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Abstract. The paper deals with the security problems in chaotic-based cryptography. In particular, the 0‒1 test for chaos is used to detect 
hardware Trojans in electronic circuits – generators of chaotic bit sequences. The proposed method of detecting hardware Trojans is based on 
analyzing the original bit sequences through the 0‒1 test yielding a simple result, either a number close to 1, when the examined bit sequence 
is chaotic, or a number close to 0, when the sequence is non-chaotic. A complementary result is a graph of translation variables qc and pc which 
form a basis of the 0‒1 test. The method does not require any extra corrections and can be applied to relatively short sequences of bits. This 
makes the method quite attractive as the security problems are dealt with at the chaotic generator level, with no need to apply any extractors 
of randomness. The method is illustrated by numerical examples of simulated Trojans in chaotic bit generators based on the analog Lindberg 
circuit as well as a discrete system based on the logistic map.
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sequences is to use chaotic circuits. Such an approach is straight-
forward when compared to the use of quantum modules, which 
require significantly larger areas on PCBs. A random sequence 
generator can be integrated with a security module or it can 
itself be a separate module. The security issues of embedded 
systems, such as PCBs, were first discussed in [6]. However, 
[6] does not discuss the security problems and hardware Trojan 
attacks on random sequence generators based on chaotic cir-
cuits. This paper deals with such problems based on testing of 
chaotic signals by the 0‒1 test for chaos. The result of such test 
is two-fold: a single number, close to either 0 or 1, and a visual 
two-dimensional plot of the so-called translation variables qc 
and pc, that in future might be implemented online in real time.

As discussed in [6–10], the security issues and protection 
against HTs is a key problem in modern electronics and com-
puter engineering. In this paper we discuss HTs that may easily 
be implemented and integrated with the PCB modules in chaotic 
analog generators. We also discuss HTs implemented through 
FPGA in chaotic discrete generators.

1.	 Introduction

Modern cryptography techniques use phenomena related to 
quantum physics, chaotic theory, and are based on algebraic 
structures of elliptic curves over finite fields. One of the main 
areas of research in chaotic cryptography is the security of the 
random binary sequence generators. It is known that chaotic 
signals can be used as a source of random bit sequences for gen-
erator applications [1, 2]. An important issue in such an imple-
mentation is to prevent the possibility to predict the generated 
sequence and to make it impossible to reconstruct the generated 
bitstream, for example, by the method of synchronization of 
the generators [2]. Another weak point of chaotic generators 
is the possibility of generating periodic signals due to a finite 
length representation of real numbers [3]. These two issues 
can disturb the proper use of the generated random sequences, 
and, in consequence, can lead to a predition of the generated 
bitstreams. Obviously, such problems reduce the security of 
the whole cryptography system. Malicious hardware (circuit) 
modifications, known as hardware Trojans (HTs), may result in 
the above mentioned security problems.

The current embedded systems are implemented as printed 
circuit boards (PCBs) with typical modules (units) shown in 
Fig. 1. The number of modules depends on a particular appli-
cation and specificity of an embedded system [4]. In this paper 
HTs are assumed to be possible in the hardware modules re-
sponsible for the generation of random sequences. As shown in 
[1–3, 5], one of the acceptable methods of generating random 

Fig. 1. Modern embedded systems as PCBs
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The possible HT attacks are illustrated through the Lindberg 
analog chaotic circuit and the logistic equation based discrete 
bit generator. In order to detect the unauthorized modification 
of the generator՚s structure, we propose to use the 0‒1 test for 
chaos. The paper has the following structure. The next sec-
tion delivers general characterization of HTs. Lindberg՚s circuit 
and its typical outputs are also presented and possible hardware 
attacks on the generator are described. Section 3 presents the 
0‒1 test for chaos as a tool to check the chaotic generator se-
curity. Results of applications of the 0‒1 test are presented in 
section 4, which is followed by a concluding section 5.

2.	 Hardware Trojans

In order to increase security of modern computer systems, 
which are vulnerable to countless software viruses, currently 
the crucial parts of the cryptography systems are implemented 
as hardware units. Such an approach allows for a stronger pro-
tection of the systems, since the hardware layer is separated 
from the software, and therefore, such systems are resistant to 
software viruses. Unfortunately, during the last few years, we 
observed an increased number of hacker attacks on the hard-
ware layer as well [7–9]. Such attacks, or HTs, may take the 
forms of unauthorized modifications of the values of certain 
circuit elements in a chosen module of the cryptography system 
or in the layout (structure) of integrated circuits. Those modifi-
cations are usually more difficult to be detected than software 
viruses. A basic classification of HTs is presented in Fig. 2.

The classification differentiates HTs according to the fol-
lowing criteria: stage where a HT is introduced, level of the 
attacked system, activation method, HT՚s action results, and 
localization of a HT in the infected system. Quite often we need 
to deal with problems occuring at different locations in the 
system. Also, HTs can be activated in many different ways, 

and they can result in various unwanted outcomes. Significant 
research efforts have been undertaken to detect such security 
threats. There are several proposed solutions related to digital 
systems [10]. However, for the cryptography systems utilizing 
analog chaotic circuits the security issues are still open [6].

2.1. HTs in chaotic generators. The cryptography systems 
require an intensive use of pseudorandom number generators 
having strong security properties. One of the possibilities is 
a hardware implementation of chaotic generators. The generated 
analog chaotic signal is converted to a bitstream using a simple 
threshold circuit. A possible technology for realization of such 
generators is the PCB implementation, which is less expensive 
than the integrated circuits. In the past, the problem of un-
authorized modifications of such circuits was often neglected 
[1, 6, 11].

Obviously, the layouts of PCBs can be modified and certain 
elements can be replaced by elements with different parame-
ters (values). Currently, the problem of PCB security becomes 
a crucial one in modern electronics [6].

Chaotic generators are sensitive to initial conditions. This 
feature makes them the sources of high entropy random signals. 
As a result, two separate generators, having the same structure 
and the same element values can generate different chaotic sig-
nals. One of the possible hardware attacks on such generators 
is to change one or more element values to obtain a periodic 
signal. According to the classification presented in Fig. 2, such 
an attack can occur at the circuit assembly stage. This type of 
modification usually stays active for a long period of time and 
significantly reduces security of the system. To illustrate the 
problem, we first use the Lindberg chaotic circuit [12] shown 
in Fig. 3a in which various HTs are simulated.

The possible hardware attacks in this circuit, which can 
affect the statistical properties of the generator, could be the 
modification of the AC source frequency value fAC or of the re-
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Fig. 2. Classification of the currently known HTs [11].

2. Hardware Trojans

In order to increase security of modern computer systems,

which are vulnerable to countless software viruses, currently

the crucial parts of the cryptography systems are implemented

as hardware units. Such an approach allows for a stronger pro-

tection of the systems, since the hardware layer is separated

from the software, and therefore, such systems are resistant to

software viruses. Unfortunately, during the last few years, we

observed an increased number of hacker attacks on the hard-

ware layer as well [7]-[9]. Such attacks, or HTs, may take the

forms of unauthorized modifications of the values of certain

circuit elements in a chosen module of the cryptography sys-

tem or in the layout (structure) of integrated circuits. Those

modifications are usually more difficult to be detected than

software viruses. A basic classification of HTs is presented

in Fig. 2.

The classification divides HTs according to the following

criteria: stage where a HT is introduced, level of the attacked

system, activation method, HT’s action results, and localiza-

tion of a HT in the infected system. Quite often we need to deal

with problems occuring at different locations in the system.

Also, HTs can be activated in many different ways, and they

can result in various unwanted outcomes. Significant research

efforts have been undertaken to detect such security threats.

There are quite a few proposed solutions related to digital sys-

tems [10]. However, for the cryptography systems utilizing

analog chaotic circuits the security issues are still open [6].

2.1. HTs in chaotic generators The cryptography systems

require an intensive use of pseudorandom number generators

having strong security properties. One of the possibilities is

a hardware implementation of chaotic generators. The gener-

ated analog chaotic signal is converted to a bitstream using a

simple threshold circuit. A possible technology of realization

of such generators is the PCB implementation, which is less

expensive than the integrated circuits. In the past, the prob-

lem of unauthorized modifications of such circuits was often

neglected [1],[6],[11].

Obviously, the layouts of PCBs can be modified and certain

elements can be replaced by elements with different parame-

ters (values). Currently, the problem of PCB security becomes

a crucial one in modern electronics [6].

Chaotic generators are sensitive to initial conditions. This

feature makes them the sources of high entropy random sig-

nals. As a result, two separate generators, having the same

structure and the same element values can generate different

chaotic signals. One of the possible hardware attacks on such

generators is to change one or more element values to obtain

a periodic signal. According to the classification presented in

Fig. 2, such an attack can occur at the circuit assembly stage.

This type of modification usually stays active for a long period

of time and significantly reduces security of the system. To il-

lustrate the problem, we first use the Lindberg chaotic circuit

[12] shown in Fig. 3a in which various HTs are simulated.

The possible hardware attacks in this circuit, which can

screw the statistical properties of the generator, could be the

modification of the AC source frequency value fAC or of the

resistor R1 (see Fig. 3a). The results of such modifications

are presented in Figs. 3-5. Figs. 3b show the chaotic con-

tinuous and binary signals obtained in Lindberg’s circuits for

fAC = 7 kHz. Changing that frequency to, for example, fAC = 3

kHz, results in periodic both continuous and binary signals, as

shown in Fig. 3c. A HT may also be in the form of changing

the values of parameters. One such possibility in Lindberg’s

circuit is to change the value of R1. An example of R1 modi-

fication and its impact on the VC2
signal is shown in section 4.

Similar HTs can be considered in other chaotic generators, for

example those based on the Chua circuit [13]-[15].

2.2. Characteristics of HTs One can identify two main parts

in any implementation of HTs: a payload and a trigger mecha-

nism. The HT’s structure and complexity depend on the system

in which the HT is applied and the task the HT is supposed

to perform. The payload is present in each HT. The trigger

mechanism is optional and its presence depends on whether

the payload is activated on a constant or temporary basis. The

problems of HTs in the context of chaotic-based cryptogra-
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Fig. 2. Classification of the currently known HTs [11]
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sistor R1 (see Fig. 3a). The results of such modifications are pre-
sented in Figs. 3‒5. Fig. 3b shows the chaotic continuous and 
binary signals obtained in Lindberg’s circuits for fAC = 7 kHz. 
Changing that frequency to, for example, fAC = 3 kHz results 
in periodic both continuous and binary signals, as shown in 
Fig. 3c. A HT may also be in the form of changing the values 
of parameters. One such possibility in Lindberg’s circuit is to 
change the value of R1. An example of R1 modification and its 
impact on the VC2 signal is shown in Section 4. Similar HTs can 
be considered in other chaotic generators, for example those 
based on the Chua circuit [13–15].

2.2. Characteristics of HTs. One can identify two main parts 
in any implementation of HTs: a payload and a trigger mecha-
nism. The HT’s structure and complexity depend on the system 
in which the HT is applied and the task the HT is supposed 
to perform. The payload is present in each HT. The trigger 
mechanism is optional and its presence depends on whether 
the payload is activated on a constant or temporary basis. The 
problems of HTs in the context of chaotic-based cryptography 
have not been yet properly addressed, much less solved. Recent 
developments in embedded systems and PCBs require detailed 
and comprehensive analysis of the security threats of HTs [7–9].

HTs do not require complex or costly implementations. Tro-
jans can be implemented based on rather simple circuits. As 
shown in Fig. 2, HTs can be classified according to:
●	 Stage of insertion. The basis of HTs can be developed at the 

stage of designing of an embedded system. Such HT may 
be a result of modifications done by unauthorized persons 
having access or being familiar with the main functional 
characteristics of the embedded system. Another possibility 
is to implement HT at the stage of prototyping or assembling 
of embedded systems.

●	 Level of abstraction. HTs in Lingberg’s generators in the 
forms of elements’ changes (resistor and source frequency 
values) are at the high level of abstraction. Similar HTs can 
be implemented in FPGA modules, which can also serve as 
triggering sites.

●	 Triggering mechanism. HTs can be activated as perma-
nent or temporary. Examples of permanent trojans are the 
changes of resistors’ values at the assembly line. Such HTs 
require hardware integration along a production line. Tem-
porary modifications are also possible through the digi-
tally controlled resistors from the FPGA level. Such HTs 
can be activated and deactivated in time. In bit generators 
such an approach results in periodically obtained chaotic 

(a) The Lindberg chaotic circuit (b) Chaotic analog and bitstream signals VC2

(c) Periodic analog and bitstream signals VC2

Fig. 3. Hardware Trojan in the Lindberg generator as a result of changing the fAC value from 7 kHz (figure b) to 3 kHz (figure c)
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(b) Chaotic analog and bitstream signals VC2.
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(c) Periodic analog and bitstream signals VC2.

Fig. 3. Hardware Trojan in the Lindberg generator as a result of

changing the fAC value from 7 kHz (figure b) to 3 kHz (figure c).

phy have not been yet properly addressed, much less solved.

Recent developments in embedded systems and PCBs require

detailed and comprehensive analysis of the security threats of

HTs [7]-[9].

HTs do not require complex or costly implementations. Tro-

jans can be implemented based on rather simple circuits. As

shown in Fig. 2, HTs can be classified according to:

• Stage of Insertion. The basis of HTs can be developed at

the stage of designing of an embedded system. Such HT

may be a result of modifications done by unauthorized per-

sons having access or be familiar with to the main functional

characteristics of the embedded system. Another possibility

is to implement HT at the stage of prototyping or assembling

of embedded systems.

• Level of Abstraction. HTs in Lingberg’s generators in the

forms of elements’ changes (resistor and source frequency

values) are at the high level of abstraction. Similar HTs can

be implemented in FPGA modules, which can also serve as

triggering sites.

• Triggering Mechanism. HTs can be activated as perma-

nent or temporary. Examples of permanent trojans are the

changes of resistors’ values at the assembly line. Such HTs

require hardware ingeration along a production line. Tem-

porary modifications are also possible through the digitally

controlled resistors from the FPGA level. Such HTs can be

activated and deactivated in time. In bit generators such an

approach results in periodically obtained chaotic and non-

chaotic dynamics. Digitally activated HTs allow an intruder

to precisely set up a moment of activation and duration of

the modification. HT activation can also be done when spe-

cial additional conditions are satisfied, for example, through

an external event. Most of the current embedded systems in

the forms of PCBs are not eqquipped in security systems that

can detect, identify and prevent unauthorized modifications

of the systems’ layouts [9],[11].

• Results of HT’s Activity. HTs in analog Lindberg’s genera-

tors change the generated output signal, lowering the secu-

rity of the cryptosystem in which the generator is used. This

is true even in a case of temporarily activated HTs.

• Site of Implementation. HT in a system with the Lindberg’s

generator is located in the core circuit shown in Fig. 3a and

in the FPGA systems responsible for the mechanism of acti-

vation.

3. Chaos detecting 0-1 test

A detection of unauthorized modification of the generators can

be done by testing the generated bitstream with the statistical

test suites for random and pseudorandom number generators

for cryptographic applications. Such tests were developed by

the US National Institute of Standards and Technology (NIST)

[1],[2]. The statistical tests require a bitstream with the min-

imum of one million bits. In practice the testing bitstream is

usually even longer. Additionally, the testing bitstream must

go through a preprocessing correction (e.g., von Neumann cor-

rection), which eliminates intervals with the domination of the
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and non-chaotic dynamics. Digitally activated HTs allow 
an intruder to precisely set up a moment of activation and 
duration of the modification. HT activation can also be 
done when special additional conditions are satisfied, for 
example, through an external event. Most of the current 
embedded systems in the forms of PCBs are not equipped 
with security systems that can detect, identify and prevent 
unauthorized modifications of the systems’ layouts [9, 11].

●	 Results of HT’s activity. HTs in analog Lindberg’s genera-
tors change the generated output signal, lowering the secu-
rity of the cryptosystem in which the generator is used. This 
is true even in a case of temporarily activated HTs.

●	 Site of implementation. HT in a system with the Lindberg’s 
generator is located in the core circuit shown in Fig. 3a and 
in the FPGA systems responsible for the mechanism of ac-
tivation.

3.	 Chaos detecting 0‒1 test

A detection of unauthorized modification of the generators can 
be done by testing the generated bitstream with the statistical 

test suites for random and pseudorandom number generators 
for cryptographic applications. Such tests were developed by 
the US National Institute of Standards and Technology (NIST) 
[1, 2]. The statistical tests require a bitstream with the min-
imum of one million bits. In practice the testing bitstream is 
usually even longer. Additionally, the testing bitstream must 
go through a preprocessing correction (e.g., von Neumann cor-
rection), which eliminates intervals with the domination of 
the same bits. Thus, performing the whole test is a time-con-
suming process. In this paper, we propose a new method to 
protect the security of the chaotic generators. This approach 
requires bitstreams of much shorter length (only about 5 thou-
sand bits).

The 0‒1 test (see [16–25] for details) is a relatively new 
tool used to test the presence of chaos in analog and digital 
sequences when a mathematical model (system of equations) 
is not available. The result of the test has two forms: a single 
real number K, and a two-dimensional graph with translation 
variables pc and qc [16, 17]. For a chaotic sequence the number 
K should be close to 1. Regular (non-chaotic) sequences result 
in numbers K closer to 0. The values of K can be computed by 
using two different methods: regression or correlation.

(a) Chaotic analog signal in Fig. 3b; K = 0.9876

(c) Periodic analog signal in Fig. 3c; K = 0.0211

(b) Chaotic bitstream in Fig. 3b; K = 0.9821

(d) Periodic bitstream in Fig. 3c; K = 0.0122

Fig. 4. Plots qc ¡ pc for chaotic and periodic signals in Lindberg’s generator shown in Figs.3b and 3c
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For a sequence {Nk}, k = 0, …, N– ¡ 1, the variables pc and 
qc are computed by the following expressions for a randomly 
chosen real number c 2 (0, π)
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(a) Chaotic analog signal in Fig.3b; K = 0.9876.
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(b) Chaotic bitstream in Fig.3b; K = 0.9821.
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(c) Periodic analog signal in Fig.3c; K = 0.0211.
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(d) Periodic bitstream in Fig.3c; K = 0.0122.

Fig. 4. Plots qc − pc for chaotic and periodic signals in Lindberg’s

generator shown in Figs.3b and 3c.

same bits. Thus, performing the whole test is a time consum-

ing process. In this paper, we propose a new method to protect

the security of the chaotic generators. This approach requires

bitstreams of much shorter length (only about 5 thousand bits).

The 0-1 test (see [16]-[25] for details) is a relatively new

tool used to test the presence of chaos in analog and digital se-

quences when a mathematical model (system of equations) is

not available. The result of the test has two forms: a single real

number K, and a two-dimensional graph with translation vari-

ables pc and qc [16],[17]. For a chaotic sequence the number

K should be close to 1. Regular (non-chaotic) sequences result

in numbers K closer to 0. The values of K can be computed by

using two different methods: regression or correlation.

For a sequence {Nk}, k = 0, . . . ,N −1, the variables pc and

qc are computed by the following expressions for a randomly

chosen real number c ∈ (0,π)

pc(n)=
n

∑
j=0

Njcos[( j+1)c], qc(n)=
n

∑
j=0

Njsin[( j+1)c] (1)

with n = 0, . . . ,N − 1. Then, the mean square displacement

Mc(n), n = 0,1, . . . ,ncut , of pc(n) and qc(n) is computed with

the recommended integer value ncut ≈ (N −1)/10

Mc(n)=lim
N→∞

1

N −1

N−1

∑
j=0

[pc( j+n)−pc( j)]2+[qc( j+n)−qc( j)]2.

(2)

Next, if the regression method is applied, then the asymptotic

growth rate Kc of the mean square displacement is computed

as follows

Kc = lim
n→∞

logMc(n)

logn
. (3)

On the other hand, if the correlation method is ap-

plied, then two vectors ξ = (0,1,2, . . . ,ncut) and ∆ =
(Mc(0),Mc(1),Mc(2), . . . ,Mc(ncut)) are created. The correla-

tion coefficient Kc is obtained as follows

Kc = corr(ξ ,∆)≡
cov(ξ ,∆)

√

var(ξ )var(∆)
(4)

where the cov and var stand for covariance and variance, re-

spectively [16].

In both methods the above steps are repeated for Nc values

of c chosen randomly in the interval (0,π). Again, [16] rec-

ommends Nc = 100. Finally, the median of the Nc values of

Kc is the final number K. The K ≈ 1 indicates a chaotic se-

quence, while K ≈ 0 indicates regular (non-chaotic) dynamics.

For more details about the 0/1 test, its properties and reliability

in the continuous and discrete cases one can see [18]-[25].

4. Application of the 0-1 test to detect HTs

4.1. HTs in Lindberg’s generator The above 0-1 test can be

applied for HT detection. Analyzing an output bitstream can

be used to evaluate the security level of the tested system. This

can be done at two levels: numerical (through the value of K)

and visual (through the qc − pc plot).

We have tested this approach for the generators presented

in Figs. 3a and also further in Fig. 7 (logistic equation based

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (1)

with n = 0, …, N– ¡ 1. Then, the mean square displacement 
Mc(n), n = 0, 1, …, ncut, of pc(n) and qc(n) is computed with 
the recommended integer value ncut ¼ (N– ¡ 1)/10

	 Mc(n) =  lim
N–!1

1
N– ¡ 1

 
j=1

N–¡1

∑ [pc( j + n) ¡ pc( j)]2 + 

Mc(n) + [qc( j + n) ¡ qc( j)]2.
� (2)

Next, if the regression method is applied, then the asymptotic 
growth rate Kc of the mean square displacement is computed 
as follows
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Fig. 4. Plots qc − pc for chaotic and periodic signals in Lindberg’s

generator shown in Figs.3b and 3c.

same bits. Thus, performing the whole test is a time consum-

ing process. In this paper, we propose a new method to protect

the security of the chaotic generators. This approach requires

bitstreams of much shorter length (only about 5 thousand bits).

The 0-1 test (see [16]-[25] for details) is a relatively new

tool used to test the presence of chaos in analog and digital se-

quences when a mathematical model (system of equations) is

not available. The result of the test has two forms: a single real

number K, and a two-dimensional graph with translation vari-

ables pc and qc [16],[17]. For a chaotic sequence the number

K should be close to 1. Regular (non-chaotic) sequences result

in numbers K closer to 0. The values of K can be computed by

using two different methods: regression or correlation.

For a sequence {Nk}, k = 0, . . . ,N −1, the variables pc and

qc are computed by the following expressions for a randomly

chosen real number c ∈ (0,π)

pc(n)=
n

∑
j=0

Njcos[( j+1)c], qc(n)=
n

∑
j=0

Njsin[( j+1)c] (1)

with n = 0, . . . ,N − 1. Then, the mean square displacement

Mc(n), n = 0,1, . . . ,ncut , of pc(n) and qc(n) is computed with

the recommended integer value ncut ≈ (N −1)/10

Mc(n)=lim
N→∞

1

N −1

N−1

∑
j=0

[pc( j+n)−pc( j)]2+[qc( j+n)−qc( j)]2.

(2)

Next, if the regression method is applied, then the asymptotic

growth rate Kc of the mean square displacement is computed

as follows

Kc = lim
n→∞

logMc(n)

logn
. (3)

On the other hand, if the correlation method is ap-

plied, then two vectors ξ = (0,1,2, . . . ,ncut) and ∆ =
(Mc(0),Mc(1),Mc(2), . . . ,Mc(ncut)) are created. The correla-

tion coefficient Kc is obtained as follows

Kc = corr(ξ ,∆)≡
cov(ξ ,∆)

√

var(ξ )var(∆)
(4)

where the cov and var stand for covariance and variance, re-

spectively [16].

In both methods the above steps are repeated for Nc values

of c chosen randomly in the interval (0,π). Again, [16] rec-

ommends Nc = 100. Finally, the median of the Nc values of

Kc is the final number K. The K ≈ 1 indicates a chaotic se-

quence, while K ≈ 0 indicates regular (non-chaotic) dynamics.

For more details about the 0/1 test, its properties and reliability

in the continuous and discrete cases one can see [18]-[25].

4. Application of the 0-1 test to detect HTs

4.1. HTs in Lindberg’s generator The above 0-1 test can be

applied for HT detection. Analyzing an output bitstream can

be used to evaluate the security level of the tested system. This

can be done at two levels: numerical (through the value of K)

and visual (through the qc − pc plot).

We have tested this approach for the generators presented

in Figs. 3a and also further in Fig. 7 (logistic equation based
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generator shown in Figs.3b and 3c.

same bits. Thus, performing the whole test is a time consum-

ing process. In this paper, we propose a new method to protect

the security of the chaotic generators. This approach requires

bitstreams of much shorter length (only about 5 thousand bits).

The 0-1 test (see [16]-[25] for details) is a relatively new

tool used to test the presence of chaos in analog and digital se-

quences when a mathematical model (system of equations) is

not available. The result of the test has two forms: a single real

number K, and a two-dimensional graph with translation vari-
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K should be close to 1. Regular (non-chaotic) sequences result

in numbers K closer to 0. The values of K can be computed by
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For a sequence {Nk}, k = 0, . . . ,N −1, the variables pc and

qc are computed by the following expressions for a randomly

chosen real number c ∈ (0,π)

pc(n)=
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Njcos[( j+1)c], qc(n)=
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Njsin[( j+1)c] (1)

with n = 0, . . . ,N − 1. Then, the mean square displacement

Mc(n), n = 0,1, . . . ,ncut , of pc(n) and qc(n) is computed with

the recommended integer value ncut ≈ (N −1)/10
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Kc = lim
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On the other hand, if the correlation method is ap-

plied, then two vectors ξ = (0,1,2, . . . ,ncut) and ∆ =
(Mc(0),Mc(1),Mc(2), . . . ,Mc(ncut)) are created. The correla-

tion coefficient Kc is obtained as follows

Kc = corr(ξ ,∆)≡
cov(ξ ,∆)

√

var(ξ )var(∆)
(4)

where the cov and var stand for covariance and variance, re-

spectively [16].

In both methods the above steps are repeated for Nc values

of c chosen randomly in the interval (0,π). Again, [16] rec-

ommends Nc = 100. Finally, the median of the Nc values of

Kc is the final number K. The K ≈ 1 indicates a chaotic se-

quence, while K ≈ 0 indicates regular (non-chaotic) dynamics.

For more details about the 0/1 test, its properties and reliability

in the continuous and discrete cases one can see [18]-[25].

4. Application of the 0-1 test to detect HTs

4.1. HTs in Lindberg’s generator The above 0-1 test can be

applied for HT detection. Analyzing an output bitstream can

be used to evaluate the security level of the tested system. This

can be done at two levels: numerical (through the value of K)

and visual (through the qc − pc plot).

We have tested this approach for the generators presented

in Figs. 3a and also further in Fig. 7 (logistic equation based
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where the cov and var stand for covariance and variance, re-
spectively [16].

In both methods the above steps are repeated for Nc values 
of c chosen randomly in the interval (0, π). Again, [16] recom-
mends Nc = 100. Finally, the median of the Nc values of Kc is 
the final number K. The K ¼ 1 indicates a chaotic sequence, 
while K ¼ 0 indicates regular (non-chaotic) dynamics. For more 
details about the 0/1 test, its properties and reliability in the 
continuous and discrete cases one can see [18–25].

4.	 Application of the 0‒1 test to detect HTs

4.1. HTs in Lindberg’s generator. The above 0‒1 test can be 
applied for HT detection. Analyzing an output bitstream can 
be used to evaluate the security level of the tested system. This 
can be done at two levels: numerical (through the value of K) 
and visual (through the qc ¡ pc plot).

We have tested this approach for the generators presented in 
Figs. 3a and also further in Fig. 7 (logistic equation based gen-
erator). The results of the asymptotic growth rate K and qc ¡ pc 
plots for Lindberg’s generator (modifications of the resistor 
R1 and the source frequency fAC) are shown in Figs. 4‒6. Fig-
ures 4a, b, c, d show the qc ¡ pc plots corresponding to the time 
responses in Figs. 3b and 3c, respectively. The change of fAC 

from 7 kHz to 3 kHz results in the change of K from K = 0.9876 
(chaotic analog signal in Fig. 3b (top)) and K = 0.9821 (chaotic 
bitstream in Fig. 3b (bottom)) to K = 0.0211 (periodic analog 
signal in Fig. 3c (top)) and K = 0.0122 (periodic bitstream in 
Fig. 3c (bottom)). The corresponding visual test resuts in the 
form of the qc ¡ pc plots are shown in Fig. 4. The visual test 
itself seems to be a valuable tool allowing for a real-time on-
screen monitoring of the bitstream sequence. The Brownian 
type of the qc ¡ pc plot suggests a chaotic bitstream, while 

Fig. 5. Simulation of a Trojan in Lindberg’s generator resulting from 
changing the value of R1 from 1 kΩ to 15 kΩ

13 13.4 13.8 14.2 14.6 15 15.4 15.8
−1.8

−1.2

−0.6

0

0.6

1.2

pc

qc

(b) The qc ¡ pc diagram

(c) The qc ¡ pc diagram for periodic signal

(a) Sequence of bits versus samples n

400 450 500 550 600
−0.5

0

0.5

1

1.5

samples n

bi
ts

tre
am

Chaotic dynamics Regular dynamics

−10 −5 0 5 10 15 20
−5

0

5

10

15

20

25

Regular dynamics
(Trojan activated by trigger)

qc

pc



730 Bull.  Pol.  Ac.:  Tech.  65(5)  2017

M. Melosik, P. Sniatala, and W. Marszalek

a symmetric, regular qc ¡ pc plot indicates a periodic bitstream. 
Another type of HT is illustrated in Fig. 5. The HT is in the form 
of R1 modification (see Fig. 3a). Fig. 5a illustrates a change 
of the nature of signal VC2 (see Fig. 3a), when R1 is suddenly 
changed from 1 kΩ to 15 kΩ at the discrete sample n = 510 
(see the horizonatal axis in Fig. 5a). The corresponding qc ¡ pc 
plot is shown in Fig. 5b. The HT activated at n = 510 results in 
a ceasing of the Brownian motion and for n > 510 the qc ¡ pc 
plot is restricted to a very small area inside the rectangle in the 
lower right corner in Fig. 5b. Figure 5c shows the qc ¡ pc dia-
gram for the periodic signal for the discrete samples n > 510.

Finally, Fig. 6 shows the K values from the 0‒1 test as 
a function of frequency fAC (left) and resistance R1 (right).

4.2. HTs in the logistic equation based generator. We have 
also applied the 0‒1 test to evaluate the digital bitstream gen-
erator based on logistic equation. Such a generator is sensitive 
not only to the hardware modification, but the response depends 
also on the precision of the digital representation of numbers 
[3, 5]. Nowadays, digital circuits are often implemented in 
reprogrammable systems (e.g. FPGA), which are chosen by 
designers as a convenient, inexpensive and fast solution. Un-
fortunately, embedded systems with these positive features are 
susceptible to HTs. The possibility of reconfigurability allows 
modifications of the structure with HTs being activated at pre-
determined times. Also, system modifications can be used to 
decrease the accuracy of digital representation of numbers. Such 
a decrease in accuraccy can lead to periodic bitstreams. In order 
to check effectiveness of the 0‒1 test in such a case, the logistic 
equation based generator shown in Fig. 7 was implemented in 
FGPA.

This next HT is based on the modifications of the accuracy 
of number representation. The achieved values of K as a func-
tion of the number of bits used for digital representations are 
shown in Fig. 8. The HT in this experiment is in the form of 

Fig. 8. Values of K as a function of the number of bits in fixed point 
representation
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the reduced length of sequence {Y} in Fig. 7. The bits are taken 
from the 7th position in the {Y} sequence. The {Y} sequence of 
length 33 results in a chaotic bitstream with K close to 1. This 
corresponds to the bitstream signal in Fig. 9a for the discrete 
samples 985 ∙ n ∙ 3505. When the length of sequence {Y} is 
shortened to 13, a periodic bitstream is obtained with K close 
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to 0. This corresponds to the bistream signal in Fig. 9a for the 
discrete samples n < 985 and also for n > 3505. These two 
periodic bitstream sequences (for n < 985 and n > 3505) are 
the sequences in the two small rectangular boxes in Fig. 9b. 
The chaotic sequence for 985 ∙ n ∙ 3505 results in a Brown-
ian-like motion in Fig. 9b. In the case of the logistic equation 
based chaotic generator the HT structure can be integrated in 
the FPGA. Similarly, as in the case of Lindberg’s circuit based 
generator, HT may be set to stay active only in selected time 
intervals. To activate HT one may use a finite state machine, 
which can sequentially increase and decrease a number of bits 
needed in a fixed number precision representation. Decreasing 
the number of bits may result (as shown above in Fig. 9) in a 
periodic bitstream.

The future of the 0‒1 test seems to be promising. The above 
presented results of our tests confirm the applicability of the 
0‒1 test to monitor the generated bitstreams. The simplicity of 
the test, which is based on monitoring of the output sequence 
in the form of qc ¡ pc plot in real-time and online, seems to be 
attractive for future practical implementations. The qc ¡ pc plots 
could be backed-up by quick calculations of the K parameter 
when Trojan activity is suspected. Thus, the 0‒1 test for chaos 
offers a two-level security mechanism (tool) to confirm or ex-
clude our suspicion of a HT attact.

5.	 Conclusions

In the paper we discussed an important and current problem of 
security of hardware modules used in cryptography systems. 
We focused our attention on the HT detection in chaotic bit-
stream generators. This type of circuits is an important part 
of cryptography systems. Analog and digital generators were 
analyzed in the context of possible unauthorized modifications 
of various types. The 0‒1 test for chaos was applied to detect the 
unwanted behavior of the generators. The analysis, performed 
for Lindberg’s circuit and discrete logistic equation based gen-

erator, shows the usefulness of the proposed method. Our results 
were achieved based on bitstreams of rather short lengths of 
5000. This fact seems to be an advantage of the 0‒1 test when 
compared to the other known tests for random bit generators, 
which typically require sequences of 1 million bits [1, 2]. Ad-
ditionally, the 0‒1 test does not require any pre-processing of 
the bitstream, such as, for example the von Neumann correction 
used in other tests [1]. The proposed method is useful for both 
analog and digital implementation of the generators.
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