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Abstract. This paper presents a programmable system-on-chip implementation to be used for acceleration of computations within hidden 
Markov models. The high level synthesis (HLS) and “divide-and-conquer” approaches are presented for parallelization of Baum-Welch and 
Viterbi algorithms. To avoid arithmetic underflows, all computations are performed within the logarithmic space. Additionally, in order to carry 
out computations efficiently – i.e. directly in an FPGA system or a processor cache – we postulate to reduce the floating-point representations 
of HMMs. We state and prove a lemma about the length of numerically unsafe sequences for such reduced precision models. Finally, special 
attention is devoted to the design of a multiple logarithm and exponent approximation unit (MLEAU). Using associative mapping, this unit 
allows for simultaneous conversions of multiple values and thereby compensates for computational efforts of logarithmic-space operations. 
Design evaluation reveals absolute stall delay occurring by multiple hardware conversions to logarithms and to exponents, and furthermore the 
experiments evaluation reveals HMMs computation boundaries related to their probabilities and floating-point representation. The performance 
differences at each stage of computation are summarized in performance comparison between hardware acceleration using MLEAU and typical 
software implementation on an ARM or Intel processor.
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to the network, and as the operation of the network is affected 
by external factors, real time computation is not guaranteed. 
Hence, for low latency applications, full HMM processing and 
computation within a dedicated embedded system is a reliable 
choice, and this has been shown for diverse systems such as 
speech recognition [11–12], pattern detection [13] and for AAV/
AUV [14].

Unfortunately, the increasing complexity of HMMs is par-
alleled by the growing demand for computational resources, es-
pecially memory and data throughput. Hence, when considering 
the hardware acceleration of HMM algorithms (forward-back-
ward, Viterbi, Baum-Welch), the size of the HMM has to be 
minimized while the stability of numerical calculation still has 
to be guaranteed. As mentioned in [15], typical calculations as-
sociated with HMM rapidly exhaust the precision of numerical 
representation. This is related to the necessity of performing 
long sequences of multiplications of probability values (which 
are close to zero) for state transitions or observation emissions. 
Therefore, key algorithms are computed within the logarithmic 
space instead of applying some scaling factors [16]. Decreasing 
the size of an HMM can be immediately achieved by reducing 
the precision of its numerical representation (transition and 
emission matrices), e.g. down to: 32 bits (single), 16 bits (half) 
or 8 bits (quarter). This action directly affects and restricts the 
maximum length of the observation sequences examined, which 
means that computations on longer sequences may become nu-
merically unstable.

1.1. Related work. Acceleration and parallelization of HMM 
algorithms is not an easy task but many applications benefit 

1. Introduction 

Due to their rich mathematical structure, hidden Markov models 
(HMMs) find numerous applications. Most of those concern 
different types of pattern recognition and classification tasks, 
and can be divided into two main categories, depending on 
computation latency requirements. The first category covers 
general temporal data mining, where HMMs operate on data in 
order to find statistically relevant patterns and extract important 
information [1–2]. In many cases, such data mining includes big 
data analysis, and the computation required for this analysis can 
be made in a cloud platform without any special computation 
latency constraints. The second category of application covers 
general signal recognition and signal processing, where HMMs 
operate on data in order to classify it. The latency between 
data input and system response is restricted and exceeding it 
leads to application malfunction [3–4]. This real time HMM 
processing is used in a wide range of applications, including 
speech synthesis [5] and recognition [6], image recognition, 
movement recognition [7], radar [8] and sonar [9–10] detection 
and sense-and-avoid systems. However, in many application, 
due to computation deficiency, only features pre-processing 
is performed locally while further HMM calculations are per-
formed on the server side (on a cloud platform). This approach 
limits usage in an obvious way, i.e. the application needs access 
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from it, especially in the field of bioinformatics [17] and in 
embedded systems (such as robotics, autonomous vehicles, IoT, 
etc.). In recent years, there has been a lot of research concerning 
FPGA acceleration of HMM algorithms [18–21]. Most systems 
that have been implemented based on this research focus on 
HMM decoding, using the Viterbi algorithm (computed in linear 
as well as in logarithmic space), and on evaluation problems, 
using the forward-backward algorithm (computed in linear 
memory with scaling factors) [22]. Because most of the research 
is aimed at obtaining the best possible performance results, the 
issue of accuracy and numerical stability is often underesti-
mated or completely overlooked.

2. Motivation

The main obstacles to using HMMs for low latency applications 
are the limitations of fast memory resources and the numerical 
instability of computations. The complex structure of HMMs 
requires dozens of megabytes to store transition and emission 
matrices (e.g. for HMM with 102 states and 105 observations, 
the required storage memory stands at about 8 MB). This is 
a major impediment to computing the model directly in the 
FPGA system or within a processor cache. The obvious solu-
tion for this issue is to reduce the floating-point number rep-
resentation for both matrices. However, precision reductions 
have a significant impact on numerical stability, especially in 
HMM algorithms (forward-backward, Viterbi), where numerous 
probability values (mostly values close to zero) are multiplied 
together, which may rapidly lead to arithmetical underflows 
[23]. A possible solution for this in the forward-backward (and 
further on in the Baum-Welch) algorithm is to use scaling fac-
tors which shift away from the underflow. However, scaling 
factors have to be additionally computed and stored throughout 
the whole examined sequence of observations, which is disad-
vantageous (due to additional memory demand), especially for 
direct implementation in the FPGA as well as for further com-
putation of the Baum-Welch algorithm. Therefore, it is much 
more convenient for numerical stability to perform the whole 
calculation in logarithmic space (as is done for the Viterbi al-
gorithm [15]), where instead of multiplications, sums of loga-
rithms are calculated. To benefit from this solution, expensive 
logarithmic and exponent computations have to be substituted 
with fast and efficient approximation. For this purpose, a spe-
cial module with a parallel access lookup table for concurrent 
mapping of multiple values is evaluated here. Computing all 
HMM-related algorithms in logarithmic space makes it possible 
to reduce the precision of number representation, but to ensure 
numerical stability, certain assumptions (also presented in this 
paper) associated with the maximum length of the sequence 
examined for a given HMM have to be satisfied.

3. Divide and conquer methodology

The parallelization of highly iterative dynamic programming 
algorithms requires full utilization of the capabilities offered by 

modern FPGAs. Designing acceleration architecture in a typ-
ical hardware description language (VHDL) is time-consuming 
and poses quite a challenge. Additionally, design configuration 
changes and relevant verification is difficult to perform. In con-
trast, as is well described in [24], by using high level synthesis 
(HLS), it is possible to create complex processing architecture 
at a higher level of abstraction, where design modification and 
testing is reliable and hassle-free (e.g. in the case of changing 
the precision of calculation for the entire system or changing 
the degree of parallelism). Most of the design presented in 
this paper is created and verified by using Vivado System De-
sign and Vivado HLS framework [25]. The divide and conquer 
(D&C) strategy provides a very elegant and efficient frame-
work for HMM algorithm implementation. Standard dynamic 
programming algorithms for HMMs, in each time step, iterate 
over all states and perform some sub-computations for each 
of them (typically summation or maximization). Hence, the 
obvious way to accelerate execution is to perform state-re-
lated sub-computation for all states simultaneously. Then the 
degree of parallelization is dependent on the number of states 
in the Markov model. Most likely, however, iteration through 
all states is nested in another state iteration or in observation 
sequence iteration. If necessary, dependencies resulting from 
the nested iteration have to be solved in a separate way (e.g. 
by pipelining).

3.1. Processing system and programmable logic. The design 
presented in this paper is dedicated for a programmable system 
on chip (PSoC), where an HMM-based application can benefit 
from hardware acceleration in programmable logic, but typical 
general purpose computation is still held by the CPU. The 
processing system provides general infrastructure for the in-
terfaces (Ethernet, HMI, etc.), and above all is responsible for 
observation codebook pre-processing and decoding, while the 
main HMM algorithms such as the logarithmic space Baum-
Welch, forward-backward and Viterbi ones are computed in 
programmable logic. In whatever HMM utilized in the appli-
cation, the following typical processing stages can be distin-
guished:
1) Analyzing and pre-processing some raw data in order to 

extract the chain of some expressions for further analysis.
2) Acquiring the emissions sequence, where the chain of some 

expressions is assembled to form the emissions.
3) Codebook decoding, where the examined emission is com-

pared with the predefined token in order to map it onto the 
corresponding observation.

4) If the HMM have to be trained, the Baum-Welch algorithm 
is selected, or if the purpose of the HMM is to explore the 
path, the Viterbi algorithm is selected.

5) Loading an HMM to the “computation engine”.
6) Loading the observation sequence to the “computation en-

gine” and performing the algorithm.
7) Collecting the results.

All stages except stage 6 are application-specific and 
should definitely be performed by the processing system. In 
most HMM-based applications, the pre-processing dictionary 
and codebook for decoding expressions has from just a few 
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to dozens of thousands of tokens [26]. Furthermore, because 
of the potentially large size of the HMM, the containers are 
stored in DDR memory. The HMM container includes basic 
information about the model, such as transition and emission 
probabilities and the observation codebook with corresponding 
mapping.

Stage 6 can be performed outside the processing system. 
“Computation engine” is not defined by how the computation 
is made – whether by the CPU, an external system (in a cloud) 
or programmable logic. For low latency processing, the most 
suitable way of making the computation is by using program-
mable logic, so, in order to accelerate HMM computation, direct 
(instant on) access to both matrices (transitions and emissions) 
is required, which involves loading the HMM to the FPGA 
(stage 5). Further calculations are performed parallelly for 
each state. For this purpose, each dedicated state processing 
unit (SPU) stores its own transition and emission probability 
vectors. Fig. 1 shows the general idea of the computational 
architecture, where HMM-related calculations are performed 
by the SPUs controlled by the control and data management 
(CDM) unit.

3.2. Multiple logarithm exponent approximation unit. In 
order to efficiently carry out computationally expensive arith-
metic within logarithmic space, a special multiple logarithm 
exponent approximation unit (MLEAU) is introduced. Extended 
logarithmic arithmetic is carried out according to the functions 
defined in [27]:
● eexp(x) extended exponent,
● eln(x) extended logarithm,
● elnsum(eln(x), eln(y)) extended sum of logarithms,
● elnproduct(eln(x), eln(y)) extended product of logarithms.

In the above set of functions, the elnsum (eln(x), eln(y)) 
is of particular interest. We should note, in this context, that 
while the Viterbi algorithm can be easily formulated in its log-
arithmic version (as its induction step involves maximization), 
the forward-backward algorithm is not straightforward for such 
a formulation since its induction step involves the summation 
of probabilities.

Thus, when converting, a useful mathematical expression is 
needed for the calculation of the logarithm of the sum of prob-
abilities, which themselves are given in terms of logarithms. 
A solution proposed by Mann tackles the above difficulty. For 
more details on this, see [27].

The MLEAU dedicated for HMM calculation should pro-
vide high performance of the computation and simultaneously 
high precision of the results for both logarithm and exponent 
conversion. Therefore, the proposed solution extends the IC-
SIlog algorithm [28] approach by adding exponentiation ap-
proximation functionality and parallel access interfaces. The 
logarithmic and exponential conversions, as reverse operations, 
require similar actions. Hence, the calculation of both is based 
on a single cycle array indexing operation, where the man-
tissa part of the floating-point argument is transformed using 
a lookup table (LUT) for a corresponding value. For the log-
arithmic operation, the logLUT is used to convert the signifi-
cand part to an appropriate coefficient, while the characteristic Fig. 1. PSoC computational architecture dedicated for HMMs



938 Bull.  Pol.  Ac.:  Tech.  65(6)  2017

M. Pietras and P. Klęsk

part is scaled by a constant (which corresponds to the base of 
the logarithm) and added to the result obtained from the LUT 
transformation. For the exponentiation operation, the expLUT 
is used to convert the significand part to an appropriate coeffi-
cient while the characteristic part is scaled by a constant (which 
corresponds to the base of exponentiation) and multiplied by the 
result obtained from the LUT transformation. The conversion 
flow is shown in Fig. 2. Both LUTs are addressed with the 
16 MSB mantissa bits (which together occupy 256 Kbytes of 
memory) of input argument and provide 16 bits output value. 
The output value is cast onto the desired floating-point format 
(e.g. half, single or custom).

Both LUTs are accessed globally within the MLEAU. The 
number of access interfaces is fully generically configurable 
and, in HMM processing, depends on the number of states (each 
SPU has separate interface access). Standard FPGA resources 
provide only single or dual port memory. Fully parallel ac-
cess in programmable logic is provided by distributed memory. 
However, usage of this memory for huge LUT implementation 
causes serious timing and routing issues. Hence, to provide 
parallel access for multiple SPU ports, logLUT and expLUT 
actually utilize multiple mini LUTs, which are accessible 
as content-addressable memory (see Fig. 3). Dividing huge 
single LUT into dozens of mini LUTs significantly improves 
memory utilization and memory access parallelization. Mini 
LUTs form a distinctive part of logLUT/expLUT and are se-
lected by the less significant bits (LSB) content part of the 
input value. Although each mini LUT supports single access (it 
is built on single port block memory), through near-associative 
input and output mapping [29], the whole module allows for 
parallel memory access with certain restrictions. If all input 
values (each provided from an SPU) have a different LSB part 
(for content-addressable input decoding), then conversion will 
be performed immediately. However, if the LSB part is the 

same in several input values, then the operation will be per-
formed in a queue, causing stall and conversion delay. If some 
input values are fully the same, then the result will be copied 
without a stall. The main idea here lies in the assumption that 
the input values or at least their LSB parts are varied. Absolute 
conversion stalls in computing the logarithmic version of the 
forward-backward algorithm were about 30% regardless of the 
parallelization degree and this is the absolute delay cost of the 
approach presented herein.

Due to near-associative mapping for input and output, the 
demand for the FPGA resources increases geometrically as 
compared to the number of inputs. However, considering the 
benefits of access parallelization (savings in memory utiliza-
tion), greater resource utilization is fully acceptable.

3.3. State processing unit. When applying D&C methodology 
to HMM-related algorithms, special parallel computation ar-
chitecture is required. The main processing element of such 
architecture is an SPU, responsible for appropriate computation 
on a state level where multiple floating-point computation and 
above all fast logarithm/exponent conversion are performed. 
Pre-computed logarithms equivalent for probability values 
of transitions and emissions for a given state are also stored 
locally in the SPU. The number of SPUs determines the de-
gree of parallelization of the Baum-Welch computation and 
is dependent on the complexity of the Markov model (i.e. the 
number of states). Each SPU implements three algorithmic pro-
cessing blocks: forward-backward, Gamma-Xi, and numera-
tor-denominator, and utilizes eight half-precision floating-point 
units and two independent MLEAU access interfaces. Only 
one algorithmic processing block can be selected for current 
computation. The forward-backward block is active in order 
to deliver all posteriors over all possible sequences. However, 
the state posterior and transition posterior are calculated step-
wise (in Gamma-Xi block) for the given observation and the 
partial information thus obtained is delivered to the numera-

Fig. 3. Near-associative input and output mapping for LUT conversion 
parallelization

Fig. 2. Logarithm and exponentiation conversion
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tor-denominator block. Fig. 4 presents a general outline of SPU 
processing. For better understanding, not all control signals are 
shown on the diagram. Moreover, the dashed lines illustrate 
iterative usage of the resources (e.g. elnα(i, t ¡ 1) and TR(i, j) 
are added N times where i is iterated to N). All signal names are 
consistent with those used in [27] (e.g. elnα(1 … T) refers to 
the storage of the extended logarithm value of α). The decision 
flow (related with the appropriate order of arguments and “Not 
a Number” detection) shown in the figure in each elnsum block 
is essential for the numerical stability of extended logarithmic 
arithmetic.

3.3.1. Forward-backward algorithm. The advantage of im-
plementing a logarithmic version of the forward-backward al-
gorithm is that scaling factors are not required. The idea of 
introducing scaling factors only concerned shifting calculation 
results onto a numerically stable level. However, in logarithmic 
space the calculations are natively quite numerically stable and 
no additional precaution is required to make them more so. 
Without scaling factors, the two steps of forward and back-
ward can be performed simultaneously. From the viewpoint 
of algorithm acceleration, scaling factors not only require an 
additional computation effort, but also they need to be stored 
in the FPGA for (Baum-Welch) further computation throughout 
the whole observation sequence examined. Computation of the 
forward-backward algorithm is performed by utilizing SPUs 
(shown in Fig. 4), where the most important function is the 
acceleration of the sum of logarithms computation, which in-
volves arithmetic operations in logarithmic space and transition 
from argument through exponent conversion and successive 
logarithm conversion. This computationally expensive oper-
ation is performed using the MLEAU. Additionally, product 
operations with corresponding transition and emission proba-
bilities (precomputed logarithm equivalents) are carried out as 
well. Each forward-backward block produces α and β values 
of a state corresponding to the observation sequence examined. 
The α and β vectors are stored in the FPGA for further Gam-
ma-Xi computation.

3.3.2. Gamma-Xi algorithm. The values of γ and ξ are essen-
tial for re-estimating the HMM parameters. In the standard ap-
proach, these matrices are calculated for the whole observation 
sequence examined and stored for further computation. From 
the perspective of FPGA resource utilization, storing an enor-
mous number of intermediate values for the two-dimensional γ 
matrix, as well as for the ξ matrix, which is three dimensional 
(i.e. for an observation sequence with 100 elements and HMM 
with 10 states, ξ(100, 10, 10) will occupy 10 000 half-precision 
numbers), is problematic. Hence, the Baum-Welch re-estima-
tion algorithm is reorganized to work in iterative steps. The 
values of γ and ξ are now calculated and normalized for a single 
time point t and on this basis, a partial numerator-denominator 
value is computed. Instead of delivering γ and ξ output values 
for all elements in the observation sequence examined, only 
a single partial output is needed. However, partial information 
for the numerator-denominator has to be stored and accumu-
lated separately for each state and for each observation. This 
means that FPGA memory has to be able to simultaneously 
store both old HMM parameters (A, B, π) and the new ones 
(A’, B’, π’). Final parameter re-estimation is carried out in the 
numerator-denominator block.

3.3.3. Logarithm numerator-denominator algorithm. After 
full accumulation of partial information for the numerator-de-
nominator algorithm, final normalization takes place. In the 
logarithmic space, results normalization is carried out by sub-
tracting the denominator from an accumulated partial numerator 
for all parameters (A’, B’, π’). The new HMM parameters are 
then ready for collection.

Fig. 4. State processing unit for the forward-backward and Baum-
Welch algorithm computations
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3.4. Viterbi D&C algorithm. To avoid numerical issues, the 
Viterbi algorithm is computed in logarithmic space where the 
multiplication of transitions, emissions and maximum probabili-
ties is replaced with the summation operation. This is performed 
parallelly for all states. The last stage in recursive iteration is 
to find a state with a maximum value of transition probability. 
Comparing all probability values is fully sufficient for this, 
but the simple sequential procedure requires n (the number of 
states) comparisons. To speed up this step, typical D&C meth-
odology is applied. The general idea is presented in Fig. 5, 
where three blocks are distinguished and dashed lines illustrate 

iterative usage of the resources. In the “adding” block, triple 
floating-point addition is performed for the maximum value 
(from the previous iteration) and the logarithm equivalent of 
emission and transition probabilities. In the “comparing” block, 
all states are compared simultaneously in pairs, which reduces 
the procedure from n steps to log2 n + 1 steps. The approach 
here is analogical to the merge-sort algorithm [29], which takes 
O(n log n) comparisons to sort all values in the array. In the case 
of the Viterbi algorithm, only the maximum value in the array 
is valid, so only O(n log2 n) comparisons are needed. These two 
blocks can be instantiated once or for all states separately. This 

Fig. 5. Viterbi D&C with the backtracking algorithm
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allows for massive parallel processing, although the resource 
demand increases geometrically as compared to the number 
of states. For a single instantiation, time division multiplexing 
is applied and calculations are performed for each state in the 
iterations.

D&C methodology is also applied in the “backtracking” 
block in order to reduce the latency associated with tracing 
back through the entire length of the sequence examined. In this 
case, backtracking is divided into equal sections (with section 
size SS, e.g. 32). Thus, the procedure is performed on subse-
quent sections in parallel to the Viterbi recursive iteration. If 
the boundary elements of the neighboring section are identical, 
then backtracking for the current section is valid (see Fig. 6). 
Otherwise, backtracking has to be repeated from the last com-
puted section to the section where the boundary elements are 
again identical (or to the beginning of the sequence). In the best 
case scenario, backtracking sectioning produces an additional 
delay equal to SS steps, whereas in the worst case scenario 
backtracking has to be performed for the whole sequence, which 
produces a relevantly longer delay.

4. Numerical stability in the reduced 
representation of HMM

As already mentioned in [26], HMM computations may be-
come troublesome especially for long sequences. Even if those 
computations are performed within the logarithmic space, one 
should be aware that there always exists some limit to the length 
of sequences, beyond which the computations may become 
numerically unstable. This phenomenon should be considered 
along with with the size (width) of the representation for float-
ing-point numbers that is being applied. As mentioned before, 

for the purposes of FPGA implementation, we postulate re-
ductions from the typical double type (64 bits) representations 
down to single (32 bits), half (16 bits) or quarter (8 bits). The 
lemma presented below demonstrates quantitatively how, for 
an m-bit wide mantissa, the length of the shortest sequence 
that may potentially be numerically unsafe, can be expressed 
in terms of extreme probabilities (smallest and largest) that are 
present in the given HMM.

Lemma 1. Let p > 0 and P > 0 denote the smallest and largest 
probabilities, respectively, that are present in an HMM (i.e. 
extreme probabilities either of transition, emission or initial 
distribution matrices). Suppose that computations are performed 
under the logarithmic version of the Viterbi algorithm, and the 
model is stored in a reduced floating-point representation with 
mantissa of width m. Then, the shortest sequence that may be-
come numerically unsafe – i.e. such which may cause additional 
errors implied by the reduced representation rather than stan-
dard round-off errors only – is of the following length:

 Θ = (2m ¡ (log2jlog pj ¡ log2jlog Pj) + 1). (1)

Please be reminded that the Θ notation represents the exact 
asymptotic range (as opposed to the O – notation for an upper 
bound or Ω – notation for a lower bound).

Proof: Sketch – we shall arrange a situation where for a certain 
observation sequence only two Viterbi paths are possible. Those 
will be paths of very similar probabilities. The initial long frag-
ment of the observation sequence shall indicate a tie between 
the paths; however, the very last two observations shall break 
the tie in favor of one of the paths (in the case of exact com-
putations). We shall demonstrate that in the case of numerical 

Fig. 6. Backtracking on sections in the case of full match and in the case of section boundaries mismatched
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computations, under the logarithmic Viterbi algorithm, a con-
trary outcome (tie-breaker) is possible. Please note: lower-case 
letters indicate small probabilities (and logarithms associated 
with them); upper-case letters indicate large probabilities (and 
their logarithms). Consider the minimum (non-zero) and max-
imum probabilities present in π, A and B matrices:

pπ = min{πi : 1 ∙ i ∙ N, πi > 0}, lπ =  log pπ,
pA = min{aij : 1 ∙ i, j ∙ N, aij > 0}, lA =  log pA,

pB = min{bik : 1 ∙ i ∙ N, 1 ∙ k ∙ M, bik > 0}, 
 lB =  log pB,
PA = max{aij : 1 ∙ i, j ∙ N}, LA =  log PA,
PB = max{bik : 1 ∙ i ∙ N, 1 ∙ k ∙ M}, LB =  log pB,

 (2)

Now, consider the following particular HMM (Fig. 7), where 
only states and emissions shown in the figure are relevant.
Note that transitions between states S1 and S2 are not possible, 
a12 = a21 = 0; and that all other states Si>6 (omitted in figure) 
have zero probability of emission observations: O1, O2, O3. 
Apart from transitions shown in figure, states S1,...,S6 are able 
to transit to other states Si>6, yet such transitions are irrelevant 
for the proof. Emission probabilities q and r can be treated as 
parameters that can be suitably chosen for breaking the tie. Let 
us denote their logarithms as lq = log q and lr = log r.

Now, suppose the following observation sequence is given 
as the input:
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Now, suppose the following observation sequence is 
given as the input: 
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(because of the indexes involved). The product of 
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Analogically, for the „even” path we have: 
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 

2
BP q r  .                                  (7) 

Simultaneously, we would like to show a possibility of 
such a numerical error that the algorithm indicates 
incorrectly the „odd” path as the winning one. That error 
can happen when at time moment t = T − 1 the addition of 
the LB summand (being close to zero, since PB is maximal) 
to the running sum (which in turn is suitably large) shall 
not alter the result. Therefore, we would like to induce  
a contrary direction of the inequality (7) by replacing the 
PB term with a one due to the indistinguishable numerical 
result, i.e.: 

21 q r  ,                                    (8) 
which in turn, when looking at the sum of logarithms, 
corresponds to: 

log1 log 2logq r  .                           (9) 
Therefore, in order to satisfy (7) and (8) simultaneously, 
one has to choose q to be: 
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B
rr q P  .                            (10) 

To simplify considerations, let us neglect the distinction 
between probabilities coming from different matrices (A 
or B or π; i.e. let us identify all of them as 
follows  A Bp p p p    and  A BP P P P   . Thus, 
also let A Bl l l l    and A BL L L L   . In other 

words we are now interested only in small and large terms 
(in the sense of order of magnitude) that are present in the 
sum of logarithms. For the „odd” path, the sum (4) 
simplifies now to 
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whereas the sum (6) for the „even” path simplifies to 
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Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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The numerator in the fraction represents the order of 
magnitude for the largest number representable under a 
mantissa of width m once we subtract from it |log2 |L|| 
significant digits needed by the critical summand. On the 
other hand, the denominator represents the ‘tempo’ at 
which we try to exhaust the order of magnitude at disposal 
by adding 2(T −2) summands equal to l during the initial 
stage of computations. Solving (13) with respect to T 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 
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Simultaneously, we would like to show a possibility of 
such a numerical error that the algorithm indicates 
incorrectly the „odd” path as the winning one. That error 
can happen when at time moment t = T − 1 the addition of 
the LB summand (being close to zero, since PB is maximal) 
to the running sum (which in turn is suitably large) shall 
not alter the result. Therefore, we would like to induce  
a contrary direction of the inequality (7) by replacing the 
PB term with a one due to the indistinguishable numerical 
result, i.e.: 

21 q r  ,                                    (8) 
which in turn, when looking at the sum of logarithms, 
corresponds to: 

log1 log 2logq r  .                           (9) 
Therefore, in order to satisfy (7) and (8) simultaneously, 
one has to choose q to be: 
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To simplify considerations, let us neglect the distinction 
between probabilities coming from different matrices (A 
or B or π; i.e. let us identify all of them as 
follows  A Bp p p p    and  A BP P P P   . Thus, 
also let A Bl l l l    and A BL L L L   . In other 

words we are now interested only in small and large terms 
(in the sense of order of magnitude) that are present in the 
sum of logarithms. For the „odd” path, the sum (4) 
simplifies now to 
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whereas the sum (6) for the „even” path simplifies to 

11 2 2
r

t Tt t t T t T

l l l l l l L L L l
     

         .        (12) 

Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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The numerator in the fraction represents the order of 
magnitude for the largest number representable under a 
mantissa of width m once we subtract from it |log2 |L|| 
significant digits needed by the critical summand. On the 
other hand, the denominator represents the ‘tempo’ at 
which we try to exhaust the order of magnitude at disposal 
by adding 2(T −2) summands equal to l during the initial 
stage of computations. Solving (13) with respect to T 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
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Let us call them “odd” and “even” paths, respectively (because 
of the indexes involved). The product of probabilities and the 
corresponding sum of logarithms for the “odd” path are, re-
spectively, equal to:
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 
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Simultaneously, we would like to show a possibility of 
such a numerical error that the algorithm indicates 
incorrectly the „odd” path as the winning one. That error 
can happen when at time moment t = T − 1 the addition of 
the LB summand (being close to zero, since PB is maximal) 
to the running sum (which in turn is suitably large) shall 
not alter the result. Therefore, we would like to induce  
a contrary direction of the inequality (7) by replacing the 
PB term with a one due to the indistinguishable numerical 
result, i.e.: 

21 q r  ,                                    (8) 
which in turn, when looking at the sum of logarithms, 
corresponds to: 

log1 log 2logq r  .                           (9) 
Therefore, in order to satisfy (7) and (8) simultaneously, 
one has to choose q to be: 
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between probabilities coming from different matrices (A 
or B or π; i.e. let us identify all of them as 
follows  A Bp p p p    and  A BP P P P   . Thus, 
also let A Bl l l l    and A BL L L L   . In other 

words we are now interested only in small and large terms 
(in the sense of order of magnitude) that are present in the 
sum of logarithms. For the „odd” path, the sum (4) 
simplifies now to 

11 2 2
q

t Tt t t T t T

l l l l l l L L L l
     

         ,        (11) 

whereas the sum (6) for the „even” path simplifies to 
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Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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The numerator in the fraction represents the order of 
magnitude for the largest number representable under a 
mantissa of width m once we subtract from it |log2 |L|| 
significant digits needed by the critical summand. On the 
other hand, the denominator represents the ‘tempo’ at 
which we try to exhaust the order of magnitude at disposal 
by adding 2(T −2) summands equal to l during the initial 
stage of computations. Solving (13) with respect to T 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
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(because of the indexes involved). The product of 
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 

2
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Simultaneously, we would like to show a possibility of 
such a numerical error that the algorithm indicates 
incorrectly the „odd” path as the winning one. That error 
can happen when at time moment t = T − 1 the addition of 
the LB summand (being close to zero, since PB is maximal) 
to the running sum (which in turn is suitably large) shall 
not alter the result. Therefore, we would like to induce  
a contrary direction of the inequality (7) by replacing the 
PB term with a one due to the indistinguishable numerical 
result, i.e.: 

21 q r  ,                                    (8) 
which in turn, when looking at the sum of logarithms, 
corresponds to: 

log1 log 2logq r  .                           (9) 
Therefore, in order to satisfy (7) and (8) simultaneously, 
one has to choose q to be: 
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To simplify considerations, let us neglect the distinction 
between probabilities coming from different matrices (A 
or B or π; i.e. let us identify all of them as 
follows  A Bp p p p    and  A BP P P P   . Thus, 
also let A Bl l l l    and A BL L L L   . In other 

words we are now interested only in small and large terms 
(in the sense of order of magnitude) that are present in the 
sum of logarithms. For the „odd” path, the sum (4) 
simplifies now to 
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whereas the sum (6) for the „even” path simplifies to 

11 2 2
r

t Tt t t T t T

l l l l l l L L L l
     

         .        (12) 

Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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magnitude for the largest number representable under a 
mantissa of width m once we subtract from it |log2 |L|| 
significant digits needed by the critical summand. On the 
other hand, the denominator represents the ‘tempo’ at 
which we try to exhaust the order of magnitude at disposal 
by adding 2(T −2) summands equal to l during the initial 
stage of computations. Solving (13) with respect to T 
(length of sequence) we obtain: 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
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Let us suppose that under exact calculation it is the “even” path 
that is actually slightly more probable (and should be returned 
as the result). This means that the following inequality must be 
satisfied (by reduction to the crucial end part, once the initial 
equal terms are cancelled out):

 PB ¢ q < r2. (7)

Simultaneously, we would like to show a possibility of such 
a numerical error that the algorithm indicates incorrectly the 
“odd” path as the winning one. That error can happen when at 
time moment t = T ¡ 1 the addition of the LB summand (being 
close to zero, since PB is maximal) to the running sum (which 
in turn is suitably large) shall not alter the result. Therefore, we 
would like to induce a contrary direction of the inequality (7) 
by replacing the PB term with a one due to the indistinguishable 
numerical result, i.e.:

 1 ¢ q > r2, (8)

which in turn, when looking at the sum of logarithms, corre-
sponds to:

 log1 + logq > 2log r. (9)

Therefore, in order to satisfy (7) and (8) simultaneously, one 
has to choose q to be:

 r2 < q < r
2/PB

. (10)

To simplify considerations, let us neglect the distinction be-
tween probabilities coming from different matrices (A or B or 
π; i.e. let us identify all of them as follows:pA = pB = pπ = p and 
PA = PB = Pπ = P. Thus, let us also assume that: lA = lB = lπ = l 
and LA = LB = Lπ = L. In other words, we are now interested 
only in small and large terms (in the sense of order of magni-Fig. 7. Model for HMM lemma
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tude) that are present in the sum of logarithms. For the “odd” 
path, sum (4) is now simplified to:
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 
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such a numerical error that the algorithm indicates 
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words we are now interested only in small and large terms 
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simplifies now to 
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Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
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produced the sequence above. They are: 
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Let us call them „odd” and „even” paths, respectively 
(because of the indexes involved). The product of 
probabilities and the corresponding sum of logarithms for 
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Analogically, for the „even” path we have: 
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Let us suppose that under exact calculation it is the „even” 
path that is actually slightly more probable (and should be 
returned as the result). It means that the following 
inequality must be satisfied (by reduction to the crucial 
end part, once the initial equal terms are cancelled out): 

2
BP q r  .                                  (7) 

Simultaneously, we would like to show a possibility of 
such a numerical error that the algorithm indicates 
incorrectly the „odd” path as the winning one. That error 
can happen when at time moment t = T − 1 the addition of 
the LB summand (being close to zero, since PB is maximal) 
to the running sum (which in turn is suitably large) shall 
not alter the result. Therefore, we would like to induce  
a contrary direction of the inequality (7) by replacing the 
PB term with a one due to the indistinguishable numerical 
result, i.e.: 

21 q r  ,                                    (8) 
which in turn, when looking at the sum of logarithms, 
corresponds to: 

log1 log 2logq r  .                           (9) 
Therefore, in order to satisfy (7) and (8) simultaneously, 
one has to choose q to be: 
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B
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To simplify considerations, let us neglect the distinction 
between probabilities coming from different matrices (A 
or B or π; i.e. let us identify all of them as 
follows  A Bp p p p    and  A BP P P P   . Thus, 
also let A Bl l l l    and A BL L L L   . In other 

words we are now interested only in small and large terms 
(in the sense of order of magnitude) that are present in the 
sum of logarithms. For the „odd” path, the sum (4) 
simplifies now to 
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whereas the sum (6) for the „even” path simplifies to 
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Just before the critical time moment t = T − 1 the current 
value of both sums above arises from additions of 2(T − 
2) logarithms of small probabilities, that is values being of 
large order in the absolute sense; it is easy to impose 
|l| ≫ |L|. Hence, we try to exhaust, at ‘fast tempo’, m of 
significant digits (under base of 2) of the mantissa just 
before the L summand is to be added. Note that L is in 
turn of small order. The value log2 |L| can in fact be 
treated as the order of magnitude of the number L under 
base 2. Finally, the wanted error situation – consisting of 
an indistinguishable result even though L has been added 
– can be described by the following inequality:  
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The numerator in the fraction represents the order of 
magnitude for the largest number representable under a 
mantissa of width m once we subtract from it |log2 |L|| 
significant digits needed by the critical summand. On the 
other hand, the denominator represents the ‘tempo’ at 
which we try to exhaust the order of magnitude at disposal 
by adding 2(T −2) summands equal to l during the initial 
stage of computations. Solving (13) with respect to T 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
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Up to now, we have shown that there can exist 
numerically unsafe sequences of length greater of equal to 
a certain value, i.e. we have shown the case of: T > T*. 
Taking into account the sense of the Θ – notation in the 
lemma, we still need to show the case T ≤ T* to conclude 
the proof. By doing so the minimal sequence from all such 
unsafe sequences shall be the upper bounded. It is 
sufficient to note that if, in our example in its initial 
fragment, we apply probabilities larger than the minimal p 
then the logarithms being added shall not exhaust so fast 
the numerical range at disposal. It implies that the 
described error situation can only occur later. Therefore, 
the shortest unsafe sequence is of length Θ (T*).            ∎ 
 

. (12)

Just before the critical time moment t = T ¡ 1 the current value 
of both sums above arises from additions of 2(T ¡ 2) loga-
rithms of small probabilities, that is values being of large order 
in the absolute sense; and it is easy to impose jlj À jLj. Hence, 
we try to exhaust, at “fast tempo”, m of significant digits (under 
base of 2) of the mantissa just before the L summand is to be 
added. Note that L is in turn of small order. The value of log2jLj 
can in fact be treated as the order of magnitude of the number L 
under base 2. Finally, the wanted error situation –  consisting of 
an indistinguishable result even though L has been added – can 
be described by the following inequality:

 2m ¡ jlog2jLjj + 1

2(T ¡ 2)jlj
 ∙ 1. (13)

The numerator in the fraction represents the order of magnitude 
for the largest number representable under a mantissa of width m 
once we subtract from it jlog2jLjj, i.e. significant digits needed 
by the critical summand. On the other hand, the denominator 
represents the “tempo” at which we try to exhaust the order of 
magnitude at our disposal by adding 2(T ¡ 2) summands equal 
to l during the initial stage of computations. Solving (13) with 
respect to T (length of sequence), we obtain:

 

T ¸ 2 + 2
m ¡ jlog2jLjj + 1

2jlj

T = 2 + 2m + log2jLj + 1 ¢ 2log2j2lj–1

T = 2 + 2m + log2jLj ¡ log2j2lj + 1

T = 2 + 2m ¡ log2j2lj ¡ log2jLj + 1 = T¤.

 (14)

Up to now, we have shown that there can exist numerically 
unsafe sequences of length greater or equal to a certain value, 
i.e. we have shown the case of: T > T¤. Taking into account 
the sense of the Θ – notation in the lemma, we still need to 
show the case of T ∙ T¤ to conclude the proof. By doing so 
the minimum sequence from all such unsafe sequences shall be 
the upper bound. It is sufficient to note that if, in our example 
in its initial fragment, we apply probabilities larger than the 
minimum p, then the logarithms being added shall not exhaust 
the numerical range at disposal so fast. This implies that the 
described error situation can only occur later. Therefore, the 
shortest unsafe sequence is of length Θ(T¤). □

The following two additional remarks can be given in the 
context of the lemma.

Remark 1. The formula for T¤ (14) shows that the important 
element is the difference between the orders of magnitudes of 
the logarithms (being the consequence of extreme probabilities 
in an HMM). That difference is: log2j2lj ¡ log2jLj. The greater 
the difference, the fewer free digits there remain in the mantissa.

Remark 2. While the exterior logarithms, yielding the order of 
magnitude, must be base-2 logarithms, the internal (nested) log-
arithms hidden inside l = log p and l = log P can be expressed 
in any base. We leave it as a simple exercise for the reader.

A certain precision of numerical representation restricts 
the HMM structure and possibilities of data processing. This 
phenomenon is particularly observable for very low precision. 
However, in order to secure the stability of numerical calcula-
tions, some crucial constraints arising from precision reduction 
have to be considered. In particular, for the m-bit mantissa, the 
length of the shortest numerically unstable sequence can be 
expressed in terms of extreme probabilities ( p > 0 being the 
smallest, P > 0 being the greatest) occurring in the HMM, and 
this length is of the following order:

 2m ¡ (log2jlog pj ¡ log2jlogPj) + 1. (15)

4.1. Example of HMM boundaries determination. To present 
a general idea, let us consider a synthetic case of an HMM with 
30 states and 1000 observations. The parameter estimation is 
carried out on a sequence of 100 000 elements generated syn-
thetically by the following formula:

 
qt = {t mod(t mod N )}, 1 ∙ t ∙ T ,
ot = {t mod(t mod M )}, 1 ∙ t ∙ T .

 (16)

The probabilities of transition A and emission B are obtained by 
calculating maximum likelihood based on the sequences gen-
erated. The obtained maximum P and minimum p of non-zero 
probabilities for both matrices are as follows:

 
PA = 1.00, pA = 6.111e ¡ 4,
PB = 43.478e ¡ 3, pB = 1.170e ¡ 4.

 (17)

Knowing the necessary conditions for the numerical stability of 
HMM calculations (shown in this paper), it is possible to meet 
the requirements of the application. For an HMM with the given 
transition and emission matrices, there is a minimum precision 
of floating-point number representation for which the model is 
numerically stable. Moreover, in terms of decoding state paths, 
there is a maximum length of observation sequence, on which 
the calculations carried out (sum and logarithm accumulation) 
will not lead to arithmetic overflow and related result indistin-
guishability.

By reducing the precision of number representation from 
double (64 bit) to half (16 bit), all probabilities and corre-
sponding logarithm values will be rounded to fit the new format. 
To ensure numerically stable computation in reduced half-pre-
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cision number representation, formula (14) has to be applied. 
Hence, the maximum length of the observation sequences ex-
amined is limited to 228 elements. More examples of applying 
the lemma given in this paper and the resulting numerically 
stable length for different probability sets calculated at different 
precisions of floating-point number are presented in Table 1.

Table 1 
Evaluation of numerically stable length at different precision 

of numbers representation

Probabilities set
[ p, P]

Half(16 bit) 
precision

Single(32 bit) 
precision

Double(64 bit) 
precision

p = 0.5e – 2; P = 0.5e – 2 1927 15785253 stable

p = 1.17e-4; P = 1.0 228 1863880 stable

p = 1.0e – 6; P=1.0e – 1 10 75915 stable

p = 1.0e – 3; P=1.0e – 3 1 2372 stable

p = 2.0e – 7; P=1.0e – 6 0 2 556885799

The numerically stable length depends on the probability set 
and the precision of number representation. HMM computa-
tion in double precision can be treated as numerically stable. 
However, in acceleration systems (also GPUs as in [31–32]), 
where single and half-precision computations are widely used, 
the length constraints have to be applied to the observation 
sequence in order to ensure numerical stability.

4.2. Practical application example. The methodologies pre-
sented in this paper were applied to the practical application of 
syntactic and semantic text analysis, where HMM were trained 
on the Penn Treebank database. As a result of training, the model 
contains 47 states related with syntactic category and 9055 ob-
servations related with separated expressions (more detailed 
information about the methodology and the models obtained 
can be found in [33]). Obtained maximum P and minimum p 
of non-zero probabilities for matrices of HMM are as follows:

 
PA = 0.7492, pA = 0.0292,
PB = 0.6042, pB = 6.1277E ¡ 10.

 (18)

By reducing the model representation to half-precision, the 
maximum length of examined observation sequences (for nu-
merically stable computation) is then theoretically limited to 49 
elements. By the examination of an observation test sequence, 
after 76 elements the result was indeed indistinguishable, as it 
is correctly revealed by formula (14).

5. Results and design evaluation

The computation methodology presented in this paper is ded-
icated for HMM algorithm acceleration in low latency appli-
cations. The entire implementation has been carried out on 
PSoC Zynq from Xilinx. Hence, the comparison concerns the 

performance achieved on an embedded system with ARM Cor-
tex-A9, with and without FPGA acceleration and on a typical 
workstation with Intel Core i7. On both CPUs, the same piece 
of software (without any special optimization) was evaluated. 
The performance of HMM-related algorithms was measured by 
computing a synthetic HMM structure with 30 states and 1000 
observations and an observation sequence of length T = 200 for 
numerically stable computation. The time, needed for complete 
examination of a given observations sequence by a specified 
model, is used as a performance indicator. This approach gives 
a good performance approximation in the perspective of a real 
application.

All modules were verified by behavioral simulation in 
a Vivado HLS environment, where test goals were to compare 
the results obtained by the algorithms compiled to RTL with the 
results of equivalent functions written in a high-level language 
like C/C++. Additionally, the MLEAU, as a very fast logarithm 
and exponent approximation unit, is subject to separate eval-
uation.

5.1. Baum-Welch. The logarithmic version of the Baum-Welch 
algorithm was computed on three different systems. The CPU-
based systems (Intel Core i7 4770 and ARM Cortex-A9) use 
single (32 bits) precision, while the FPGA-based acceleration 
uses half precision (16 bits) floating-point number representa-
tion. The numerical representation for each system was chosen 
in order to achieve the best performance. Despite the differences 
in number representation, it is definite (in the sense of formula 
(14)) that the results are numerically stable. For both CPUs 
(Intel and ARM), computation was performed based on a code 
compiled with gcc 4.6 for a single core. The FPGA system is 
clocked with 200MHz. Performance comparison in the Baum-
Welch algorithm computation is presented in Table 2.

Table 2 
Performance comparison in Baum-Welch algorithm computation, 

time in [ms]

Baum-Welch 
stages

Intel Core 
i7 4770 

ARM 
Cortex-A9

FPGA D&C 
acceleration

Forward-backward 31.9562 345.6694 3.3060

Gamma-Xi 17.7534 195.0388 2.1360

Numerator-
denominator 16.4776 176.9418 1.5893

Whole Baum-Welch 66.1872 717.6500 7.0313 
(4.8953)

5.2. Viterbi. The configuration for comparing the CPUs is the 
same as in the Baum-Welch algorithm evaluation. However, 
FPGA acceleration is different for D&C acceleration, where the 
Viterbi D&C module (presented in Fig. 5) is instantiated only 
once and computation is multiplexed for all states, and for full 
parallelization, where the Viterbi D&C module is instantiated 
for each state and computation is performed fully parallel for 
each state. Path backtracking is executed for the observation 
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sequence of 200 in length. The calculation time is relative to 
length (or number of chunks) of the observation sequence. Per-
formance comparison in the Viterbi algorithm computation is 
presented in Table 3.

Table 3
Performance comparison in Viterbi algorithm computation, time in [ms]

Viterbi stages Intel Core 
i7 4770 

ARM 
Cortex-A9

FPGA D&C 
acceleration

FPGA full 
parallelization

Initialization 1.3236 9.3750 0.7875 0.0158

Recursion 3.2766 15.2877 0.9510 0.0210

Backtracking 1.76e – 4 7.50e – 4 3.20e – 4 3.20e – 4

Whole Viterbi 4.6004 24.6635 1.7388 0.0371

5.3. MLEAU. Logarithm and exponent conversion requires 
computationally expensive operations. In HMM-related log-
arithmic space calculations the most important operation is 
the extended sum of logarithms, which involves a sequence 
of extended operations: logarithm comparison, pre-product of 
logarithms, conversion to exponent, conversion to logarithm 
and post-product of logarithms. Hence, for performance evalu-
ation, the execution time for logarithm conversion and for the 
extended sum of logarithms (elnsum) on different platforms is 
measured. Configuration for the CPUs compared is the same 
as in the Baum-Welch algorithm evaluation. The MLEAU im-
plemented in the FPGA is clocked with a 200 MHz clock, and 
in order to show the performance on different parallelization 
degrees, the number of interfaces is set to 1, 8 and 16 (see 
Fig. 8).

Hence, Table 4 presents a summary of resource utilization of 
Baum-Welch, Viterbi and MLEAU£16 algorithmic blocks des-
ignated for the exemplary model.

Table 4 
Resource utilization for Baum-Welch, Viterbi and MLEAU blocks

Name
Resource

Viterbi
block

Baum-Welch
block

MLEAU
block

BRAM_18K 32 219 256

DSP48E 70 147 48

Flip-flops 21002 54477 4524

LUT 35175 91014 7607

The logic complexity is strongly related with the size of the 
HMM. Although utilization can vary, depending on directives 
and synthesis optimization settings, in general to fully use the 
potential of parallelism in the solution presented, a high ca-
pacity FPGA is recommended.

6. Discussion

The presented implementation minimizes the cost of numer-
ically stable logarithmic space calculations. However, FPGA 
implementation utilizes reduced (half-precision) floating-point 
number representation and for this reason, the length of exam-
ined observation sequence is limited by formula (14). After all, 
storing and performing a computation for a long observation 
sequence inside a FPGA is impractical. Programmable logic 
is expected to speed up the computation through process par-
allelization. Hence, disassembling the observation sequence 
into shorter chunks in order to perform hardware accelerated 
computation with a result identical (from the perspective of the 
Viterbi path and HMM parameter re-estimation) to standard 
computation (in double precision) is fully acceptable.

The computational architecture presented is based on SPUs 
whose number depends on the complexity of the HMM (number 
of states) but is limited by the FPGA resources available. Each 
SPU utilizes 8 floating-point units (each FPU utilizes 2 DSP 
slices), 2 independent MLEAU access interfaces, additional 
flow control logic and local memory blocks for transition and 
emission matrices. Theoretically, in PSoC Zynq Z-7100 it is 
possible to implement up to 128 SPUs, however due to routing 
and timing issues that arise, a maximum of 64 SPUs is rec-
ommended. For more complex HMMs, the architecture should 
support time division multiplexing with a sophisticated flow 
controller. An FPGA full parallelization of the Viterbi algo-
rithm is a very resource-consuming solution, but allows for 
even hundred-times acceleration to be achieved. Computing 
the best transition for the HMM evaluated for a single state 
on a given element of observation sequence took approx. 100 
ns. In embedded, automotive and robotic applications, where 
low latency, real-time computation is required, that kind of 
speed-up of the Viterbi algorithm certainly allows for the pro-

Fig. 8. Performance comparison of extend logarithm arithmetic

5.4. Synthesis and resources utilization. Designing the com-
putation architecture at high abstraction level results in RTL 
description which is strongly dependent on the HLS directives 
applied. It is possible to obtain either a resources-effective 
structure, which performs the calculations more sequentially, 
using multiplexing techniques, or a more demanding structure 
with a higher degree of parallelization. In this paper, the degree 
of parallelization is equal to the number of states in the calcu-
lated model (i.e. HMM with 30 states and 1000 observations). 
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cessing of much more data (e.g. IoT sensors or video data). 
The numerically stable computation of HMM algorithms in 
reduced (half-precision) floating-point number representation 
can be secured on any acceleration system (e.g. GPGPU) by 
applying the lemma and above all the formula (14) presented 
in this paper. Despite the fact that numerical stability will be 
preserved for the sequence length in the sense of the lemma, 
still the Viterbi decoding accuracy may be negatively affected 
due to round-off error associated with the precision reductions 
of HMM representation.

During the authors’ research about the applicability of re-
duced precision HMM in the context of natural language pro-
cessing and syntactic analysis, it has been noticed that strong 
precision reduction leads to erroneous recognition results. 
Nevertheless, this paper is concerned with the HMM hardware 
implementation and not the applicability issues, and therefore 
wider discussion is omitted here.

7. Conclusion

This paper explained the most important aspects of hardware 
implementation and parallelization of HMM algorithms con-
cerning D&C methodology for Baum-Welch and Viterbi algo-
rithms. The full parallelization FPGA implementation of the 
widely used Viterbi algorithm presented herein is suitable for 
low-latency detection and recognition systems, and its peak per-
formance surpasses the software equivalent implementations. 
Moreover, for computationally expensive arithmetic operations 
in logarithmic space, a special MLEAU has been introduced 
and utilized in SPU computations. The MLEAU reduces the 
cost of logarithmic space calculations and it is not limited only 
to HMMs. The main emphasis of this paper is the numerical 
stability of reduced precision HMMs computed fully in log-
arithmic space. For this purpose, the lemma concerned with 
determining the maximum length of observation sequences for 
numerically stable computation has been comprehensively de-
scribed. The theoretical basis presented reveals computation 
boundaries related with probabilities and floating-point repre-
sentation of HMMs, which in practice allows for securing nu-
merical stability of computation even with significant reduction 
in the precision.

Although the data flow and control functions in the system 
are imposed by the Vivado HLS framework, still by applying 
the relevant directives (for architectural constraints) the re-
sults achieved are very satisfying. The results showed that 
this FPGA-acceleration has a positive impact on the perfor-
mance, especially for processors designed for mobile devices 
(such as ARM). Nevertheless, there are still many optimization 
possibilities, especially at the level of arithmetic calculations, 
where by the use of dedicated solutions (fast FPUs or partial 
fixed-point arithmetic) it would be possible to increase the 
performance. These ideas are, however, potential subjects for 
future research.
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