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Abstract. The stability of fractional standard and positive continuous-time linear systems with state matrices in integer and rational powers
is addressed. It is shown that the fractional systems are asymptotically stable if and only if the eigenvalues of the state matrices satisfy some
conditions imposed on the phases of the eigenvalues. The fractional standard systems are unstable if the state matrices have at least one positive

eigenvalue.
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1. Introduction

A dynamical system is called positive if its trajectory starting
from any nonnegative initial condition state remains forever in
the positive orthant for all nonnegative inputs. An overview of
state of the art in positive systems theory is given in the mono-
graphs [1, 2] A variety of models having positive behavior can
be found in engineering, economics, social sciences, biology
and medicine, etc.

Mathematical fundamentals of the fractional calculus
are given in the monographs [3—5]. The positive fractional
linear systems have been investigated in [6—8]. The stability
is a basic notion of the analysis of dynamical linear and non-
linear systems [2, 9-11]. Stability of fractional linear con-
tinuous-time systems has been investigated in the papers [3,
12, 10, 13—14]. The notion of practical stability of positive
fractional linear systems has been introduced in [15]. Some
recent interesting results in fractional systems theory and its
applications can be found in [4, 10, 13, 16]. The positive linear
systems consisting of n subsystems with different fractional
orders have been addressed in [17]. The controllability and
minimum energy control of fractional systems have been an-
alyzed in [18-20] and the reachability of fractional positive
linear systems in [18].

In this paper the stability of fractional positive continu-
ous-time linear systems with state matrices in integer and ra-
tional powers will be addressed.

The paper is organized as follows. In Section 2 preliminaries
concerning the fractional positive continuous-time linear sys-
tems are recalled. The fractional standard linear systems with
state matrices in integer and rational powers are investigated in
Section 3. Similar problems for positive fractional linear sys-
tems are analyzed in Section 4. Concluding remarks are given
in Section 5.
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The following notation will be used: R — the set of real num-
bers, R"" —the set of nxm real matrices, R}™" — the set of nxm
real matrices with nonnegative entries and §R" €R”X1 —the
set of nxn Metzler matrices (real matrices w1th nonnegative
oft-diagonal entries), /, — the nxn identity matrix.

2. Preliminaries

Consider the fractional autonomous continuous-time linear
system

o
oD x(t) = d ( ) = Ax(t),Ae R™", (1)
where
a ! X9
d”x(1) _ J‘ (7)
a 1’* a (x+1 q ’
dt (q )8 (1 @
q
g-l<a<gq, ¢=12, x'(1) _ 4 x5)
dr?
is the Caputo derivative of a order of x(f) € R" and
I(x) = j e dr | Re(x)> 0 3)
is the Euler gamma function.
The solution of (1) has the form [8]
x(1) =Dy(1)xy, X9 =x(0), “)
where
Ak ka
5
Pol)= ZI‘(kafH) ©
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Definition 1. [8] The system (1) (or equivalently the matrix A)
is called asymptotically stable if

lim x(r) =0 for all x,e€ R". (6)

[—>o0
Theorem 1. [8] The system (1) (the matrix A) is asymptotically
stable if and only if
aZ < @, < a3—ﬂ
2 2 (7)
for i=1,..,n, g—l<a<gq, q=1,2

where s; = |s;/¢/” are the eigenvalues of the matrix 4, i.e. the
zeros of the characteristic polynomial of 4

det[l,s—Al=5"+a, |s" " +..+a;s+a,. ®)
Definition 2. [8] The fractional system (1-3) is called (inter-
nally) positive if x() € R', t € [0, +oo] for all x, € R7.

Definition 3. [2, 18] A matrix 4 = [a;] € R"" is called Metzler
matrix if a; > 0 fori #j,i,j=1, ..., n.

Theorem 2. [8] The fractional system (1-3) is positive if and
only if

Ae M, and O<a <l Q)

Definition 4. [8] The positive fractional system (1) — (3) (the
matrix 4) is called asymptotically stable if

lim x(r) =0 for all x,e€ R..

f—>oo

(10)

Theorem 3. [8] The positive fractional system (1-3) (the ma-
trix A) is asymptotically stable if and only if the eigenvalues
s;=|s]e’”, i =1, ..., n of the matrix 4 € M, satisfy the con-
dition

V4 3z

—<g0,-<7 fori=1,...,n and O< @ <1.

11
> (I

Theorem 4. [21-22] Let s, [ = 1, ..., n be the eigenvalues (not
necessarily distinct) of the matrix 4 € R"*" and f(s;) be well
defined on the spectrum o = {s, sy, ..., 5,,} of A. Then f{s)),

I =1, ..., n are the eigenvalues of the matrix 4.
For example if s, / =1, ..., n are the nonzero eigenvalues
of the matrix 4 € R then sfl, =1, ..., nare the eigenvalues

of the inverse matrix 4.

Theorem 5. The fractional linear system

a
déﬁ”:Aﬂo,Aem“K0<a<2
t

(12)

306

is asymptotically stable if and only if the system

d%x(t
A:—Ax(t), Ae R, 0<a<?2 (13)
dt”
is unstable.
Proof. By Theorem 3 if s;, k=1, ..., n are the eigenvalues of
Athen—s;, [ =1, ..., n are the eigenvalues of —4. Therefore, the

system (12) is asymptotically stable if and only if the system
(13) is unstable. O

3. Fractional linear systems

Case 1. k=2, 3, ... First we shall consider the asymptotic sta-
bility of the fractional continuous-time linear systems of the
form

d%x(1)

=Ax(@t), Ae R, 0<a<?2
dr®

(14)

fork=2,3, ....

Theorem 6. The fractional continuous-time linear system (14)
is asymptotically stable for £ = 2, 3, ... if and only if the ei-
genvalues s; = |s;/e’”, I = 1, ..., n of the matrix A satisfy the
condition

.4 T
—a<kp <2r——a 15
> 7 > (15)

Proof. By Theorem 3 if s;, / = 1, ..., n are the eigenvalues of
the matrix A then s = |s|e’*”, I = 1, ..., n are the eigenvalues
of the matrix A4* k =2, 3, ... Applying to the system (14) The-
orem | we obtain the condition (15). O

Example 1. Consider the fractional system (14) for 0 < a < 2

and
A= 01 (16)
-1 -1
fork=2,3, ...
The characteristic polynomial of (16) has the form
det[/,s—A] = =5 +s+1 (17)
1 s+1
and its zeros are
2
1B T
nETptig e
27 Ly 4 (18)
143 Y 3
Sy =———Jj—= =e
2 2

Bull. Pol. Ac.: Tech. 65(3) 2017



www.czasopisma.pan.pl P N www.journals.pan.pl
=

Stability of fractional positive continuous-time linedr'systenis with state matrices in integer and rational powers

From (18) and (15) it follows that the system with (16) is as-
ymptotically stable for k = 1 and 0 < a < 4/4. The system is
also asymptotically stable for k =2 and 0 < a < 44 since

2

—' 3 (19)

The system is unstable for k =3 and 0 < a < 2 since

2
si=le 3 | =e/ =¢/0 and
(20)
j47r 3
il y o
ss5=|e 3 | ==l

and the condition (15) is not satisfied.

It is easy to show that the fractional system (14) with (16)
and 0 < a < 2 is asymptotically stable for k =2/, 1=1,2, ...
and unstable fork =21+ 1,/=1,2, ...

Example 2. Consider the system (14) with

0 1
A= and O<a<?2. (21)
-2 -3
The characteristic polynomial of (21) has the form
det[l,s— Al =| I (22)
et[l,s—A]= = s
? 2 s5+3

and its zeros are: s; = —1, 5, = 2.
The system for k£ = 1 is asymptotically stable for 0 < a < 2
but for £ = 2 is unstable since
st=(=D?=¢/" and 57 =(-2)*=4¢"  (23)
and the condition (15) is not satisfied.

For k=3 and 0 < a < 2 the system is asymptotically stable
since

st =(-1)> =—1=¢"" and s3 =(-2)> =813 (24)
and the condition (15) is satisfied.
In general case it is easy to show that the system (14) with
(21) is asymptotically stable for k=2/+1,/=0,1, ... and
unstable for k=2 1=1,2,...and 0 < a < 2.

Case 2. k =—1,-2, ... Consider the asymptotic stability of the
system (14) for k =—-1,-2, ...

Theorem 7. The fractional continuous-time linear system (14)
is asymptotically stable for k = —1, -2, ... if and only if the

Bull. Pol. Ac.: Tech. 65(3) 2017

eigenvalues s, = |s;/e’”, [ = 1, ..., n of the matrix 4 satisfy the
condition

T T
—a<-ko <2r—-—a 25
) (2} > (25)

Proof. The proof is similar to the proof of Theorem 6.

Example 3. (Continuation of Example 1) The inverse matrix
of (16) has the form

A= -1 -1
110
2 Ar 2

its ei B A R R B
and its eigenvalues are: s; =e =e 7,5, =e °.

(26)

The fractional system with (26) is asymptotically stable since
the condition (25) is satisfied for k =—1 and 0 < a < 4/3
Note that for (16) and £ = -2 we have

o [0 1
-1 -1

27 A

27

and its eigenvalues are: s;° = s, = ¢ 3 L8 =8y = ¢ 3.
Therefore, the fractional system with (27) is also asymp-
totically stable.
For (16) and £ = -3 we have

P
1o 1

and the fractional system with (28) is unstable.
Note that the fractional system with (16) is unstable for
k=-3,-6, ... since

(28)

4k 2km

G =e 3 =land (s5)F=¢’ 3 =1 (29

for k=-3,-6, ...

Example 4. (Continuation of Example 2) The inverse matrix
of (21) has the form

3 1
At=|T3 T3 (30)
1 0
i
and its eigenvalues are: s, =—1=¢7/"=¢ 3,5 = f% = %e’j”.

The fractional system with (30) is asymptotically stable
since the condition (25) is satisfied for k =—1 and 0 < a < 2.
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For k£ = -2 the eigenvalues of the matrix

73
A2 = 43 41 G1)
2 2

are s, To1=¢ 00, sz’z = %ejoo and the fractional system with

(31) is unstable since the condition (25) is not satisfied for
k=-2.

It is easy to show that the fractional system with (21) is
asymptotically stable for k = —(1 + 2/), /=0, 1, ... and it is
unstable fork=-2/,/=1,2,...and 0 < a < 2.

Case3. k=2 ork=-0 pg={,2, .}

Theorem 8. The fractional continuous-time linear system (14)
is asymptotically stable for k =+, p, g = {1, 2, ...} if and
only if the eigenvalues s; = |s;|e’”, [ = 1, 2, ..., n of the matrix
A satisty the condition

£a<i£¢l < 27:—105 for [ =1,...,n. (32)
2 q 2

Proof. If 5, / = 1, ..., n are the eigenvalues of 4 then by The-
orem 3 s,i%, I =1, ..., n are the eigenvalues of the matrix
A and next applying Theorem 1 to the system (14) we ob-
tain the condition (31). O

Example 5. (Continuation of Example 2) Forg = % the eigen-

values of the matrix
2
0 1|3
A=
-2 =3

2 2 2 21 2
3

(33)

2 j2x 2 2 2
are s; = (1) = ()P =€ 3,5 = (-2 = (2¢")} =2% 3
and they satisfy the condition (32) for 0 < a < 44. Therefore,
the fractional system (14) with the matrix (21) is asymptotically
stable forp =2, ¢ =3 and 0 < a0 < 44.

For g = f% the eigenvalues of the matrix
2
A 0 b (34)
-2 -3
2 2 2 2 21
3

are, s; o) 3=(eM3= ()P = ¢ 3 and they also satisfy
the condition (32) for 0 < a < 4/3 The fractional system (14)
with (34) is also asymptotically stable.

Theorem 9. The fractional continuous-time linear system (14) is
unstable for all values of k (integer and rational) and 0 < o < 2

if its matrix 4 has at least one real positive eigenvalue.

Proof. If at least one eigenvalue s;, / € {1, ..., n} is positive then
by Theorem 3 at least one eigenvalue of the matrix A is also
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positive for all values (integer or rational) of & and the system
is unstable for 0 < o < 2. O

Example 6. Consider the fractional system (14) with the matrix

0 1 0
A=|0 0 1|and O<a<2. (35)
1 -2 2

The characteristic polynomial of (35) has the form

s -1 0
det[I;s—A]=|0 s —1|=s=2s"+25—1 (36)
-1 2 s=2

and its zeros are s, = 1, 5, = 1/2—|—j‘/§/2,s3: 1/z—j‘/g/z.
The fractional system is unstable for all values of £ and
0 < a < 2 since s{‘ =1 for k integer and rational.

4. Positive fractional linear systems

Casel. k=23, ...

First we shall consider the asymptotic stability of the positive
fractional continuous-time linear system (14) for k=2, 3, ...,
0<a<landA4eM,.

Theorem 10. The positive fractional linear system (14) with
AeM, 0<a<1isasymptotically stable for k =2, 3, ... if
and only if the eigenvalues s; = |s)|¢’”, [ =1, 2, ..., n of the
matrix A € M, satisfy the condition

§< kg, < 37” for k=23,..and [ =1.on.  (37)

Proof. If s, = 1, ..., n are the eigenvalues of 4 € M, then by
Theorem 4 s,k = |s,k\ejk¢”, k=2,3,...and [ =1, ..., n are the
eigenvalues of A k=23, ... Applying to the positive frac-
tional system (14) Theorem 3 we obtain the condition (37). O

Example 7. Consider the fractional system (14) for 0 < a < 1

and
o
A =
0 -2
fork=2,3, ....

The fractional system (14) with (38) for 0 < a < 1 is pos-
itive since 4 € M,. The eigenvalues of (38) are s; = —1 = /",
55 = —2 = 2e’" and the condition (37) is satisfied for k = 2/ + 1,
[=0,1,2,... and it is not satisfied for k =2/, [=1,2, ...
Therefore, the fractional positive system with (38) is asymp-

totically stable for0 < o < landk=2/+1,/=0,1,2, ... and
it is unstable for k =2/, 1=1, 2, ...

(39%)

Bull. Pol. Ac.: Tech. 65(3) 2017
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Case2. k=-1,-2,...

Theorem 11. The fractional positive linear system (14)
for 0 < a < 1 is asymptotically stable for k = -2/ + 1),
1=0,1,2,... if and only if the eigenvalues s; = |s/e’”,
I=1,2, ..., n of the matrix 4 € M, satisfy the condition

7 < kg, <37” for k=1.2,... and [=1...n. (39)

2

Proof. If 5, / =1, ..., n are the eigenvalues of 4 € M,, then by
Theorem4s{k = s[k e k=1,2,...and =1, ..., n are the
eigenvalues of A’k, k=1,2, ... and by Theorem 3 the fractional
system is asymptotically stable if and only if the condition (39)

is satisfied. O

Example 8. (Continuation of Example 7) The inverse matrix
of (38) has the form

1
-1 —=
AT = 2 (40)
0 —-——
2
and its eigenvalues are s;' = -1 = /", 5, = 71/2 = 1/zej". For

k = —1 the condition (39) is satisfied and the fractional positive
system (14) for 0 < a < 1 with the matrix (38) is asymptoti-
cally stable for k = —1.

In a similar way it is easy to check that the fractional
system (14) for 0 < a < 1 with (38) is asymptotically stable
for k=-Q21+4+1),/=0,1,2, ... and unstable for k = -2/,
I=1,2,...

Note that the system with (40) is not positive since A ¢ M,.

Example 9. Consider the fractional positive linear system for
0 <a<1with

-2 1 1
A= 0 -3 4 |eM, (41)
1 0 -4
The characteristic polynomial of (41) has the form

s+2 -1 -1

det[I;s—A]l=| 0 s+3 -4
(42)

-1 0 s+4

=5 +9s> +255+17

and its zeros are s = —1, 5, =—4 +/j, 53 =—4 —j.

Remark 1. In [23] it was shown that the matrix 4 € M; has
real negative zero s; = —a; and two complex conjugate zeros
s =—a+jB,s3=—a —jp (a >0, > 0) if the coefficients of
the characteristic polynomial

Bull. Pol. Ac.: Tech. 65(3) 2017

det[I;5— Al = 5° +a,s* +ays +aj (43)
satisfy the conditions
a3 >3a, and a > a. (44)

It is easy to check that the zeros of (42) satisfy the conditions (44).
For the matrix (41) we have

a1 1

-1 ' - j0.58
s, =—1=¢e'", s e
1 2

=—¢ ,

4+ 17

45
a1 1 @

syl = j0.587

—4—j 17

and the condition (39) is satisfied for £ = —1. Therefore, the
fractional system with (41) for k£ = —1 is asymptotically stable.

For k = -2 the fractional system with (41) is unstable since
S| 2 — 1 and the condition (41) is not satisfied.

In a similar way it can be shown that the fractional system with
(41) and 0 < a < 1 is asymptotically stable for k =—(2/ 4 1),
[=0,1,2, ... and unstable for k =-2/,/=1,2, ...

Note that the fractional system with the inverse matrix

-1

-2 1 1 | 12 4 7
Atl=l0 -3 4 =0 4 7 8 (46)
1 0 -4 316

is not positive since 4~ ¢ M.
In general case we have the following theorem.

Theorem 12. If nonsingular 4 € M, and it is asymptotically
stable then its inverse 4 ¢ R and it is unstable.

Proof. The proof will be accomplished by induction. The hy-
pothesis is valid for n = 2 since by assumption

aij 20, i,j:1,2, a11a22_a12a21 >0,

-1
- —dapp 4
A 1:{
ay; —dxp
1 —ay —dap -
= and — A 169(%(2
aydy —dpdy | — a4y —4a

(47

Assuming that the hypothesis is valid for n — 1 it will be shown
that it is also true for n — 1.
It is easy to verify that if

—dan dp o Oy,
pel o T
(48)
L A1 %) Ay
A u
-1
_|n n EMn
L Vn —
309
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then
Aluy A Al
A_11+ n—1UnVnAu-1  ApgUy
e

_ a a
A= n L @)

_nA 1

an al’l

-1
a, =0y, — vnAn—lun
since 4,4,' = 4,'A, = I,. For (49) we have -4, € R since
—4,!, e R,
By assumption 4, € M,, is asymptotically stable and its ei-

genvalues s, = |s|e’”, k=1, ..., n satisfy the condition

Z <o <37” for k =1,...n

50
> (50)

and a,, > 0. By Theorem 4 the eigenvalues —s;, k =1, ..., n of
the matrix —A4,, do not satisfy the condition (50) and the matrix
fA;I is unstable. O

Case3.k=+2,p,g=11,2,..]

Theorem 13. The fractional positive linear system (14) for
0 < & < 1 is asymptotically stable for k = +5,,p, g € {1,2, ...|
if and only if the eigenvalues s; = |s]|e’”, [ = 1,2, ..., n of the
matrix 4 € M, satisfy the condition

NN

<J_r£(01 <3—7[ for p,ge{1,2,...}
q 2 (51)

and [ =1,...,n.

Proof. The proof is similar to the proof of Theorem 11.

Example 10. (Continuation of Example 7) The eigenvalues of
the matrix (38) are s; = -1 = ¢’", 5, = -2 = 2¢’" and of the
matrix (38) in power +9, = jzz/3 are

+ S A

(52)

The eigenvalues (52) satisfy the condition (51) and the frac-
tional positive system with (38) for 0 < a < 1 and k = jzz/3 is
asymptotically stable.

5. Concluding remarks

The stability of fractional standard and positive continuous-time
linear systems with state matrices in integer and rational powers
has been addressed. It has been shown that the fractional sys-
tems are asymptotically stable if and only if the eigenvalues of

310

the state matrices satisfy some conditions imposed only on the
phases of the eigenvalues (Theorems 6 — 8 and 10 — 13). The
fractional standard linear systems are unstable for all integer
and rational powers of the state matrices if the state matrix has
at least one positive eigenvalue (Theorem 9). It is also shown
that if nonsingular Metzler matrix is asymptotically stable then
its inverse matrix has nonpositive entries (Theorem 12). The
considerations have been illustrated by numerical examples of
the matrices with real and complex conjugate eigenvalues.

The considerations can be extended to fractional positive
discrete-time linear systems.
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