
1. Introduction

Computer-assisted modelling is more and more 
frequently taken advantage of in materials engineering. 
Theoretical predictions, supported by computer-assisted 
methods, are complemented by empirical methods. That is 
relevant to predicting the properties of materials, introducing 
new materials and the technologies of manufacturing them, 
and also to optimizing those already existing materials and 
processes. [1-6]

The diagrams of the transformations of supercooled 
austenite for continuous cooling (CCT) are developed in 
laboratories in numerous countries, and published in atlases, 
handbooks and scientific publications. As well as those, there 
are models describing the influence exerted by chemical 
composition upon the temperatures of transformations, 
hardness, and also the volume fraction of ferrite, pearlite, 
bainite and martensite in the microstructure of steels. [7-
10] A popular method of modelling in this area is multiple 
regression. [11,12] Empirical formulas constitute the basis of 
the algorithms applied in computer programs serving for the 
purpose of the calculations of the CCT diagrams. 

A popular model taken advantage of in numerous 
applications for the purpose of the calculations of 
microstructural constituents and the hardness of 
a continuously-cooled steel from the austenitizing 
temperature is the Maynier model [13,14]. In that model, 
the following were taken under consideration: the influence 
exerted by the chemical composition of a steel, and also 
the temperature and the time of austenitizing. The Maynier 
equations make it possible to calculate the typical cooling 
rates at the temperature of 700 degrees Celsius, for which 
in the microstructure of steels the following quantities are 
formed: 100%, 90% and 50% of martensite, 90% and 50% 

of bainite, and also 90% and 100% of ferrite and pearlite 
(respectively). The Maynier model was developed upon 
the basis of the data acquired from approximately 300 CCT 
diagrams. In the literature, there are as well examples of the 
calculations of the hardness of a continuously-cooled steel 
upon the basis of the Jominy hardenability curve [15] and 
[16] that are presented. 

The first results of own research connected with modelling 
the hardness of steel cooled from the austenitizing temperature 
were presented in the papers [17,18]. For the purpose of 
developing the hardness model, the method of artificial neural 
network was applied. In the paper [19], equations for the 
purpose of the calculations of the transformations temperature 
of supercooled austenite developed with the application of 
the multiple regression method were presented. In spite of an 
attempt made back then, it proved to be impossible to develop 
the adequate hardness model. A significant improvement 
of the results was achieved no sooner than when additional 
dichotomous variables, which represented the constituents of 
the microstructure of a steel in the form of ferrite, pearlite, 
bainite and martensite, were introduced in the equation. The 
calculations of the values of those variables required developing 
the classificators with the application of the logistic regression 
method. The model of the steel hardness in which dichotomous 
variables were applied, was presented in the paper [20].    

Complementing and extending the collection of empirical 
data made it possible to develop new equations connecting 
the chemical composition of a steel, the cooling rate and the 
austenitizing  temperature with the hardness of a steel. In 
the paper, the following equations were presented: making it 
possible to estimate the hardness of continuously-cooled steel 
from the austenitizing temperature, and also the modified 
versions of equations for the purpose of the calculation of the 
kinds of the microstructural constituents of a steel. 
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2. Data for calculation

Modelling hardness with the application of the multiple 
regression method required preparing a representative set of 
empirical data. The collection of data has to be a collection 
typical for the process being modelled. The values of 
independent variables ought to uniformly cover the entire 
domain of the function being approximated. The selection 
of independent  variables ought to result, first and foremost, 
from the knowledge relevant to the process being modelled. 
In numerous cases, however, it is necessary to simplify the 
model, and that results, among others, from the availability of 
empirical data.   

The data set was developed upon the basis of 
atlases, handbooks and scientific publications containing 
experimentally-determined CCT diagrams. More than 500 
CCT diagrams for structural steels were taken advantage 
of. The information connected with the austenite grain size 
and the austenitizing time was not provided on the majority 
of the CCT diagrams. For that very reason, it was necessary 
to adopt simplifications connected with the number of 
independent variables describing the model. It was presumed 
that the independent variables of the model would be the mass 
concentrations of the following elements: C, Mn, si, Cr, Ni, 
Mo, V and Cu, the cooling rate, and also the austenitizing 
temperature. Upon the basis of one CCT diagram, several 
vectors containing the values of independent variables and 
the respective value of hardness were developed. The data set 
applied for the purpose of developing the model contained 2845 
cases. In addition to that, a verification data set was separated, 
and that data set was taken advantage of for the purpose of the 
numerical verification of the model. The verification data set 
contained 300 cases.   

The statistical assessment of the data set was performed 
upon the basis of descriptive statistics. For every variable of 
the model, the following statistics were analysed: the minimum 
value, and the maximum one, mean, standard deviation, 
median, kurtosis and skewness. The scatterplot matrix and 
histograms were developed for every independent variable, 
and so were histograms for two variables. It was checked if 
there were outliers occurring in the data set. What was analysed 
as well was the multicollinearity of independent variables. 
For the purpose of analyzing the effect of multicollinearity, 
the correlation matrix was taken advantage of, and the 
values of VIF (Variance Inflation Factor) were calculated as 
well. Upon the basis of the conducted analyses, the scope 
of mass concentration of elements, for which the equations 
may be applied, was determined. The minimum value, and 
the maximum one, were presented in Table 1. As well as 
those, the additional conditions, relevant to the sums of the 
concentrations of selected elements, were defined (Table 2).

TABLE 1
ranges of mass concentrations of elements 

range Mass fractions of elements, %
C Mn si Cr Ni Mo V Cu

min 0.06 0.13 0.12 0 0 0 0 0
max 0.68 2.04 1.75 2.30 3.85 1.05 0.38 0.38

average 0.33 0.58 0.42 0.65 0.70 0.21 0.03 0.04

sD 0.13 0.37 0.37 0.54 1.02 0.24 0.07 0.07
sD - standard deviation

TABLE 2
Additional conditions for limiting the scope of model application

Mass fractions of elements, %
Mn+Cr Mn+Cr+Ni Cr+Ni Mn+Ni

Maximum 3.6 5.6 5.3 4.5

3. Method and results

In the hardness models developed with the application 
of the artificial neural networks method [9,17], the significant 
variables were constituted by dichotomous variables describing 
the occurrence of: ferrite, pearlite, bainite and martensite in the 
microstructure of a steel. For the purpose of the calculation 
of those variables, the classificator developed with the 
application of the artificial neural network method was applied. 
Independent variables in the model were constituted by the mass 
concentrations of elements, the austenitizing temperature and 
by the cooling rate. The first classificators developed with the 
application of the logistic regression method were presented in 
the paper [20]. The corrected versions of the equations which 
were taken advantage of in this paper as well were presented 
in the paper [21]. The above-mentioned classificators are the 
important part of the hardness model, and, for that very reason, 
they were included in this paper (Eq. (1)-(6)).

The regression coefficients of classificators were 
estimated with the application of the maximum likelihood 
method [22]. That method does not provide an analytical 
solution. Numerical solutions are based upon the multiple 
estimation of regression coefficients in order to obtain results 
similar to those in a given sample. For the purpose of the 
calculations of regression coefficients, the rosenbrock method 
and the quasi-Newton one were applied. The significance of 
independent variables was assessed taking advantage of the 
Wald test. The basis for recognizing the significance of the 
variable statistical describing was rejecting the null hypothesis. 
The test statistic z2 was calculated as the square of quotient of 
regression coefficient for an analysed explanatory variable and 
a standard error for that coefficient. The distribution of statistic 
z2 is in accordance with the distribution of χ2 with one degree 
of freedom. The null hypothesis was rejected if the p-value, 
being the calculated level of significance for the test statistic 
z2, was smaller than the presumed level of significance α=0.05.

It was presumed that the dichotomous dependent variable 
Wx (Eq.(1)), describing the occurrence in the microstructure 
of the steels of the following: ferrite, pearlite, bainite and 
martensite, assumes the value of 0 (the constituent does not 
occur in the microstructure of a steel), if calculated with the 
application of equation (2) the value of variable sx is not 
greater than a certain threshold value (N). The threshold 
value was determined by means of minimizing the number of 
incorrect answers.

(1)
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(2)

where:
X=f (ferryt), p (perlit), b (bainit), m (martenzyt),
N= 0.5 for ferritic, pearlite and martensitic transformation; 
N=0.4 for bainitic transformation.

Equations (1) and (2), and also (3)–(6), make it possible 
to estimate whether in the microstructure of a steel cooled at 
a certain rate from the austenitizing temperature, the following: 
ferrite, pearlite, bainite and martensite are observed. In the case 
of ferritic transformation (3) and the pearlite one (4), the issue 
can be reduced to searching for the highest cooling rate which 
is sufficient for the transformation to occur. For martensitic 
transformation (6), the unknown will be the lowest cooling rate 
which is yet sufficient for the transformation to occur. Bainitic 
transformation requires determining two values restricting the 
area of the occurrence of it. In order to achieve this result, in 
equation (5) an additional constituent was introduced, and in 
that constituent the rate of cooling was set against the mean 
value of it.

(3)

(4)

(5)

(6)

The correctness of the action of the classificators 
was assessed upon the basis of the coefficient of correct 
classifications, which was being determined as the quotient of 
correctly classified cases and all the examples in the data set 
(Table 3).

TABLE 3
Quality assessment coefficients for models, used as classifiers for 

determining the types of occurring transformations

Transformation areas Coefficient of correct 
classifications, %

Ferritic 85

Pearlitic 86
Bainitic 73
Martensitic 84

For the hardness model, the general form of the equation 
was presumed (7):

(7)

where: 
Y - explained variable - hardness;
a0, a1 .. ai - regression coefficients;
fi – functions of equation variables;
X - vector of explanatory variables.

Into the model, it was the product of two independent 
variables that were introduced as well. The objective of those 
activities was to take under consideration the interaction 
between  explanatory variables. The estimation of regression 
coefficients was performed with the application of the least 
squares method. 

Adjusting the equation to the empirical data was 
assessed upon the basis of the determination coefficient 
r2. The significance of explanatory variables added to, 
or removed from, the equation, was being assessed upon 
the basis of the values of the adjusted determination 
coefficient. The adjusted determination coefficient makes 
it possible to compare the models of multiple regression 
having a different number of explanatory variables, 
which were developed for those same empirical data. The 
significance of the regression coefficients of the model 
was researched as well verifying the hypotheses relevant to 
the individual coefficients of the form: the null hypothesis 
and the alternative hypothesis. For the verification of the 
hypothesis, the t-student distribution and, determined upon 
the basis of it, the critical p-value of were applied. The level 
of significance of α=0.05 was presumed. The statistical 
significance of the regression model  was being researched 
taking advantage of the F-Fisher-snedecor test. The models 
were being assessed as well upon the basis of: the mean 
absolute error, the standard deviation of error, and also the 
standard deviation quotient of the calculation error, as well 
as the standard deviation of the dependent variable value. 
The quotient of standard deviations makes it possible to set 
the values of the error of the model against the scope of 
changes in dependent variable. 

The hardness of a steel cooled at a particular rate (vc) 
from the austenitizing temperature (TA) is described in the 
equation (8). In the model, there are independent variables: 
the mass concentrations of elements, the austenitizing 
temperature, the cooling rate, and also four dichotomous 
variables determining the kind of constituents  occurring 
in the microstructure of a steel. In the equation, it was the 
interactions between the mass concentration of carbon and 
the cooling rate that were taken under consideration as well. 

Moreover, the hardness of steel was described in 
addition to that with the application of two equations which 
may be applied for a martensitic structure (9), and also for 
the ferritic- pearlitic one (10). The statistics of the models, 
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including the following values: the mean absolute error, 
the standard deviation of error, the quotient of standard 
deviations, and also the coefficient of correlation, were 
compiled in Tables 4 and 5.

(8)

(9)

(10)

The  hardness models for a martensitic structure, and 
for the ferritic- pearlitic one, may be applied after obtaining 
the appropriate results of classifications. In the case of 
uncertain results of classifications if the coefficient of Wx 
assumes the values similar to the threshold values dividing 
separate classes, it is a better solution to apply the general 
model.

TABLE 4
Values of statistics used to evaluate the significance of the developed 

models 

Model
HV HVm HVf-p

r2 0.848 0.857 0.746
Adjusted r2 0.847 0.855 0.743
standard error 62.3 39.9 24.4
Observations 2845 418 667
significance F 0 6E-169 3E-189

TABLE 5
Values of statistics used to evaluate the quality of the developed 

models

Mean 
absolute 
error, HV

standard 
deviation of the 

error, HV

ratio of 
standard 

deviations

Pearson’s 
correlation 
coefficient

HV 48.5 38.9 0.24 0.92
HVm 30.5 25.2 0.24 0.92
HVf-p 19.4 14.5 0.30 0.86

For hardness models the following scatter plots for 
dependent variable values that were experimental and 
calculated using equations (8)-(10) were made. The results are 
shown in Fig. 1.

a)   

b)   

b)  

Fig. 1. Comparison of the experimental hardness (HV) with values 
calculated using the regression model: a) HV equation (8); b) HVm 
equation (9); c) HVf-p equation (10)
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The hardness model was numerically verified by means 
of comparison between the curves of hardness determined 
experimentally and the calculated ones. The calculations were 
performed for data which were not taken advantage of for the 
purpose of developing the model. The verification collection 
was composed of 30 chemical compositions of structural steel. 
The examples of the results were presented in Fig. 2 and Fig. 3.

Fig. 2. Comparison of the experimental and calculated hardness 
curves for the steels with a mass concentration of elements: 0.23%C, 
1.53%Mn, 0.4%si, 0.03%Cr austenitised at temperature of 900°C

Fig. 3.Comparison of the experimental and calculated hardness 
curves for the steels with a mass concentration of elements: 0.13%C, 
0.46%Mn, 0.26%si, 0.78%Cr, 3,69%Ni, 0.04%Mo, 0.16%Cu 
austenitised at temperature of 870°C

4. Summary

The advantage of the multiple regression method is the 
fact that it is a model which is easy to be applied and to be 
disseminated. The results of the estimation of the hardness 
of steels are burdened with certain errors. Those result both 
from simplifications applied in the course of modelling, as 
well as from the specific character of empirical data upon the 
basis of which the model was developed. The data set was 
developed upon the basis of the published CCT diagrams. The 
CCT diagrams included in the paper were being developed for 
several years by different research laboratories. The error being 
made in the course of the analysis of chemical composition, 
or the measurement of hardness, was undergoing significant 
changes. A significant problem is constituted as well by the 
graphic form of data and errors connected with making CCT 

diagrams and printing them, and also errors resulting from the 
digitalization of data. 

Every vector of data taken advantage of in the course 
of the calculations of regression coefficients has to contain 
the values of all variables. Information relevant to the time 
of austenitizing, and also to the grain size, was not being 
provided on the majority of the CCT diagrams, and, for 
that very reason, it was not taken under consideration in the 
model. The presented equations can be used only in the range 
of concentrations of alloying elements shown in the Table 1. 
simultaneously, the conditions set out in the Table 2 should 
be complied with. The hardness model for structural steels, 
continuously cooled from the austenitizing temperature, was 
developed as well with the application of the artificial neural 
networks method. The verification of it is currently in progress.

The multiple regression and logistic regression methods 
were also used to develop other models that describe the 
transformation temperatures as a function of the cooling rate, 
critical temperatures of steel and volume fractions of ferrite, 
pearlite, bainite and martensite in the microstructure of 
steel. some results are shown in papers [20-21] New models 
describing the transformations of supercooled austenite will 
be taken advantage of for the purpose of modification of 
a computer program [23] for the purpose of the calculations of 
CCT diagrams for structural steels.
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