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 rankEq = rankEq+1. (1)

Definition 1. A matrix ED is called the Drazin inverse of the 
matrix E 2 ℜn×n if it satisfies the conditions

 EED = EDE, (2a)

 EDEED = ED, (2b)

 EDEq+1 = Eq, (2c)

where q is the index of E.
The Drazin inverse ED of a square matrix E always exists and 
is unique [14, 18, 19]. If detE 6      = 0 then ED = E¡1 (standard 
inverse matrix).
A procedure for computation of ED is given in [19].
The characteristic polynomial of the matrix A 2 ℜn×n
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and its minimal polynomial ψ(λ) are related by [2, 20]
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where D(λ) is the greatest common divisor of entries of the 
adjoint matrix [Inλ ¡ A]ad. If the eigenvalues λ1, λ2, …, λn of 
the matrix A are distinct, i.e. λi 6      = λj if i 6      = j, i, j = 1, …, n, then 
D(λ) = 1 and Ψ(λ) = φ(λ) [2, 20].

Consider a matrix A 2 ℜn×n with the minimal characteristic 
polynomial
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1. Introduction 

The classical Cayley-Hamilton theorem [2, 14, 20] 
says that every square matrix satisfies its own 
characteristic equation. The Cayley-Hamilton theorem has 
been extended to rectangular matrices [3, 11], block 
matrices [3, 5], pairs of block matrices [5] and standard 
and singular two-dimensional linear (2-D) systems [4, 9]. 

In [12] the Cayley-Hamilton theorem has been 
extended to n-dimensional (n-D) real polynomial 
matrices. An extension of the Cayley-Hamilton theorem 
for continuous-time linear systems with delays has been 
given in [8]. 

In [7, 10] the Cayley-Hamilton theorem has been 
extended to the fractional standard and descriptor 
continuous-time and discrete-time linear systems. 

The Cayley-Hamilton theorem and its generalizations 
have been used in control systems, electrical circuits, 
systems with delays, singular systems, 2-D linear systems, 
etc. [1, 6, 13-17, 21-29]. 

The Drazin inverse matrix method for fractional 
descriptor continuous-time and discrete-time linear 
systems has been introduced in [18, 19]. 

In this paper the Cayley-Hamilton theorem will be 
extended to the Drazin inverse matrices and standard 
inverse matrices. 

The paper is organized as follows. In Section 2 the 
basic definitions and theorems concerning Drazin inverse, 
minimal characteristic polynomials, Lagrange-Sylvester 
formula and Cayley-Hamilton theorem are recalled. 
Cayley-Hamilton theorem is extended to the Drazin 
inverses in Section 3 and to standard inverse matrices in 
Section 4. Concluding remarks are given in Section 5. 

2. Preliminaries 

 The smallest nonnegative integer q is called the index 
of the matrix nnE   if 

 1rankrank  qq EE  

Definition 1. A matrix DE  is called the Drazin inverse of 
the matrix nnE   if it satisfies the conditions 
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where q is the index of E. 
The Drazin inverse DE  of a square matrix E always 
exists and is unique [14, 18, 19]. If 0det E  then 

1 EED  (standard inverse matrix). 
A procedure for computation of DE  is given in [19]. 
The characteristic polynomial of the matrix nnA   
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and its minimal polynomial )(  are related by [2, 20] 
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where )(D  is the greatest common divisor of entries of 
the adjoint matrix adn AI ][  . If the eigenvalues 1 , 2 , 
…, n  of the matrix A are distinct, i.e. ji    if ji  , 

nji ,...,1,  , then 1)( D  and )()(    [2, 20]. 

Consider a matrix nnA   with the minimal 
characteristic polynomial 
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where λ1, λ2, …, λr are the eigenvalues of the matrix A and  
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mi = m ∙ n. It is assumed that the function f(λ) is well-defined 

on the spectrum σ = fλ1, λ2, …, λrg of the matrix A, i.e.
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f(λk), f (1)(λk) = df(λ)

df  
λ=λk

 , …,

f (mk¡1)(λk) = dmk¡1 f (λ)
dλmk¡1  

λ=λk
 , k = 1…, r

 (6)

are finite [2, 17].
In this case the matrix f(A) is well-defined and it is given by 
the Lagrange-Sylvester formula [2, 17]
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be the minimal characteristic polynomial of the matrix 
)(Af . Then the matrix )(Af  satisfies its characteristic 

equation, i.e. 
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Proof. Proof is given in [7]. 
For AAf )(  we have the classical Cayley-Hamilton 
theorem [2, 20]. 

Theorem 2. Let k , nk ,...,1  be the eigenvalues of the 

matrix nnA   and )(f  be well-defined on the 
spectrum },...,,{ 21 rA    of the matrix A, then 

)( kf  , nk ,...,1  are the eigenvalues of the matrix 
)(Af . 

Proof. Proof is given in [2, 20]. 
In particular case we have the following. If 

kkk j  , nk ,...,1  are the nonzero eigenvalues of 
nnA  , then 1

k , nk ,...,1  are the eigenvalues of the 
inverse matrix 1A . 
Theorem 3. If the characteristic equation of the 
nonsingular matrix nnA   has the form 
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then the characteristic equation of the inverse matrix 
nnA  1  is given by 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 

the nonzero roots of the equation (12), then 1
k , 

nk ,...,1  are the nonzero roots of the equation (13). 
Therefore, by Theorem 2 if (12) is the characteristic 
equation of A, then the characteristic equation of 1A  has 
the form (13). □ 

3. Cayley-Hamilton theorem for Drazin 
inverse matrices 

 In this section the classical Cayley-Hamilton theorem 
will be extended to Drazin inverse matrices. By 
assumption the matrix nnE   is singular, i.e. 

0det 0  aE . 
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where nnDE   is the Drazin inverse of the matrix E. 
Proof. Using (14) and the classical Cayley-Hamilton 
theorem we obtain 
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Proof. Proof is given in [7]. 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 
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Therefore, by Theorem 2 if (12) is the characteristic 
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Proof. Proof is given in [7]. 
For AAf )(  we have the classical Cayley-Hamilton 
theorem [2, 20]. 

Theorem 2. Let k , nk ,...,1  be the eigenvalues of the 

matrix nnA   and )(f  be well-defined on the 
spectrum },...,,{ 21 rA    of the matrix A, then 

)( kf  , nk ,...,1  are the eigenvalues of the matrix 
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Proof. Proof is given in [2, 20]. 
In particular case we have the following. If 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 

the nonzero roots of the equation (12), then 1
k , 

nk ,...,1  are the nonzero roots of the equation (13). 
Therefore, by Theorem 2 if (12) is the characteristic 
equation of A, then the characteristic equation of 1A  has 
the form (13). □ 

3. Cayley-Hamilton theorem for Drazin 
inverse matrices 

 In this section the classical Cayley-Hamilton theorem 
will be extended to Drazin inverse matrices. By 
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nonzero roots of the equation (13). Therefore, by Theorem 2 if 
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Proof. Proof is given in [7]. 
For AAf )(  we have the classical Cayley-Hamilton 
theorem [2, 20]. 

Theorem 2. Let k , nk ,...,1  be the eigenvalues of the 
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)( kf  , nk ,...,1  are the eigenvalues of the matrix 
)(Af . 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 

the nonzero roots of the equation (12), then 1
k , 

nk ,...,1  are the nonzero roots of the equation (13). 
Therefore, by Theorem 2 if (12) is the characteristic 
equation of A, then the characteristic equation of 1A  has 
the form (13). □ 

3. Cayley-Hamilton theorem for Drazin 
inverse matrices 

 In this section the classical Cayley-Hamilton theorem 
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Proof. Proof is given in [7]. 
For AAf )(  we have the classical Cayley-Hamilton 
theorem [2, 20]. 

Theorem 2. Let k , nk ,...,1  be the eigenvalues of the 

matrix nnA   and )(f  be well-defined on the 
spectrum },...,,{ 21 rA    of the matrix A, then 

)( kf  , nk ,...,1  are the eigenvalues of the matrix 
)(Af . 

Proof. Proof is given in [2, 20]. 
In particular case we have the following. If 

kkk j  , nk ,...,1  are the nonzero eigenvalues of 
nnA  , then 1

k , nk ,...,1  are the eigenvalues of the 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 

the nonzero roots of the equation (12), then 1
k , 

nk ,...,1  are the nonzero roots of the equation (13). 
Therefore, by Theorem 2 if (12) is the characteristic 
equation of A, then the characteristic equation of 1A  has 
the form (13). □ 

3. Cayley-Hamilton theorem for Drazin 
inverse matrices 
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where nnDE   is the Drazin inverse of the matrix E. 
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Proof. Proof is given in [7]. 
For AAf )(  we have the classical Cayley-Hamilton 
theorem [2, 20]. 

Theorem 2. Let k , nk ,...,1  be the eigenvalues of the 

matrix nnA   and )(f  be well-defined on the 
spectrum },...,,{ 21 rA    of the matrix A, then 

)( kf  , nk ,...,1  are the eigenvalues of the matrix 
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Proof. Proof is given in [2, 20]. 
In particular case we have the following. If 

kkk j  , nk ,...,1  are the nonzero eigenvalues of 
nnA  , then 1

k , nk ,...,1  are the eigenvalues of the 
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nonsingular matrix nnA   has the form 


,0...

]det[)(

01
1

1 




 aaa

AIp
n

n
n

n




 

then the characteristic equation of the inverse matrix 
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Proof. In [21] it has been shown that if k , nk ,...,1  are 

the nonzero roots of the equation (12), then 1
k , 

nk ,...,1  are the nonzero roots of the equation (13). 
Therefore, by Theorem 2 if (12) is the characteristic 
equation of A, then the characteristic equation of 1A  has 
the form (13). □ 

3. Cayley-Hamilton theorem for Drazin 
inverse matrices 
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where nnDE   is the Drazin inverse of the matrix E. 
Proof. Using (14) and the classical Cayley-Hamilton 
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Premultiplying and postmultiplying (16) by the Drazin inverse 
matrix ED we obtain
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Repeating 2n  times this procedure we obtain (15). □ 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
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Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
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following corollary. 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
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we have 
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kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 
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Postmultiplying (18) by ED and using (19) we obtain
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 

 01
1

1 ...]det[ asasasAsI n
n

n
n  

  

then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
1

1  
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n
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n IaAaAaA  

Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
0

11
1

1
1  


nn
nn AaAaAaI  

since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 

 (20)

Repeating n ¡ 2 times this procedure we obtain (15). □
Example 1. The Drazin inverse of the singular matrix
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 

 01
1

1 ...]det[ asasasAsI n
n

n
n  

  

then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
1

1  
 n

n
n

n IaAaAaA  

Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
0

11
1

1
1  


nn
nn AaAaAaI  

since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 

 (21)

has the form [14]
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 



.
000
000
000

010
010
121

010
010
121

2

010
010
121

)()(2

32

32















































































 DDD EEE

 

Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 

 01
1

1 ...]det[ asasasAsI n
n

n
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then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
1

1  
 n

n
n

n IaAaAaA  

Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
0

11
1

1
1  


nn
nn AaAaAaI  

since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 

. (22)

The characteristic polynomial of (21) is
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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and using (2a) and (2b) 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 

 01
1

1 ...]det[ asasasAsI n
n

n
n  

  

then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
1

1  
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n
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n IaAaAaA  

Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
0

11
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1
1  
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nn AaAaAaI  

since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 

. (23)

From the classical Cayley-Hamilton theorem we have
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 


. ,...2,1for    0)(

)(...)()( 1
1

2
2

1
1











kE

EaEaEa
knD

knD
n

kDkD

 

4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 

 01
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1 ...]det[ asasasAsI n
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then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
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Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
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nn AaAaAaI  

since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 
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Applying Theorem 4 to (22) we obtain
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 
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then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 

 0... 01
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Postmultiplication of (29) by nA )( 1  yields 

 0)()(...)( 1
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since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 

 (25)

Postmultiplying (15) by (ED)k, k = 1, 2, … we obtain the fol-
lowing corollary.
Corollary 1. If (14) is the characteristic polynomial of E, then
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 


0

...

1
2

2

1
1



 


DDDD

DnD
n

DnD

EEEaEEEa

EEEaEEE
 

and using (2a) and (2b) 

 0... 12
2

1
1  


 DDnD

n
nD EaEEaEEaEE  

since 


,...,n.,k

EEEEEEEEE kDkDDDkD

21for  
  11


 

 

Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 
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then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 
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Postmultiplication of (29) by nA )( 1  yields 
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kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 
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4. Cayley-Hamilton theorem for inverse matrices

Theorem 5. If the characteristic equation of the matrix A 2 ℜn×n 
has the form
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Premultiplying and postmultiplying (16) by the Drazin 
inverse matrix DE  we obtain 
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Postmultiplying (18) by DE  and using (19) we obtain 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Applying Theorem 4 to (22) we obtain 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
nnA   has the form 
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n

n
n  

  

then the inverse matrix 1A  satisfies the equation 
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Proof. From classical Cayley-Hamilton theorem and (27) 
we have 
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Postmultiplication of (29) by nA )( 1  yields 
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since n
kk IAA  )( 1  and 11 )()(   kkk AAA  for 

nk ,...,1,0 . □ 
Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
matrix 1A  and to the characteristic equation (13). 
Example 2. The characteristic equation of the matrix 
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Repeating 2n  times this procedure we obtain (15). □ 
Example 1. The Drazin inverse of the singular matrix 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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4. Cayley-Hamilton theorem for inverse 
matrices 

Theorem 5. If the characteristic equation of the matrix 
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Proof. From classical Cayley-Hamilton theorem and (27) 
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Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 
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Repeating 2n  times this procedure we obtain (15). □ 
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Postmultiplying (15) by kDE )( , ,...2,1k  we obtain the 
following corollary. 
Corollary 1. If (14) is the characteristic polynomial of E, 
then 


. ,...2,1for    0)(

)(...)()( 1
1

2
2

1
1











kE

EaEaEa
knD

knD
n

kDkD

 

4. Cayley-Hamilton theorem for inverse 
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Remark 1. Proof of Theorem 5 follows also from 
Theorem 3 and Cayley-Hamilton theorem applied to the 
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Example 2. The characteristic equation of the matrix 
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Remark 1. Proof of Theorem 5 follows also from Theorem 3 
and Cayley-Hamilton theorem applied to the matrix A¡1 and to 
the characteristic equation (13).
Example 2. The characteristic equation of the matrix

 

4 

 










32

10
A  

has the form 

 023
32

1
]det[ 2

2 



 ss
s

s
AsI  

The inverse matrix of (31) is 














 




01
2
1

2
3

1A  

and by Theorem 5 it satisfies the equation 



.
00
00

10
01

01
2
1

2
3

3
01
2
1

2
3

2

3)(232
2

2
121

2
12

































 















 




  IAAIAA

 

Premultiplying (28) by kA , ,...2,1k  we obtain the 
following corollary. 
Corollary 2. If (27) is the characteristic equation of the 
matrix A, then 
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Example 3. (Continuation of Example 2)  
The characteristic equation of the matrix (31) is given by 
(32). Using (35) for 1k  and (32) we obtain 
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The considerations presented in this section for A can be 
easily extended to kA  for ,...3,2k . For example  
Theorem 3 can be extended to kA  for ,...3,2k  as 
follows. 
Theorem 6. If the characteristic equation of the matrix 
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Proof. Proof is similar to the proof of Theorem 3. 
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43

10
A  

we have 

 






 


1312
432A  

and 

 0910
1312

43
]det[ 22

2 



 




 AI  

The inverse matrix of (40) has the form 






















 

3
1

3
4

9
4

9
13

)( 212 AA  

and 



.01109
3
1

3
4

9
4

9
13

]det[

2

2
2






 






 AI

 

5. Concluding remarks 

 The classical Cayley-Hamilton theorem has been 
extended to the Drazin inverse matrices and standard 
inverse matrices. 
 It has been shown that if the characteristic polynomial 
of the singular matrix E has the form (14), then the Drazin 
inverse matrix DE  satisfies the equation (15) (Theorem 
4). If the characteristic equation of the nonsingular matrix 
A has the form (27), then the inverse matrix 1A  satisfies 
the equation (28) (Theorem 5). The theorems can be 
extended to any integer powers ,...3,2k  of the matrices 
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following corollary. 
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5. Concluding remarks 
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following corollary. 
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. 21for  

0... )1(
1

1
1

)(
0

,...,k
AAaAaAa kk

n
knkn


 




 

Example 3. (Continuation of Example 2)  
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easily extended to kA  for ,...3,2k . For example  
Theorem 3 can be extended to kA  for ,...3,2k  as 
follows. 
Theorem 6. If the characteristic equation of the matrix 
kA , ,...3,2k  has the form 


,0...

]det[)(

01
1

1 




 aaa

AIp
n

n
n

k
n




 

then the characteristic equation of the inverse matrix 
nnkA    is given by 

 01... 1
1

10  
  n
nn aaa  

Proof. Proof is similar to the proof of Theorem 3. 
Example 4. For the matrix 

 










43

10
A  

we have 

 






 


1312
432A  

and 

 0910
1312

43
]det[ 22

2 



 




 AI  

The inverse matrix of (40) has the form 






















 

3
1

3
4

9
4

9
13

)( 212 AA  

and 



.01109
3
1

3
4

9
4

9
13

]det[

2

2
2






 






 AI
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A has the form (27), then the inverse matrix 1A  satisfies 
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The considerations presented in this section for A can be 
easily extended to kA  for ,...3,2k . For example  
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5. Concluding remarks 

 The classical Cayley-Hamilton theorem has been 
extended to the Drazin inverse matrices and standard 
inverse matrices. 
 It has been shown that if the characteristic polynomial 
of the singular matrix E has the form (14), then the Drazin 
inverse matrix DE  satisfies the equation (15) (Theorem 
4). If the characteristic equation of the nonsingular matrix 
A has the form (27), then the inverse matrix 1A  satisfies 
the equation (28) (Theorem 5). The theorems can be 
extended to any integer powers ,...3,2k  of the matrices 
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The considerations presented in this section for A can be easily 
extended to Ak for k = 2, 3, …. For example  Theorem 3 can 
be extended to Ak for k = 2, 3, … as follows.
Theorem 6. If the characteristic equation of the matrix Ak, 
k = 2, 3, … has the form
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5. Concluding remarks 

 The classical Cayley-Hamilton theorem has been 
extended to the Drazin inverse matrices and standard 
inverse matrices. 
 It has been shown that if the characteristic polynomial 
of the singular matrix E has the form (14), then the Drazin 
inverse matrix DE  satisfies the equation (15) (Theorem 
4). If the characteristic equation of the nonsingular matrix 
A has the form (27), then the inverse matrix 1A  satisfies 
the equation (28) (Theorem 5). The theorems can be 
extended to any integer powers ,...3,2k  of the matrices 

 (43)

5. Concluding remarks

The classical Cayley-Hamilton theorem has been extended to 
the Drazin inverse matrices and standard inverse matrices.

It has been shown that if the characteristic polynomial of 
the singular matrix E has the form (14), then the Drazin inverse 
matrix ED satisfies the equation (15) (Theorem 4). If the char-

acteristic equation of the nonsingular matrix A has the form 
(27), then the inverse matrix A¡1 satisfies the equation (28) 
(Theorem 5). The theorems can be extended to any integer 
powers k = 2, 3, … of the matrices (Theorem 6). The theorems 
have been illustrated by numerical examples.

The considerations can be extended to fractional linear sys-
tems.
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