 0.2178 0.0109 0.0127

]
,

kkkT
2 =

[
0.0069 2.7546 0.2259 3.3340

]
,

KKK =

[
0.5889 0.2178 0.0109 0.0127
0.0069 2.7546 0.2259 3.3340

]
,

which implies the stable strictly positive matrix of closed-loop system matrix

FFFc =


0.9313 0.0004 0.1220 0.1006
0.0043 0.9052 0.0001 0.0001
0.0182 0.0634 0.8767 0.0888
0.0001 0.0708 0.0239 0.9489

 ,
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Figure 1: State variables response
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Figure 2: Output variables response

with the eigenvalue spectrum

ρ(FFFc) =
{

0.8390, 0.9979, 0.9126±0.0222i
}
.

Analyzing the numerical results, it is evident that the stable strictly positive matrix
FFFc is diagonally dominant.

The obtained results are illustrated in Fig. 1 and Fig. 2, where the state variables
vector qqq(t) as well as the output variables vector yyy(t) are positive when the input in the
closed-loop system is the positive vector wwwT = [0.44 0.20 ] and

uuu(i) =−KKKqqq(i)+www .

To design the strictly positive observer, the auxiliary parameters are constructed so
that

FFF(i+1, i)(1↔4)/4 =


0.0108

0.0814
0.0247

0.1150

 ,
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FFF(i+2, i)(1↔4)/4 =


0.0198

0.0813
0.1230

0.0133

 ,

FFF(i+3, i)(1↔4)/4 =


0.0016

0.0139
0.0011

0.1098

 .
Therefore, the set of LMIs (93)–(98) is satisfied for the LMI variables

VVV = diag
[

2.1809 2.3636 1.9798 1.9845
]
,

UUU = diag
[

0.6628 0.1221 0.1706 0.7234
]
,

WWW 1 = diag
[

0.2016 0.0013 0.0046 0.0004
]
,

WWW 2 = diag
[

0.1277 0.0159 0.1201 1.2188
]
.

The observer gain matrix JJJ ∈ ℜ4×2
+ is computed by using (101) as

jjj1 =


0.0924
0.0005
0.0023
0.0002

 , jjj2 =


0.0585
0.0067
0.0607
0.6142

 , JJJ =


0.0924 0.0585
0.0005 0.0067
0.0023 0.0607
0.0002 0.6142

 ,
which leads to the stable strictly positive matrix of the observer dynamics

FFFe =


0.5888 0.0141 0.0292 0.0574
0.0088 0.9184 0.0005 0.0066
0.0106 0.0814 0.8758 0.0492
0.0008 0.0813 0.0245 0.3463

 ,
with the stable eigenvalue spectrum

ρ(FFFe) =
{

0.3438, 0.5647, 0.8757, 0.9231
}
.

Analyzing the results, it is evident that the stable positive observer is designed to the
unstable positive system. Also in this case the stable strictly positive matrix FFFe is diago-
nally dominant and, consequently, the observer state response is aperiodic and positive.

With respect to the n× r boundary conditions (78) it is evident that not every linear
positive system is stabilizable by the state control, while it is clear that a linear discrete-
time system is also stabilizable when the generating linear continuous-time system is
stabilizable. Using more than a hundred randomly generated Metzlerian continuous-time
linear systems, it was discovered that only unstable systems with dominant diagonal ele-
ments of the Metzler matrix AAA are potentially stabilizable. To illustrate this interpretation
it is possible to verify that for the system used in the presented example the LMIs are
close to singular if there is the element AAA(1,1) = a11 >−0.5, which leads to an unstable
solution.
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6. Concluding remarks

A novel approach is presented in the paper to address the problem of effectively com-
puting a state feedback control law gain that makes the positive system in closed-loop to
be strictly positive and stable, as well as of recounting the observer gain that establish the
stable strictly positive structures of Luenberger observers. Based on a stable strictly posi-
tive matrix properties, algebraic constraints implying from linear programming approach
are reformulated as a set of LMIs, and replenished by the Lyapunov matrix inequality
in the sense of the second Lyapunov method. It is derived that all matrix variables asso-
ciated with this LMIs ensemble have to be positive definite and diagonal. The proposed
approach provides a numerically reliable computational framework, as illustrated using
a numerical example, and might be extended to other particular cases.

Further research topics include the problems of forced mode in positive systems as
well as nonlinear positive systems.
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