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Abstract 
 

The paper presents validation tests for method which is used for the evaluation of the statistical distribution parameters for 3D particles’ 
diameters. The tested method, as source data, uses chord sets which are registered from a random cutting plane placed inside a sample 
space. In the sample space, there were individually generated three sets containing 3D virtual spheres. Each set had different Cumulative 
Distribution Function (CDF3) of the sphere diameters, namely: constant radius, normal distribution and bimodal distribution as a 
superposition of two normal distributions. It has been shown that having only a chord set it is possible, by using the tested method, to 
calculate the mean value of the outer sphere areas. For the sets of data, a chord method generates quite large errors for around 10% of the 
smallest nodules in the analysed population. With the increase of the nodule radii, the estimation errors decrease. 
The tested method may be applied to foundry issues e.g. for the estimation of gas pore sizes in castings or for the estimation of nodule 
graphite sizes in ductile cast iron. 
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1. Introduction 
 
The problem of the mapping of an unknown probability 

distribution of the spherical particle sizes in a non-transparent 
substance is one of the classical stereological tasks.  When the 
density of the analysed particles is very much different from the 
density of the matrix phase, it is possible, for this kind of the 
analysis, to use the X-ray micro-tomography method [1]. There is 
also a possibility to evaluate the statistical distribution of the 3D 
nodule size by using stereological methods which base on a 
statistical distribution of the diameters on 2D or base on a random 
chord length distribution obtained by linear analysis from random 
secants. 

2. Model assumption 
 
Let us assume that the fraction of the visible circular sections 

with radius r2 ≤ t on a random plane section is given by the 
function ( )tF2  named Cumulative Distribution Function (CDF2). 
Let us assume also that the fraction of the chords with the length 
2·r1 ≤ 2·t  placed inside the particles is given by the function ( )tF1  
(designated as CDF1). 

The largest section radius, as well as the largest half-length of 
chord for a random round cross-section of particles are limited by 
the maximal radius Rmax of the largest sphere. 

Each Fi(t) presented above has its Probability Density 
Function fi(t) (designated as PDFi): 
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where i = 1 for half-length of the chord, 2 for the radii of 

cross-section, and 3 for the radii of the nodules. 
First known solution to the PDF3 mapping based on the 

measured PDF2 has been proposed by Wicksell [2]: 
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were Rmax is the radius of the biggest particle in the probe, E[r3] is 
the expected (mean) values of the nodule radius, x is the variable 
of integration. 

When the empirical function f2(t) was estimated by 
quantitative metallography methods, equation (2) can be solved 
with respect to the integrand f3(x) by the implicit solution. In this 
task such a solution (named sometimes as inverse) according to 
[3] gives the unsatisfactory results. This is the reason why the 
numerical solutions of this task are used most often. The analysis 
of the planar section which bases on the direct Wickesell equation 
(2) has been used for the volume size distribution of the 
spheroidal particles by Scheil [4], Schwartz [5], Saltykov [6,7], Li 
at al. [8]. A similar solution to the mineralogy task has been 
presented in [9]. Unfortunately, small numerous errors of the 
empirically estimated function f2(t) result in the „arbitrarily large 
perturbations of the solution” [10,11]. In this context, Eq. (2) is 
usually used not for the designation of the PDF3 form, but for the 
examination of matching the empirical function and one of the 
selected statistical distribution law, e.g. normal, log-normal, 
Weibull or uniform-sized [3,8,12]. 

Other stereological method for the calculation of the size 
distribution of spheres randomly distributed in 3D space was 
proposed by Cahn and Fullmann [13], Lord and Willis [14], and 
Spektor [15]. This method bases on the measurements of the 
PDF1 of the corresponding chord-length distribution obtained 
through lineal analysis:  
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where N3 is the total number of the grains per unit volume, and N1 
is the total number of the chords per unit length of the measuring 
lines. 

For the practical usage of the above equation Bockstiegel [16] 
has proposed dividing the interval of the measured chord length 
into segments lj with the length that varies geometrically 

12 −= ii ll . For this scale of the chord length  
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where N3,i is the number of the nodules and N1,i is the number of 
the chord with the diameter (length) that does not exceed li. The 
limitation of this solution is the low resolution for the large 
diameter of the particles which is a result of the logarithmic 
nature of the scale. 

According to [17] the empirical CDF3 for spherical particle 
radii should be estimated on the basis of the empirical estimation 
of PDF1 of half-length chords t as follows: 
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where S  is the mean external surface of nodules in the probe. 
 
 

3. Data preparation 
 
In order to test the precision of the proposed method, for the 

evaluation of the CDF3 form on the basis of the PDF1 given by eq. 
(5), three virtual sets of nodules were generated. The nodules are 
randomly distributed in the volume of size equal to 8·a·b·Rmax 
(Fig. 1). These particles are cut by a base plane on which a set of 
parallel secants are placed. The 2D section diameters and length 
of the chords, made by the secants, are measured and collected. 
The virtual probe space, in which the particles were generated, 
fulfils the following conditions: 
• The mean grain density in the specimen volume is equal to 

N3 (number grains per unit volume). 
• The spatial distribution of the grain centres is defined by the 

Poisson statistical distribution. 
• The probability of intersection between the particles is 

negligible (or for the intersected particles it is possible to 
indicate and measure the diameter of every nodule). 

Each linear dimension which will be mentioned in the later 
part of the paper, is expressed by convention in a unit length (ul). 
Similarly, all measured and calculated areas are also expressed by 
convention in a surface unit (1 us = 1 ul2). 

The virtual sets of nodules were generated as follows: In the 
first stage the set of radii  r3i (for i = 1 … N) is generated by using 
a pseudo-random number generator for three types of CDF3 which 
will be described in the next section. In the next step among all 
generated particles, it is necessary to find the radius Rmax of the 
greatest nodule. The last step is to generate, by using the uniform 
pseudo-random number generator, the centre coordinates (xi, yi, zi) 
for all nodules. The coordinates are distributed in the following 
range: 
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Having fulfilled the above conditions, the results of the virtual 

stereological measurements are registered from the rectangular 
test plane T shown in Fig. 1: 
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Fig. 1. The specimen volume in which the virtual nodules were 
generated. Legend: T – the cutting plane from which the chords 
are collected; Rmax – the maximum radius of a generated nodule 

 
The measuring plane T is parallel to XY axes and cut the Z 

axis in zero. All secants are parallel to the X axis and have the 
same distance between each other equal to k. The secants cut 
through the 2D section and form the chords (the fragments of the 
secant inside the nodules sections). Only these particles and 
sections are taken into account which the central points (x and y 
coordinates) lie on the T area (excluding the Rmax margins). The 
aim of such an approach is to eliminate the bias error created by 
the overestimation of the nodules with small sizes. 

Between the nodules and their sections, chords and central 
points, there are the following geometrical relations: 
• for the nodule i with the radius r3i its radius r2i of the section 

is equal to: 
 

22
32 iii zrr −=  (7) 

 
• the relation between the radius of the nodule i and its length 

of the chord (ri,j), the coordinates of the particle centre (yi) 
and the coordinates of the measuring secant j (ya,j) is as 
follows: 
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Hence the half-length of the random chord j of the nodule i 

will be equal to: 
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4. Data analysis 
 
In order to check the application of the equation (5) for the 

evaluation of the F3(t), three sets of data have been prepared. 
Each set has different PDF3 of the nodules radii: 
A. The set of nodules with a constant radius equal to r3 = 200. The 
total Number of particles is N = 1024. 
B. The normal distribution with the mean value =3r  120, and the 
standard deviation σ = 15, N = 2048 

C. The bimodal distribution as the superposition of two normal 
distributions with the parameters =1,3r  90, σ1 = 10, N1 = 2048 and 

=2,3r  150, σ2 = 15, N1 = 1024. 

In order to obtain the sets with the normal distribution, the 
inverse cumulative distribution function method was used. The 
data was generated by using the vdRngGaussian function from 
the MKL library [18]. Whereas for generating the nodules’ central 
points, the vRngUniform function from this library was used. 

The cumulative distribution functions and  probability density 
functions for the analysed sets of the half-length chords are 
calculated by empirical equations: 
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where Ni is the chord numbers with a length no longer than 2ti. 
For the calculation the sets of r1 were sorted in an ascending 
order. In the calculations the length of every five hundred chord 
or every thousandth was taking into account. The results for 1 out 
of 500 chords are presented in the fig. 2. 

If in the sample there are no spherical particles with a radius 
less than Rmin, then it is possible to estimate the value of the mean 
external surface of the nodules S  on the basis of measurements  
obtained for interval (0 < t < Rmin) by the following equation: 
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By substituting the equation (11) into (12) we obtain: 
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This means that for ti < Rmin the estimation of the Sest  may be 

obtained by equation (13) after the substitution of the data for any 
interval i of the chord length (provided that the measured data is 
free of noise). The results received by this equation are presented 
in fig 3. In the case of the A distribution for the whole interval of 
the measured chords, the calculated results are characterised by 
the mean value Sest A = 502·103 us, with the standard deviation  
σA = 34·103 us. The results for two first intervals are clearly 
bigger than the rest and were eliminated from the calculation. The 
precise value of the outer area for the sphere with the radius r3 = 
200 ul is equal to 502 655 us. 
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a) 

 
b) 

 
c) 

Fig. 2. The shapes of the empirical cumulative distribution 
functions and  probability density functions for the prepared sets 

of nodules: a) constant r3 – A; b) normal – B; c) bimodal – C 
 
In the case of B and C distributions, there are distinguishing 

horizontal intervals that indicate the absence (or negligible low 
number) of the nodules with a radius less than  around 70-80 ul. 
The mean values of the Sest and the standard deviation for the radii 
which are less than 70 ul are following: 
• for the B distribution: the mean value Sest B = 181.9·103 us, 

the standard deviation σB = 8.6·103 us, 

• for the C distribution: the mean value Sest C = 161.7·103 us, 
the standard deviation σC = 7.3·103 us. 

Similarly to the case of the A distribution, the results from the 
three first intervals (that give results clearly bigger than the rest) 
were eliminated from the calculation. 

 

 
a) 

 
b) 

 
c) 

Fig. 3. Cumulative distribution functions and probability density 
functions of the half-length of the chords for the nodular particle 

sets for the distributions: a) constant radius r3 – A; b) normal B; c) 
bimodal C 
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For comparison, the precise values of the mean outer areas, 
which were calculated directly on the base of the source data, are 
equal to 182 406 us for the set B and 162 774 us for the set C 
respectively. As it follows from the above data, the results of the 
estimation obtained by the proposed method are similar to the real 
parameters of the analysed set of nodular particles. 

The cumulative distribution functions of the nodular particles 
returned by the eq. (5) on the base of the source data for the sets B 
and C are presented in Fig. 4. The results of the direct calculation 
on the basis of the bench-mark data are presented by solid lines. 
The dependence obtained by the means of eq. (5) is indicated by 
the dots. As it follows from the pictures, the proposed method has 
a lower accuracy at the interval close to 10% of the smallest 
nodules of the analysed population. With the increase of the 
nodule radii, the accuracy of the CDF3 mapping by the chords 
method increases and for the particles with big sizes, the accuracy 
of mapping is reasonable. 

 

 
a) 

 
b) 

Fig. 4. Empirical cumulative distribution function of the nodular 
particles: direct calculation on the base of the source data (solid 

lines) and the results of the mapping by means of the chords 
method (dots): a) for normal distribution – set B; b) for bimodal 

distribution – set C 
 
 

5. Conclusions 
 

• The empirical CDF3 of the nodular size particles can be 
estimated on the basis of the empirical measurement of 
PDF1. For the estimation of CDF3, it is necessary to use Eq 
(5) and the statistical distribution of random chord lengths 
received from experimental data. 

• In the calculations, the results must be used from the 
interval, where the estimation of the mean value of the outer 
particle surface by means of the eq. (12) is constant. 

• For the used sets of the source data, the proposed chord 
method has a lower accuracy at the interval close to 10% of 
the smallest nodules of the analysed population. With the 
increase of the nodule radii, the accuracy of the CDF3 
mapping by the chord method increases and for the particles 
with big sizes, the accuracy of mapping is reasonable. 
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