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Abstract. We consider a stochastic variant of the single machine total weighted tardiness problem jobs parameters are independent random
variables with normal or Erlang distributions. Since even deterministic problem is NP-hard, it is difficult to find global optimum for large
instances in the reasonable run time. Therefore, we propose tabu search metaheuristics in this work. Computational experiments show that
solutions obtained by the stochastic version of metaheuristics are more stable (i.e. resistant to data disturbance) than solutions generated by

classic, deterministic version of the algorithm.
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1. Introduction

Single machine scheduling problems with cost goal functions,
despite the simplicity of their formulation, belong to the most
difficult class of (NP-hard) combinatorial optimization prob-
lems. In the literature there are many such problems with dif-
ferent parameters of tasks, functional properties of machines
and different goal functions. Starting from the simplest prob-
lems — with one constraint (e.g. problem denoted by 1||>w,U,,
concerning the latest tasks’ due dates), to complex problems
of set-ups and time windows, where in the optimal solution
machines may have downtimes. They are important both from
theoretical and practical standpoint because:
1. they enable modeling and analysis of simple production
systems and individual positions in more complex systems,
2. they are considered as special cases of more general prob-
lems,
3. some of their particular properties can often be generalized,
4. they provide a common basis for the methods for solving
many NP-hard problems,
5. they are not only simple in implementation but there is also

a number of test examples in the literature.

Single machine problems are important from the theory
and practice point of view, because: (1) they allows us to re-
search single production nest of the manufacturing system
(bottleneck), (2) their specific properties can be generalized
to multi-machine issues, (3) many transportation and logistic
problems (e.g. variations of traveling salesman problem) are
formulated as single machine problems with setup times and
additional constrains. Examples of their practical applications
were presented by Lann and Mosheiov [14].

We consider the single machine total weighted tardiness
problem (in short — TWT), denoted as 1||Yw,T}. A set of n jobs
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J={1,2, ..., n} have to be processed without interruption on
a single machine that can handle only one job at a time. All jobs
become available for processing at the beginning (time zero).
Each job 7 has an integer processing time p;, a due date d; and
a positive weight w;. For a given sequence of jobs (earliest) due
date C;, the tardiness 7; = max{0, C; — d;} and the cost w;-T; of
job i € J. The objective is to find a job sequence which mini-
mizes the sum of the costs Z;’zlw[ -T;. This is a classical problem
of scheduling theory.

2. Literature review

The total weighted tardiness problem is NP-hard [15]. Enu-
merative algorithms (which use dynamic programming and
branch and bound approaches) for the problem are described
in [22, 29]. The algorithms are a significant improvement over
exhaustive search but they remain laborious and are applicable
only to relatively small problems, with the number of jobs not
exceeding 50 (80 in a multi-processor computer [29]). The enu-
merative algorithms mentioned above may require considerable
computer resources both in terms of computation times and core
storage. Therefore, many algorithms have been proposed to find
near optimal schedules in reasonable time.

Local search methods start from an initial solution and
if repeatedly try to improve the current solution by local
changes. The interchanges are continued until a solution that
cannot be improved is obtained, which is a local minimum.
To increase the performance of local search algorithms, meta-
heuristics like tabu search are used [2, 7], simulated annealing
[23], path relinking [4], genetic algorithms [7], ant colony
optimization [9]. A very effective iterated local-search method
has been proposed by Kirlik and Oguz [13]. The key aspect
of the method is its ability to explore an exponential-size
neighborhood in polynomial time by a dynamic programming
technique.
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In many applications, serious difficulties occur while in-
dicating parameters or when the data comes from inaccurate
measurement equipment. Due to short realization terms, short
series and production elasticity there are no comparative data
and no possibility to conduct experimental studies that would
enable one to determine explicit values of certain parameters.
Furthermore, in many economy branches like tourism, agri-
culture, commerce, building industry, etc., the processes that
occur have, by their nature, random character (they depend on
weather, market conditions, accidents, etc.). Making decisions
in the conditions of uncertainty (lack of exact values of parame-
ters) becomes quotidian. Stochastic scheduling problems, where
job durations are random variables with known probability
distributions have been studied in the literature for more than
40 years. A comprehensive review of methods and algorithms
solving combinatorial optimization problems with random pa-
rameters were presented by: Dean [8], Vondrak [28] and Pinedo
[21]. In case of single machine problems it is usually assumed
that the parameters of the process (eg. release dates, times of
tasks performances or due dates, etc.) are independent random
variables. Generally, there are two types of objective function
considered in the literature:

1. regular — non-negative, non-decreasing function (of com-

pletion times). Some typical examples are given below:
e cxpected number of late/tardy jobs [10, 27],
e cxpected weighted number of late/tardy jobs [17],
e cxpected total weighted tardiness [5, 6],
e total weight of batches of jobs [11],

2. non-regular (in the context in just-in-time scheduling):
e cxpected number of early and tardy jobs [25],
e cxpected total weighted number of early and tardy
jobs [26],
e cxpected weighted sum of earliness and tardiness
[1, 18].

In this paper we present a problem of scheduling on a single
machine with the due dates and the total weighted tardiness cost
minimization. We assume that processing times and due dates
are deterministic or random variables with standard or Erlang
distribution. Stochastic TWT problem will be briefly denoted by
STWT. Literature describes certain variants of STWT problem
with different distributions of random variables: Jang et al. [12]
(normal distribution), Cai and Zhoi [5] (exponential distribu-
tion), Li et al. [16] (Erlang distribution). Here we study the re-
sistance to random parameter changes on solutions constructed
according to the tabu search metaheuristics. We also present
a certain measure (called stability) that allows one to evaluate
the resistance of solutions to random data perturbations.

3. Problem description and enumeration scheme

To formulate the problem, we will use the following notation:
J — setofjobs,
Di» Wi, d; processing time, weight and due date of
ajobieJ,
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T, — tardiness of a job i,
C; — completion time of a job i,
T — permutation,
f(m) — cost function,
® — setofall permutations of elements from J,
% zT —  blocks,
if,sf — insert and swap moves,
M(z) — setof moves,
N(z) - neighborhood,
f — density function,
F — cumulative distribution.

Each schedule of jobs can be a represent by permutation
= (z(l), z(2), ..., w(n)) of elements of the jobs set J. Let ® de-
notes the set of all n- elementary permutations. For any permu-
tation 7 € @, by Cy; _1Px(j) W denote the completion time
of execution of the JOb (i The total cost of the solution 7 is

f(m) = an(i)Tn(i), (1)

where tardiness

T(iy = max{0,Cr;y — dy(i }- )
The job z(i) is considered early, if it is completed before its due
date (C) < dy(y) and tardy, if the job is completed after its due
date (i.e. Cn(i) > dn(l))

The total weighted tardiness problem consists in finding
such a permutation 7* € ® which minimizes function f on the
set D, i.e.

f(7)

=min{f(7): © € ®}.

3.1. Blocks of jobs in permutation. In every permutation
7 € @ there are such subsequences of jobs, that:
1. executing of every job from subsequence ends before its
deadline (all of the jobs are not tardy), or
2. executing of every job from subsequence ends after its dead-
line (all of the jobs are tardy).

Such subsequences are called blocks.

Block of early jobs
We call a subsequence of jobs z” from permutation 7 € ®

an E-block if:

a) every job j € 7% is early and d; > Ciag, where Cyg, is the
time of finishing of executing of the last job from 7%,

b) x% is maximal subsequence which fulfilling limitation (a).
It is easy to proof, that if z¥ is E-block, that

min{j € nf : d;j} > Ciag.
So, in any permutation of jobs from 7%, every job is exe-

cuted early in permutation 7. Algorithm (AE-block) designating
E-block is included in the work [2].

Bull. Pol. Ac.: Tech. 65(2) 2017
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Block of tardy jobs

We call subsequence of jobs (occurring directly one after
another) 7 from permutation 7 € ® a T-block, if:

a’) every job j € x” is early and d; < Cpug + pj, Where G is

the time of finishing executing of the first job in 77,

b’) z! is maximal subsequence which fulfills limitation (a’).

It is easy to proof, that in any permutation of jobs from 77,
every job is tardy in permutation 7.

Considering sequentially  (starting from z(1) and applying
appropriate algorithm AE-block or A7-block (see [2]), we can
partition 7 into £ and 7T blocks. Complexity of partition pro-
cedure is O(n).

Example 1. Let us consider the 10 jobs’ instance that is spec-
ified in Table 1.

Table 1.
Data for the instance

7 8 9 10

4
pl2 3 1 2
d |12 19 12 9

5

W W W W

W = N
w
w
[\S}
N

Letr=(1,2,3,4,5,6,7,38,9, 10). Permutation x has three
T-blocks: T} = (1, 2, 3, 4), T, = (7), Ty = (8) and two D-blocks:
D, = (5,6), D, = (9, 10). We can see these blocks on Fig. 1.
The total cost f() = 168.

Fig. 1. Blocks in permutation 7 = (1, 2, 3,4, 5, 6,7, 8, 9, 10)

With respect to T-blocks 77 in 7, it should be noticed that
by condition a’ from Section 3.1, for any permutation of jobs
within z7, all the jobs are tardy. Therefore, an optimal sequence
of the jobs within 77 of 7 can obtained, using well-known
weighted shortest processing time (WSPT) rule, proposed by
Smith [24]. The WSPT rule creates an optimal sequence of the
jobs in the non-increasing order of the ratios w;/p;.

Example 2. There are two D-blocks in permutation 7 = (1, 2, 3,
4,5,6,7,8,9, 10) from Example 1. Jobs does not fulfil WSPT
rule in the block D, = (5, 6), because Ws/, = 2/5 < Wej, = 3/5.
We are swapping jobs 5 and 6, therefore D; = (6, 5). Relation is
fulfilled in the block D, = (9, 10): (W9, =45 > Wi, = V).

We are obtaining permutation f = (1,2, 3,4,6,5,7, 8,9, 10).

The total COStf(ﬁ) = 158. Optlmal permutation Tt = (6, 10, 4, 5,
3,1,7,9,2,8), and f(z*) = 47.

Bull. Pol. Ac.: Tech. 65(2) 2017

Fundamental block properties of the TWT problem are de-
rived from the following Theorem.

Theorem 1. [2] Let 7 € ® be a permutation with blocks
By, By, ..., B, and let the jobs of each T-block of 7 are ordered
according to the WSPT rule. If the permutation f has been ob-
tained from =z by an interchange of jobs that /() < f(x), then
in 3, at least one job of some block of 7 was moved before the
first or after the last job of this block.

Note that Theorem 1 provides the necessary condition to
obtain a permutation # from z such that /() < f(x).

3.2. Tabu search algorithm. Generally, in tabu search algo-
rithm, for the given initial permutation, we identify blocks (if
there is more than one partition of the permutation into blocks,
any of them can be used), and re-order the jobs of each 7-block
according to the WSPT rule. Then, for the resulting (basic)
permutation 7, we calculate f(x), create the set of moves, com-
pound move v, and the permutation z,. Next, the search pro-
cess is repeated for the new basic permutation 7, until a given
number of iterations is reached. According to the philosophy of
tabu search, the compound move cannot contain single moves
with a tabu status; these moves are not allowed.

Moves and neighborhoods
One of the main components of a local search algorithm

is the definition of the move set that creates a neighbourhood.

A move changes the location of some jobs in a given permuta-

tion. Among many types of moves considered in the literature,

two of them appear prominently:

1. Insert move (i-move) i%, consists in remove the job z(k) from
the position k£ and next insert it in a position /. Thus the move
i¥ generates a new permutation if(z) = ).

2. Swap move (s-move) sf, in which the jobs if (k) and 7(l)
are swapped among some positions k and /. The move s
generates permutation s/ ().

Computational complexity of executing i-move is O(n), and

O(1) of executing s-move.

Any move v (i-move or s-move) is improving, if it gives
improvement of cost function, that means generates permuta-
tion 7, such, that f(z,) < f(x). Theorem 1 follows, that moves
consist in changing the order of jobs in any block are not im-
proving moves.

Let job z(j) belong to some block in permutation 7. Moves,
which can improve value of cost function consist in moving
job z( ) before the first, or after the last job of this block. M;’f
and Mff be sets of such moves (that means all of i-moves and
s-moves), and

n n
b
M(m) =M ulm. (3)
j=1 j=1
The neighborhood of the 7 is a set of permutations
N(m)={z(m): teM(m)}. 4

Much more efficient moves and neighbourhoods used in
single machine algorithms are described in [3, 30].
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To prevent from arising cycle too quickly (returning to the
same permutation after some small number of iterations of the
algorithm), some attributes of each move are saved on so-called
tabu list (list of the forbidden moves).

The tabu moves list

To prevent from arising cycle some attributes of each move-
ment are put in on the list of tabu moves. It is realized by means
of FIFO queue. Performing a movement 7 € M(x) (i-move or
s-move) on the tabu list L attributes of thlS move, i.e. the triple
(n(r), J, f(x])) are put down.

Let us assume that we examine a move m, € M(f) gener-
ating from f € ® a permutation S5 If there is a triple (7, j, ¥)
on the list L such that f(k) = r, [ =j and f(fF) < ¥ then such
amove is removed from the set M(f).

4. Randomization

In practice, there are considerable difficulties in defining proba-
bility distributions of random variables that are parameters of the
model. Especially when there is a lack of statistical data. Typi-
cally, in this case, we use expert knowledge that determines both
distributions and their parameters. In this section we consider
the stochastic single machine total weighted tardiness problem
(STWT) where, processing times or tasks due dates are random
variables with normal or Erlang distribution. The first distribution
is most commonly used in modeling of “natural” randomness (eg.
weather, demand, traffic flow, etc.), second — in turn — concerns
machine breakdowns, absenteeism, employee errors, etc.

Let 7 € @ be a sequence of the tasks processing for STWT
problem. If the execution times p; or the expected jobs’ due
dates d(i € J) are random variables, then tardiness T i (equiv-
alent 2) and the objective function (equivalent to 1)

= iWiTi- (5)
i=1

are also random variables.

In the algorithms for solving optimization problems objec-
tive function values for different solution are compared. In case
when the function is random variable (5) we will use some of its
moments or its combinations. Initially performed computational
experiments have shown that the best results were obtained
when the expected solution and standard deviation were applied
to compare the solutions. Therefore, as the comparative criteria
for solutions there will be two functions applied:

Wi(r) = E(F(n)) = iww)ﬂfn(i)x ©

7)) =
" . (7
=) ( +8-D(Tyy)).
i=1
Parameter 5(0 < J < 1) is determined experimentally.
If X is a random variable, then by Fy and fy we denote re-

spectively its cumulative distribution and density function.

222

for considered in the work distributions of random variables
(normal or Erlang’s), the density function is equal to the deriv-

ative of the cumulative distribution function, i.e. fy(x) = Fy(x).
Since the variance
D*(X) = E(X*) - (E(X))%, ®)

in order to calculate the standard deviation one should deter-
mine only expected values of random variables X and X2.

When calculating the value of the function W, and W, we
will use the following property.

Corollary 1. If the tasks’ processing times p; € J are indepen-
dent random variables, then the deadlines of tasks execution
C;=py + P> + ... + p; are also random variables but if the
variables p;(k= 1, 2, ..., i) have the distribution:

(a) normal p; ~ N(py, 01), then

)
=1
(b) Erlang p; ~ E(oy, ), then
E() ;1) (10)
=1

Let (p;, d;, w;);—1.,...., be an example of deterministic data
for TWT problem. In order to simplify the notation we assume
that the current solution to the problem is a natural permutation,
ie. 7= (1, 2, ..., n). In this section we consider the stochastic
variants of the problem in which some tasks’ parameters (pro-
cessing times or due dates) are random variables:

A. processing times p; ~ N(pj, a-p;), deterministic: w; and d;,
B. due dates d; ~ N(d,, c-d;), deterministic: p; and w;,

C. processing times p; ~ E(o;, A), deterministic: w; and d;,

D. due dates d; ~ E(f;, 1), deterministic: p; and w;,

where N(u,, ¢-p;) is a normal distribution of average u; and
standard deviation c-y; (parameter c is determined experi-
mentally). For Erlang distributions £ parameter a; = p;/,
B; = diu, where A = max{2(min{p;: 1 <i <n})"', 1} and
u=max{2(min{d;: 1 <i<n})"', 1}.Itis easy to verify that
for both distributions the expected value Ep; = p;. Indi-
vidual cases will be briefly put down using a modification
of the notation of Graham. For each of them we will give
formulas enabling the calculation of the function W7} and 1.
From the equality (8) we can see that the process comes
down to the calculation of values of expected variables
E(T;) oraz E(T?).

Case A. (problem: 1|p; ~ N(p;, a-p;)|[Xw;T;)
The times of jobs execution j; ~ N(p;, a-p;)(i € J) are in-
dependent random variables with normal distribution. It is easy

Bull. Pol. Ac.: Tech. 65(2) 2017



W\-\'\‘\’.CZL{SU].)ihl'l'li{.IBilll.L)l

P N www journals.pan.pl
IS

Stable scheduling of single mdachine with probabilistic parameters

to notice that the times of jobs completion are random variables
with normal distribution (see. Corollary 1), that is:

C~i~N<p1+p2---+pi,a- P%+-~+Pi2>a (11)

and tardiness

7= { C —d,,
0,

Lemma 1. Cumulative distribution of tardiness, i.e. of random
variable distribution 7;,i € J

Fr.(x) =
:{%wﬁw—%wﬁw
0,

if Ci > dl',

~ 12
if G <d;. (12)

Fa_ (d;) +FC,~ (d;), if x >0, (13)
if x <0,

and density function

~ (d; —Fq (di) fe (di ,if x>0,
f7.(x) = fc,-( i) Ci( l)fci( i) 1 ) (14)
! 0, if x <0,
where f(x) is density of random variable C..
Proof. We consider two cases:
1.x > 0, then
Fr(x) =P(T; <x) =
=P(T; <x|Ci—d; > 0)P(C; —d; > 0)+

+ P(T; < x| C;—d; < 0)P(C; —d; < 0).

~—

We note that

P(T, <x| éi—diSO) =1
and } y
P(Ti<x| C—d; >0) :P(C,'—d,' <x).
Thus
Ffi(x) :P(Ci—d,‘ <X)P(C,'—d,‘ > 0)+P(Ci—di < O)
= Fa_ (di+x)(1— Fa (di)) —I—Fa_ (d;)
= FC,- (di +X) - Fa (di +x)FCi (d,‘) +FC‘i (dl‘).

2. x < 0. From definition of the cumulative distribution
function results directly that f7(x) = 0 for x < 0.

To prove the formula (14) on the density function f7(x) we
should only calculate the derivative from cumulative distribu-
tion (13). |

To simplify the notation we assume that
u=pi+...+pi, and Gza\/p%+...+pi2. (15)

Bull. Pol. Ac.: Tech. 65(2) 2017

y = d; we obtain z =

In this case, the density function of the deadline for tasks com-
pletion i € J

1 —ap?

e 202
21

Je )=~ (16)

Here we will prove an auxiliary lemma, which we use in
calculating the expected value of random variables 7; and 7}2.

Lemma 2. If C,«, i=1,2, ..., nis arandom variable specifying
the date of completion of the task (11), then

—(d;—p)?

o0 G _\¢G R
. dy= ——e 20%)
/d; yfe,(v)dy N + )
di —
+u (1—FN(0,1)( G'u)>

and

(18)

/d,- fe.(0)dy=1 FN(0,1)< p )

Proof. From the definition of the random variable C; and (15)
and (16) follows that

ol —(—p)?
2062 d
/d yfe (v W Y.

‘We introduce substltutlons z=
d—p ll

L1 thus dy = odz. By assuming
andy = 0z + u. Then

|, e 01y

:Gﬁyﬂ¢2 ﬂ+“‘3¢%§

‘We notice that

_2 _2 2 _2
(7)) =—ze 7, there/ze Tdz=—e2
Therefore
* (e 217
~(V)dy = ——= |—e 2" +
/d Ve 0y == [ L,»—u

We have proved the first integral of the thesis. Now we can
move to proof of equality (18). Using the designation (15), the
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density function of the random variable C; and substitution that
we used in proof (17) we obtain

i 1
/d,- fe.(v)dy = V.

> di— |
= d; u \/73 2 dZ_ <I_FN(O,1)< p >> O

Theorem 2. If the task completion times are independent random
variables normally distributed p; ~ N(py, a-p) (k= 1,2, ..., n),
then the expected value of tardiness (12) of task i € J is

~-w)?

262 dy =

—(d—p)*
e 202 +

E(T) = (1~ Fg,(dy)) ( v

u—dy) (1 —Fyo,1) (di;“») '

Proof. By definition of the expected value (11) and (12) it fol-
lows that

E(T) = /jo xfr.(x)dx = /wa<fc-i(di+x) _

F(d) fg,(di +3) ) dx =
= (1= Fg,(di)) /O ooxf(fi(di—FX)dx.

We introduce a substitution y = d; + x.

(1= Fod) | efy (di+x)ax =
= (1=F5 (@) [ b=d)fe )y =

= (1 —F¢,(di)) </; yfe,(v)dy —d; /d w Te, (y)dy> :

Using Lemma 2 and performing simple transformations we fi-
nally obtain thesis of the theorem. O

Below we prove the lemma, which will be used to calculate
the expected value of a random variable 7}2.

Lemma 3. If C; is the time (11) of task completion i € J, then

/d_ Yo e (v)dy = (6 + u?) <1 —Fyo,1) ( o_“)) +
di—1)2
202 +di—p Uy
V2no
224

Proof. From the Eieﬁnition of the distribution function of the
random variable C;, (15) and (16) it follows that

—(y— )2

[P ramay= [P e
A = e 2o .
diy ¢ \ay d,-y o y

Introducing, the same as in the proof of Lemma 2 substitutions,
we get

—(-p? 1 2

e 22 :/w oz+ 2 gTZdZ:
y d%ﬂ( 1) Nor

IR
d,»y 27

2
e 2 dz +

:cz/m A (19)
PN

_2
e 2 dz.

* —g |
+2ou [, 'z e dz 4 p? -~

1
V2rm
Now we can individually calculate each of the above integrals.

The first integral. Since

_72 _2 _72 2 2

(—ze ) =—1-e2 +
then

2 2 2 2 2
—Z <= <= —_< —Z
/z2e2 —e2dz=/22e2dz—/e2dz:—ze2.

Hence the definite integral

(=] 2 =]
2 =z
e 2 dz—
ﬁi*# < < ﬁi*#
o o

Therefore

72
/duzezdz—\/%r/i et =

_ 2 ;22 =
e Y 2dz=|—ze2 .
difll

c

2 d: — —(di—p)?
= lim(—ze 2 )+ Gk, =z

7—o0 o
After simple transformations we obtain the equality
oo _2 d —
2 = i—H
ﬁﬁz e? dz:\/Zﬂ(l—FN(oyl)( p )+
¢ (20)

- —(di—p)?
+ ue 202
(6}

The second integral.
2

Using the equality [ e dz=—e 7, we get
1 -2 1 _2
Jupime e [(— 5)] =
B 27 V2rm i—H Q1)
1 (d;—w)*
= e 202
V2m
Bull. Pol. Ac.: Tech. 65(2) 2017
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Finally, the third integral is equal to

e 1 =2 d; —
/1_7 e ? dZ =1 _FN(O,I)( 6”) (22)

G V2m
We return to the formulation (19). Using (20, 21) and (22),
after simple transformations, we ultimately obtain the thesis
of the lemma
2 o0

o0 o) (02 2 -2
~(y)dy = — z7e 2 dz
/d,- y e, (v)dy iz Jacs
2 it *sz 2 °° 1 *Z2d
+ 20 Z e 2 dz+ e 2 dz =
H V2rm H £ \2r

di -
— (o) (1= Fon (U5 +

—(di—p)?

2 o
+ ZoTptdimp e 2% .
V2ro O

Theorem 3. If the task completion times are independent random
variables normally distributed p; ~ N(py, a-pp) (k= 1,2, ..., n),
then the expected value of a random variable 7}2

2 — —(d;-p)?
. 207U +d; “eTzﬂ
2no

Proof. From the definition of the expected value
E(T?) = [ 2f(x)dx =
_ /0 2 f (d; -+ x)dx — F (d)) /O 2 f (di+x)dx =
=(1- Féi(di) /0 xzf@i (di +x)dx.

It remains to calculate [§°x*/z(d; + x)dx. By introducing
a substitution y = d; + x we get

|| ety = |- )y =
=),

y)dy — Zd/ ey dy+d2/ fe, (v
Therefore

(1 Fa (dy) /O "2 f (di-+x)dx = (1 Fe, (dy)

( /d 1- yzfc,.(y)dy) —2d /d ,» Ve (y)dy+d; /d Je )y

Using Lemma 3 we finally get the conclusion of Theorem.
O
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If the times of the tasks execution are independent random
variables with a normal distribution (p; ~ N(p;, a-p;), i € J),
then when calculating the value of the function W, and W, we
will use Theorem 4 and 5.

Case B. (problem: 1|d; ~ N(d, c-d))|>w;T)))

We assume that deadlines of tasks completion are independent
random variables normally distributed (d; ~ N(d;, c-d;), i € J).
Tardiness of task i € J

. Ci—d;, if C;>d,
R (23)
07 if Ci < di7
is also a random variable.
Lemma 4. Cumulative distribution of tardiness
1 _F,ii(ci_x)FJi(Ci)a if x>0, (24)
0, if x<0
and density function
F; (C)f;(Ci—x), if x>0,
frx)=q A . (25)
! 0, if x <0,
i=1,2,....n
Proof. The proof is similar as Lemma 1. O

Similarly as in Case A we will now prove two theorems
allowing us to calculate the expected values of random variables
T; and T,»z.

Theorem 4. If the expected deadlines for the completion of
tasks are independent random variables normally distributed
d; ~ N(d;, c-d;), then the expected value of tardiness (23)

~ Cl'— Ci_
E(T;) = Fy(o,1) ( p. .U> (CiFN(O,l) ( > “) +

o (G e <Ci — ,LL>
+——e 27 |-
27re HEN0,1) p

Proof. Similarly, as in the case of a proof of theorem 2 should
be this time the use of lemma 2. O

Thus, it remains to compute the expected value of the vari-
able E(T?).

Theorem 5. If the deadlines of tasks are independent random

variables normally distributed d; ~ N(d,, c-d,), then the ex-
pected value of a random variable T
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o2 o7 o’ 2ou o7

F V)| —=Ve 2 —| —=+—==]e 7 +

(© 1)( 2 (\/277: l <\/27r \/27'L'>

c

+ u’F ) +2Ci——e 7T —

H=Eno1) (%) NGT
— 2CiuF(o,1) () +ClFn(o.1) (%)) ,
where 0; = S-E,
Proof. Similarly, as in the theorem 3 (use of lemma 3). |

In this case, to compute the value of the function W} and W,
we will use Theorem 2 and 3.

Case C. (problem: p; ~ E(a, 1))

We assume that the times of the tasks executions p;, i € J
are independent random variables with Erlang distribution,
Pi ~ E(a, A). Then, the completion date of task i € J is a random
variable with Erlang distribution (Corollary 1)

i
CZNZﬁiNEOCl
=1

where o = a; + a... + a;.
From the definition of the Erlang distribution, the density
function of the random variable C; ~ E(a, 1)

B R | & |
5 . (a 1) ) )
(x) = 26
Je %) {0, if x < 0. (20)
In such a case tardiness
- C,—d;, ifC;>d;,
i= e (27)
0, if C; < d;

Lemma 5. The cumulative distribution function of the random
variable 7; (27)

Fg (d; 1 —Fg(di))Fp d;),if 0,
FT.(X): Ci( )+( C,( )) C,(x+ ) 1 x> (28)
! 0, if x <0,
and density function
(1 —Fc(di))fé,(x—{—di), ifx >0,
= — i i 29
J5) {Q ifx<o, &

Proof. The proof is omitted because it is similar to the proof of
Lemma 1. O

Now we prove an auxiliary lemma, which we use at calcu-
lating the expected value of variables 7; and 7}2.
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Lemma 6. If the deadlings for the completion of tasks (27) have
the Erlang distribution C; ~ E(a, 1), then

| 3edx =20~ Feaan@). 60
and
) a(a+1)
| ey = EET2 (0= Fraian(@). - G

Proof. Using the density function (26) of random variable C;

/umxf@i(x)dx = /amx(ai o

laﬂx(aﬂ)e_lxdx.

)Locxocfleflxdx _

1
:AL(W+U—M

Since

((a-+;)——1)!la+d*‘a+ne_lx::fi0w+Lxﬂx), (32)
thus

%Q/ a—kl @y X e
= (1= Frar1.)(@).

Now we prove the second equality thesis of the lemma.

/C:xzféi (x)dx = /d:oxz(ail)!kaxa_le’lxdx =

= a(ijl) (1= Fe(aian)(di))-
The last equality used (32). O

Theorem 6. If the times of the tasks execution are independent
random variables of the Erlang distribution E (e, 4), i € J, then
the expected value of tasks tardiness is

E(T) = (1= Fya) (@) (5 (1= Frtar1.)(d) -

— d; (1= Fgio2)(d))) -
Proof. The expected value
E@Q:A.ﬁﬁwmﬁ41_F4¢»%;ﬁgx+¢yu4w)

We calculate the integral [/ (x + d;)dx. Using substitution
u = x + d; and complying with (30) we obtain
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A féi(x—l-di)dx:/o fC'i(x+di)dx:
:/di (u—d,')fa(u)du—di/di fa(u)du =
= % (1= Fi(as1,2)(di) —di (1 = Fr(a,)(di)) -

Substituting (33) into the above equality we obtain the assertion
theorem. O
We calculate the expected value of the variable 7}2.

Theorem 7. If the task completion times are independent
random variables with erlang distribution E(a;, 1), i € J, then
the expected value of tardiness (27) of task i € J is

- ala+1
B(T) = (1 Farany (@) ( 253
o
(1 = Fgasa.a)(di) — 2d;~ (1= Fgaria)(d) + (34)

+d} (1= Fgaz) (di)>> :

Proof. By the definition of the expected value

E(T?)= / sz fi,(x)dx = /0 TR(PC > di) (x4 di))dx

P(C,' > d,)/ xzf@_ (x—l—d,-)dx.
0 1

Similarly, as in the proof of Theorem 6 by performing substi-
tution u = x + d; we obtain

E(le) — P(Ci > d;) (/doo ”2fé,»(”)du _

—2d; /doo ufe, (u)du+ d? /;f@i(u)du> .

The first two integrals are calculated using the equality (30)
and (31). Then, after simple transformations, we obtain the
assertion (34). |

When tasks completion times are random variables with
Erlang distribution, values of the function W, and W, are cal-
culated using the Theorem 6 and 7.

Case D. (problem: 1|d; ~ E(f;, x)|>w;T})

We assume that the required deadlines for the completion
of tasks are independent random variables with Erlang distri-
bution d; ~ E(B;, 1), where f; = dyu, 1 = max{2(min{d;: 1 <
i< n})*l, 1}. Similarly, as for case B, we determine the cumu-
lative distribution function of the density of tasks tardiness i € J

= i_‘ih
n:{c
0,

where the date of tasks completion is C; = Z;Zl Dy

if C; > d;,

- 35
if G < dia G
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Lemma 7. Cumulative distribution of tasks tardiness (35)

1—-F;(Ci—x)F;(C;) ifx>0,
p) = LG (G) it (36)
' 0, ifx <0,
and density function
F;i(Ci)fg(Ci—x), ifx>0,
() =< @ ’ 37
/1) {Q itxs0. O

Proof. We omit the proof because it is similar to the proof of
Lemma 5. O

Then, we can proceed to calculate the expected values of
random variables 7} and f}z.

Theorem 8. If the requested deadlines for the completion of
tasks are independent random variables with Erlang distribu-
tion d; ~ E(B;, 1), i = 1,2, ..., n, then the expected value of
tardiness (35) is
E(Ti) = Fi(p ) (C) (CiF(p ) (C) —
B (39)
— = Frpr1p)(C)),
u
where f =1+ 5o+ ... + B,

Proof. Using the density function of the tardiness of random
variable 7; (Lemat 7) the expected value

E(T) = [ xF4(Cfy(Ci—x)dx =
—F;(C) /0 " xfy (Ci—x)dx.
The next part is similar to the proof of 4 O
Theorem 9. If the expected deadlines for the completion of

tasks are independent random variables with Erlang distribution
d; ~ E(B;, 1t), the expected value of the square tardiness is

. ala+1
E(T?) = Fp(a)(C) <(;L2)FE(0¢+277L)(C1')
(39)
o 2
- 2CiIFE(a+1,x)(Ci) +C FE(a,)L)(Ci)) -
Proof. The expected value
E(T?) = / 2F; (G £ (G —x)dx =

0 (40)

= Fd:- (C,) /Oooxzfji (Cl’ —x)dx.

In carrying out the substitution, as in the proof of Theorem 4
and using Lemma 6 (equality (30) and (31)) we finally obtain
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Ci
E(T?) = Fy(C) [ |07 —2Cy +Cfy(3)dy =

—o0

C;
=F;(C) (/ Y (y)dy — (41)
C; , (G
26 [ a6 [ o)),
In this way we have proved the thesis statement. O

Proved equalities (Theorem 8 and 9) will be used when
calculating the value of function W, oraz W,.

5. The algorithms’ stability

In this section we shall introduce a certain measure which let
us examine the influence of the change of jobs’ parameters on
the goal function value (1) i.e. the solution stability.

Let 6 = ((p1, w1, Wi, €15 d1)s < (Pus Uy, Wiy €5, ) be an ex-
ample of deterministic data for the TWT problem. By D(6) we
denote a set of data generated from ¢ by a disturbance of jobs
parameters. A disturbance consists in changing these times on
random determined values.

Let A = {AD, AP} where AD and AP is the deterministic and
the probabilistic algorithm, respectively (i.e. solving examples
with deterministic or random times of jobs’ performance) for
the TWT problem. By 75 we denote a solution (a permutation)
determined by the algorithm A for a data d. Then, let f(4, 75, ¢)
be the cost of jobs’ execution (1) for the example ¢ in a se-
quence determined by a solution (a permutation) z; determined
by the algorithm A for data J. Then,

1 Zf(Avﬂ&(p)_f(ADvn(pa(p)
ID()] f(AD, 7y, 9) ’

is called the solution stability 75 (of an example J) determined
by the algorithm A4 on the set of disturbed data D(d).

Let Q be a set of deterministic examples for the problem of
jobs’ arrangement. The stability rate of the algorithm 4 on the
set Q is defined in the following way:

A(A,8,D(8)) =
$eD(5)

S(A,Q) = -

= A(A,5,D(8)) - 100%.
’Q“ 5eQ

(42)

In the following section we will present numerical exper-
iments that allow comparisons of the deterministic stability
coefficient S(AD, Q) with the probabilistic stability coefficient
S(4P, Q).

6. Computational experiments
Presented in Chapter 3.2 tabu search algorithm was adopted
to solve the deterministic TWT problem (i.e. 1||Yw;7;) and its

variants with random parameters. In short, the deterministic
algorithm will be denoted by AD, and the stochastic one by AP,
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whereas by 4P, we denote stochastic algorithm with selection
criterion W (6), and by AP, — with criterion W, (7). The algo-
rithms have been tested on two classes of instances of various
size and level of difficulty:
(1) 375 benchmark instances of three different sizes with 40,
50 and 100 jobs from the OR-Library [20].

(ii) test problems were generated as follows: for each job 7, an
integer processing time p; was generated from the uniform
distribution [1, 100] and integer weights w; were generated
from the uniform distribution [1, 10]. Let P = Y 7_, p;. Dis-
tributions of deadline d; depend on P and two additional
parameters L and R which take on values from 0.2 to 1.0
in increments of 0.2. An integer deadline d; was generated
from the uniform distribution [P(L — R/2), P(L + R/2)].
Five problems were generated for each of the 25 pairs of
values of R and L, yielding 125 problems for each value
of n =200, 300, 400, 500.

The set of all 975 examples of deterministic data is denoted
by Q.

For each example of deterministic data there was an ex-
ample of the probabilistic data designated with the following
distributions of random variables (other values are determin-
istic):

(a) processing times: p; ~ N(p;, a-p;), where a = 0.2,

(b) latest due dates: d; ~ N(d;, c-d), ¢ = 0.1,

(c) processing times: p; ~ E(ay, Ay), 03 = Pi Ao 4 = 1,

(d) latest due dates: d; ~ E(Bs, i), Bi = di- g, iy = 1,
Parameters’ values a = 0.2 (case (a)), ¢ = 0.1 (case (b)) and
4q = pp =1 (case (c) i (d)) were established on the basis of
statistical data relating to road construction and on carried out
computational experiments.

For simplicity, each of the these data sets (respectively for
the case(a), (b), (c) and (d)) is denoted by Q.

Initial permutation. The quality of solutions calculated by
tabu search algorithm strongly depend on the starting point.
Below we present the constructive heuristic algorithm which
computes these solutions. It’s based on the idea of NEH algo-
rithm [19] and creates n elements’ permutation 7 € .

For the job i € J and the number x > 0, let f;(x) = max/{0,
x — di}.

Algorithm. CA {Constructive Algorithm}
Enumerate jobs such as p/w; > py/wy >, ..., > p,/Wys
l:=1;
for i :=2tondo

begin
Insert a job i on one of positions 1, 2, ..., /
so that the sum
2,1-21 Jx(j)(Cx(j) Was minimal,
where Cyj) = 21 Prty
I=1+1
end {for}

The CA algorithm requires O(n?) time.

Deterministic algorithms CA4 and AD on the examples from
the set Q, and probabilistic AP;, AP, on the examples from the
setc Q.
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Parameter selection. For parameters’ values determination
preliminary experiments have been conducted for randomly
generated instances (5 per each number of jobs n = 40, 50,
100). After analysis of the received results we have assumed:
the length of tabu list /7S(iter) = \/n |, and the number of iter-
ations algorithm Maxiter = n*.

6.1. Comparative study. Firstly, the quality of the examples of
solutions designated by separate algorithms from (i) was exam-
ined. For probabilistic algorithms it was assumed that the execu-
tion time of tasks are random variables with normal distribution
(see case (A)). We compared the results of the deterministic
(CA, AD) and probabilistic algorithms (4P, AP,) with the re-
sults taken from the OR-Library page [20] For each test instance
we have computed values: F — the makespan found by the
algorithm 4 € {C4, AD, AP\, AP,}, and (F* — UB)/UB-100%
— the relative percentage deviation of the makespan F to the
best known upper bound UB (taken from [20]).

For each size n (group of test instances) we have calculated the
following values:

Oaprd the average value (for 125 instances) of the rela-
tive percentage deviation of the cost function F4
(found by algorithm A4) to the best known upper
bound,

Omrpd the maximal relative percentage deviation from

the upper bound value.

We present the results obtained for the test problems of
class (i) in Table 2. When comparing the average relative error
it turns out that, regardless of the number of tasks, determin-
istic algorithm AD sets significantly better solutions than both
probabilistic algorithms. The average relative error of the de-
terministic algorithm is 0.51% and is considerably smaller (by
about about 30%) than errors for probabilistic algorithms. It is
especially clear for examples with a greater number of tasks.
Both probabilistic algorithms 4P; and 4P, set similar solutions
because their errors vary little and are respectively 0.70% and
0.75%. According to predictions the worst algorithm appeared
to be a construction algorithm CA. The average relative error
was 6.06% and almost 12 times greater than the error of the
algorithm 4D. Average maximum errors (d,,,,) have similar
proportions. By far the best appeared to be algorithm 4D. The
worst set by this algorithm solutions differ on average by 0.67%
from the best currently known values given in [20]. Compu-
tation time of one algorithm for all the 375 examples did not
exceed 5 seconds. Since for the examples of the number of

Table 2
Comparison of results of the algorithms with results taken from the
OR- Library [20] (class (i))

Algorithm C4 Algorithm AD Algorithm AP; Algorithm AP,

N und Owpd Oumi Ompd Ourd Owpd Oprd Ompa
40 421 5.23 0.11 0.16 0.19 0.26 0.17 0.21
50 533 7.57 0.24 0.32 0.28 0.39 0.31 0.44
100 8.64 10.14 1.17 1.54 1.63 2.42 1.76  2.16
all 6.06 7.65 0.51 0.67 0.70 1.02 0.75 0.94
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Table 3
The comparison of results of 4D, AP, AP, algorithms with the
results of the constructive algorithm CA (for data of the class (ii))

Algorithm AD Algorithm AP, Algorithm AP,

L ud Owpd Oum Owpd Ot Oupa
200 -8.74 -11.27 -5.14 -8.44 -593 -7.93
300 -10.87 -14.55 -9.38 -12.37 -8.17 —l12.11
400 -13.41 -17.84 -998 -13.53 -9.81 -14.72
500 -16.58 -19.26 -11.37 -14.81 -10.47 -13.52
all  -12.40 -15.73 -8.96 -12.28 -8.59 -12.07

tasks bigger than 100, there is no reference data in the literature,
we compare the results of algorithms AD, AP, and AP, with
the results of the design algorithm CA. Calculations performed
on test instances of class (ii). The obtained results were pre-
sented in Table 3. They are similar to those listed in Table 2, the
highest average (relative) improvements of solutions —12.40%
set by AC algoritm was obtained by AD algoritm. Both sto-
chastic algorithms set similar solutions. Average improvements
differ slightly between each other and are respectively —8.96%
and —8.59%. Similar proportions were observed for maximum
improvement. Computation time of one algorithm in all 600
examples, did not exceed 3 minutes. Taken into consideartion
the simplicity of algorithms and a small number of iterations it
must be emphasized that the set solutions are fully satisfactory.

6.2. Stability of algorithms. In order to investigate the sta-
bility of algorithms there were disturbed data sets generated.
The basis was constituted on 975 examples of deterministic
data from the set Q described in (i) and (ii). For the example
of deterministic data & = (p;, w;, d;);—1.2. . 0 € Q there were
100 examples of disturbed data D(5) generated according to the
following distributions:

a) problem 1|, ~ N(pi, a-p)|XwiT;), p; ~ N(p:, 0.2-py),

b) problem 1|d; ~ N(d, ¢-d))|>w;T;), d; ~ N(d, 0,1-d,),

¢) problem 1|p; ~ E(a; 2)|[XwiT}), p; ~ E(p;, 1),

d) problem 1|Jt ~ E(ﬁb X)|zwi7;)s CZ ~ E(pb 1)

In total, for each variant of probabilistic problem a), b), ¢) and
d) there 97 500 examples of disturbed data generated. They
were then solved by the algorithm AD, whose solutions con-
stituted the basis for determining the stability coefficient of
examined algorithms. Table 4 shows the results for problems
with random parameters with the normal distribution. Both
probabilistic algorithms have stability coefficient significantly
smaller than the deterministic algorithm. For random times of
the tasks execution probabilistic algorithm AP, has a stability
coefficient of 3.91% and it is more than twice lower than 8.25%
— coefficient of deterministic algorithm 4D. Coefficient 3.91%
of AP, algorithm shows that the random disturbance of tasks
execution times decreases the value of the objective function
(in relation to solutions of 4D) algorithm on average by 3.91%.
In case of random deadlines for the completion of tasks the
smallest stability coefficient has 4P, algorithm. It amounts to
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Table 4
Stability coefficients (42) for random parameters examples with
the normal distribution (case A and B)

Case A (p; ~ N(p;, a-p;)) Case B (Jz ~ N(d;, c-dy))

" AD AP, AP, | 4D 4P, 4P,

40 475 216 189 | 488 411 372
50 499 208 225 | 603 387 354
100 607 375 361 | 848 628 621
200 683  3.63 438 | 1327 755  7.66
300 866 411 535 | 1517 913 772
400 1107 48 589 | 1775 896  9.74
500 1536 686  7.06 | 2246 1104 1157
Average  8.25 33.91 4.35 12.58 7.23 7.16

7.16%. AP, algorithm has slightly larger coefficient: 7.23%,
whereas deterministic AD algorithm — the largest: 12.58%.
Computational results for the examples of processing times or
tasks due dates with Erlang distribution were given in Table 5.
For cases where the task parameters are random variables with
Erlang distribution stability of solutions (presented in Table 5)
is similar to the normal distribution (Table 4). Both probabilistic
algorithms are much more stable than the deterministic algo-
rithm. In summary, on the basis of the given results it can be
concluded that probabilistic algorithms are significantly more
stable. The solutions determined by them are much less sensi-
tive to any random change in the parameters of the problem.
For random processing times of tasks algorithm AP; is more
stable, whereas for the tasks due dates — slightly better is al-
gorithm AP,.

Table 5
Stability coefficients (42) for examples random parameters
examples with Erlang distribution (case C and D)

Case C (p; ~ E(a;, 4)) Case D (071 ~ E(f; 1)

" AD AP, AP, | 4D 4P, 4P,

40 256 183 201 | 489 334 286
50 316 197 162 | 511 382 344
100 427 264 307 | 793 556 473
200 508 337 312 | 936 728 812
300 701 427 468 | 13.17 988  7.87
400 948 513 526 | 1658  9.66  10.08
500 1388 576 624 | 2143 1008  11.17
Average  6.51 3.56 3.71 11.21 7.08 6.89

7. Remarks and conclusions
In this work there was considered a problem of uncertain

data modeling methods with the use of random variables with
normal or Erlang distribution, which well describes the ‘natural’

230

randomness most often met while dealing with management
practices. The paper presents the design of algorithm based
on the tabu search method for a single machine jobs sched-
uling problem. Computational experiments were conducted to
investigate the stability of algorithms, that is, the problem of
the impact of the disorder parameter on changes in values of
the optimized criterion. The obtained results clearly indicate
that much more stable are the probabilistic algorithms, that is
the algorithms, in which, as the comparative criterion, there
was a function of central moments of random goal functions
adopted.

Possible implementation of proposed methods includes opti-
mization of single production nest of the manufacturing system
(bottleneck) and its generalization to multi-machine problems
with uncertain parameters (e.g dependent on the weather) which
can be modelled by probabilistic processing times, for instance
in construction or industry.
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