
187Bull. Pol. Ac.: Tech. 66(2) 2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 2, 2018
DOI: 10.24425/122099

Abstract. The most recent incarnation of distributed paradigm is cloud computing. It can be seen as the first widely accepted business model
of mass consumption of the distributed computing resources. Despite the differences in business models and technical details regarding cloud
platforms, the distributed computing underlies cloud. Communications in cloud systems include transmissions of the results of cloud applications,
users interactions, and exchange of data between different services that compose applications. The latter becomes more critical as applications
become richer as well as more complex, and may consist of services operated by various providers. The effective communication between
components of cloud systems is thus critical to the end user satisfaction and to the success of cloud services. We will discuss different cloud
computing models (communication aware and unaware). Main focus will be placed on communication-aware directed acyclic graph (CA-DAG),
which extends the classical DAG model by explicitly modeling communication tasks. Moreover, we will analyze and consult computational
complexity of this innovative distributed computation model inspired by the characteristics of cloud computing. Providing a proof of strong
NP-hardness of the problem allows for a future implementation and evolution of the communication-aware DAG models.

Key words: computational complexity, models in cloud computing, communication-aware cloud computing, directed acyclic graphs, NP-hard-
ness in cloud computing.

A note on the complexity of scheduling
of communication-aware directed acyclic graph

J. MUSIAL1*, M. GUZEK2, P. BOUVRY2, and J. BLAZEWICZ1, 3

1Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland
2Comp. Sci. and Commun. Res. Unit, University of Luxembourg, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

3 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland

less, it has to be noted that the parallel processing is strongly
connected with a networking and hardware issues.

If we consider a parallel application as a set of communi-
cating processes then it can be easily modeled using a directed
acyclic graph (DAG) [1, 3]. Most of the general scheduling
theory assumptions can be applied. However, one should notice
that the task execution in parallel distributed systems is con-
nected with some communication delays. This communication
delay cost occurs when two consecutive tasks are performed
(on different machines, on the same machine, on the same pro-
cessor, or even on the same processor’s core).

The most recent incarnation of distributed paradigm is cloud
computing [4]. It can be seen as the first widely accepted business
model of mass consumption of distributed computing resources.
The resources are offered as services (or their components) which
means that they are no longer addressed to the IT professionals,
but can be also directly offered to the end users. The users can
use the resources seamlessly, as the necessary knowledge about
a service set up and the underlying hardware [5].

The exact predictions of cloud market growth vary [6], but
all of them recognize its large potential, justified by the strong
growth in the past. Despite differences in business models and
technical details regarding cloud platforms, the distributed
computing underlies cloud. Communications in cloud systems
include transmissions of the results of cloud applications, users
interactions, and exchange of data between different services
that compose applications. The latter becomes more critical as
applications become richer and therefore, more complex. They
may consist of services operated by various providers. The ef-

1.	 Introduction

Scheduling is undoubtedly one of the most important fields of
operations research. The scheduling problems can be generally
described as the allocation of resources over time to execute
a group of tasks, which are a part of the processes [1]. Each
task needs a particular resource to be completed. The nature
of resources, tasks, connections and relations between them
can be defined in many different ways. Predominantly, the
scheduling is motivated by applications from industry and
service operations management like: transportation planning,
factory production lines, events planning, timetabling for gen-
eral transportation purposes, vehicle routing, duty roster, and
many more. Actually, if we perceive scheduling problems in
general, they can be observed almost everywhere in real world
situations.

If one runs many computers in parallel and the goal is to
solve a problem computationally (which is very often compli-
cated and intensive), it can be described as a parallel processing/
computing [2]. The main idea is to provide the results in a time
that no single computer could deliver. The idea is not new,
however, its nature is experimental and therefore is being still
strongly developed and studied. There are many new concepts
that constantly try to increase speed of computations. Neverthe-

*e-mail: Jedrzej.Musial@cs.put.poznan.pl

Manuscript submitted 2017-06-20, revised 2017-10-14, initially accepted
for publication 2017-10-17, published in April 2018.

188

J. Musial, M. Guzek, P. Bouvry, and J. Blazewicz

Bull. Pol. Ac.: Tech. 66(2) 2018

fective communication between components of cloud systems
is thus critical to the end user satisfaction and to the success
of cloud services.

In this paper, we discuss the complexity of an innovative
distributed computation model inspired by these characteristics
of cloud computing. The model, communication-aware directed
acyclic graph (CA-DAG), extends the classical DAG model by
explicitly modeling communication tasks. It enables to model
multicast communications or gather and scatter patterns, and
explicitly schedule communications on various network topol-
ogies. Because of its relevance, the model has been already
studied experimentally [7] however, rapid practical develop-
ments left the theoretical analysis behind. This paper is devoted
to filling that gap.

2.	 Resource allocation in cloud computing

Basic requirements of cloud computing (such as managing
multiple machines, providing services that work on different
systems) have already been addressed and initially solved
with some first ideas, analysis and computations with specific
algorithms [8]. Further improvements require more holistic
approaches, i.e. simultaneous taking into account different
aspects and layers of the system to enhance efficiency and
performance of cloud computing systems. New research oppor-
tunities and challenges reside also in linking the existing cloud
computing issues [9] with other known problems, sometimes
from different or neighboring fields [10], e.g. problems that
tackle shopping optimization of products available over the
Internet [11, 12] and the analysis of possible usage of their
algorithms [13].

As communications are crucial for cloud services, a net-
work becomes one of the most important resources. The cur-
rent approach to resource optimization and scheduling is far
from optimal. One of the reasons is that cloud computing is
a highly dynamic online environment. Therefore, management
of resources must react and adapt to a large amount of state
changes in communication. Traditional approaches to resource
optimization are not sufficient [14].

At this point it is worth mentioning some general informa-
tion regarding task scheduling and the scheduling area (cf. [1]
or [15] for a general treatment of the topic).

Let us remind a basic presentation of the scheduling problem
with a set J = {J1, J2, …, Jn} of jobs/tasks which need to be sched-
uled on a set M = {M1, M2, …, Mm} of non-identical, parallel ma-
chines. Additional parameters that describe the problem are:

●	 pij – processing time of job Ji on the machine Mj,
●	 tj – setup (warm-up) time for machine Mj.

The goal is to find a non-preemptive schedule that minimizes
total time (including set-ups) the machines used to process
the jobs.

Workflows can be modeled by directed acyclic graphs
(DAG) Gj = (Vj, Ej). Vj is the set tasks. Ej = (Tu, Tv) is the set of
directed arcs between tasks where Tu, Tv 2 Vj and u  6= v. There
should be no cycles Tu → Tv → Tu. Precedence constraints are
represented by arcs (Tu, Tv), where task Tu has to be completed

before execution of Tv. It is worth noting that arc can be addi-
tionally connected with communication costs. Communication
delays are not taken into account if two following tasks are
executed by the same processor [16].

Task scheduling with communication costs is a recognized
and extensively studied problem in the scheduling community
and it was investigated for different systems and applications,
e.g. complete and homogeneous network [17], network com-
munication model with shared medium [18], or more detailed
way of communication delay descriptions based on LogP model
[19]. Classification of scheduling problems with communica-
tion delays was widely described by Drozdowski [2].

Recently Kliazovich et al. [7] proposed an innovative cloud
computing model where communications between tasks are
crucial – the Communication-Aware DAG model (CA-DAG,
Fig. 3). They showed many advantages of the model over al-
ready known CU-DAG [20] (Communication-Unaware DAG,
Fig. 1) and EB-DAG [18, 21] (Edges-Based DAG, Fig. 2), and
discussed the positive impact of the CA-DAG model on existing
scheduling algorithms.

The computational experiments showed that the usage of
CA-DAG model enables more efficient scheduling in distrib-
uted systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that fo-
cuses on sophisticated communication-aware issues. A new type
of task is introduced: the computing tasks Vc correspond to tasks
in the classical DAG model, while all communications are mod-
eled as a new type of task: communication tasks Vcomm. Each
communication task is additionally described by parameters S
and Dcomm. Dcomm determines deadline for transmitting S bits
of information. Moreover with each node vi there is associated
cost of communication vi

comm.

Fig. 1. CU-DAG model

189

A note on the complexity of scheduling of communication-aware directed acyclic graph

Bull. Pol. Ac.: Tech. 66(2) 2018

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3.	 Computational complexity of CA-DAG

As discussed in [7], the problem of cloud computing can be
defined by a set of tasks

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 requiring an access to the commu-
nication network

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 and processor set

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.
Two subsets are distinguished:

●	 communication tasks –

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

, each requiring an access to
the network,  – Tj

N,
●	 processing tasks –

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

, each requiring a processor to be
processed,  – Tj

P.
Every task Tj is characterized by its processing time pj. Tasks
are ordered by the precedence relation prec (

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

).
The capacity of the communication network (a number of

tasks transmitted in parallel through the network) will be de-
noted by c, while the cardinality of the processor set by m. Thus,
by using a slightly modified three-field notation of scheduling
problems [22], we can denote the problem of minimizing Cmax
for the cloud computing as:

	 P(m), N(c)j prec, pjjCmax . � (1)

Using some ideas from [23], we can prove strong NP-hard-
ness of problem P(1), N(1)jchain, pj = 1jCmax.

Theorem 1. Problem P(1), N(1)jchain, pj = 1jCmax is strongly
NP-hard.

Proof. We will prove this theorem by using a pseudo-poly-
nomial transformation from strongly NP-complete problem
3-partition [24] to the decision version of problem P(1),
N(1)jchain, pj = 1jCmax, denoted by Π1 hereafter. The first
problem is defined as follows.
3-partition: Given a set S = {a1, a2, …, a3t} of positive in-
tegers a1, a2, …, a3t and integer b with ∑aj 2 S aj = tb, can S
be partitioned into t disjoint 3-element subsets Si such that
∑aj 2 Si

aj = b, for i = 1, …, t?
In this problem we assume without loss of generality that

1/4b < aj < 1/2b for all aj 2 S. Given any instance of this
problem, we construct an instance of Π1 in the following way.
●	 There is a single chain X of 2tb tasks:

X = T1
P	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T2
P	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Tb
P	 T1

N	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T2
N

X = 				

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
b

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

X = T P
b + 1	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T P
b + 2	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T P
2b	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
b + 1	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
b + 2

X = 				

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
2b

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

X = …
X = T P

(t ¡ 1)b + 1	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T P
(t ¡ 1)b + 2	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T P
tb 	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
(t ¡ 1)b + 1	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
(t ¡ 1)b + 2

X = 				

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

…	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
tb .

●	 For each aj 2 S, there are two chains Yj
N and Yj

P of aj tasks:

Yj
N = T N

j1  

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 T N
j2  

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 … 

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 T N
jaj

Yj
P = T P

j1  

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 T P
j2  

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 … 

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 T P
jaj

where Yj
N 

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 Yj
P.

We will prove that 3-partition has a solution if and only if
there exists a feasible schedule with value Cmax ∙ 2tb.

Fig. 3. CA-DAG modelFig. 2. EB-DAG model

190

J. Musial, M. Guzek, P. Bouvry, and J. Blazewicz

Bull. Pol. Ac.: Tech. 66(2) 2018

Supposing that 3-partition has a solution {Si, S2, …, St}.
A feasible schedule with value Cmax ∙ 2tb is then obtained as
follows (cf. Fig. 4). First, chain X is assigned to processor P
and after b time units its communication tasks use network N
for b units. Then this pattern is repeated t times. As a result
one gets free slots for the communication network in the in-
tervals [2(i ¡ 1)b, (2i ¡ 1)b], i = 1, 2, …, t, and free slots for
processor P in the intervals [(2i ¡ 1)b, 2ib], i = 1, 2, …, t. For
each i 2 1, 2, …, t, it is now possible to assign the three chains
Yj

N(aj 2 Si) to network N in the interval [2(i ¡ 1)b, (2i ¡ 1)b]
and to schedule chains Yj

P(aj 2 Si) on processor P in interval
[(2i ¡ 1)b, 2ib]. The obtained schedule is feasible with respect
to processor, network and precedence constraints and its length
is equal to 2tb.

On the other hand, supposing that there exists a feasible
schedule with value Cmax ∙ 2tb. It is clear that in this schedule
both the processor and then network are saturated until time
2tb. Moreover, chains Yj

N(aj 2 S) are executed in intervals
[2(i ¡ 1)b, (2i ¡ 1)b], (i = 1, 2, …, t) and chains Yj

P(aj 2 S) in
the remaining intervals. Let Si be the index set of chains Yj

N
completed in interval [2(i ¡ 1)b, (2i ¡ 1)b], for i = 1, 2, …, t.
Consider set Si. It is impossible that ∑aj 2 Si

aj > b, due to the
definition of Si; the case ∑aj 2 Si

aj < b cannot occur either, since
this would lead to processor idle time in [b, 2b]. It follows that
∑aj 2 Si

aj = b, and our assumption about the size of aj(aj 2 S)
implies that jSij = 3. This argument is easily extended to
an inductive proof that Si, S2, …, St constitutes a solution to
3-partition.� □

4.	 Conclusions

Cloud computing and its applications are gaining enormous
popularity in recent years, what resulted in building a vast
market of services. Communication-aware directed acyclic
graph is a novel distributed computation model inspired by the
characteristics of cloud computing.

In the paper we widely discussed the CA-DAG computa-
tional complexity and prove strong NP-hardness of the problem.

This step enables future implementation and evolution of the
communication-aware DAG models including optimization as-
pects [25, 26] driven from known problems that are partially
similar.

A great number of applications is highly dependent on band-
width and a low latency communication (e.g. cloud gaming,
a video conferencing, a collaborative editing, an online office,
a remote desktop, and so on). The CA-DAG model overcomes
shortcomings of existing communication aware approaches.
With current adequate mathematical modeling and computational
complexity analysis future paths of research are open wider.

References
	 [1]	 J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,

Handbook on Scheduling – From Theory to Applications,
Springer Verlag, Berlin, New York (2007).

	 [2]	 M. Drozdowski, Scheduling for Parallel Processing, Springer
London (2009).

	 [3]	 N. Christofides, Graph Theory: An Algorithmic Approach (Com-
puter Science and Applied Mathematics), Academic Press, Inc.,
Orlando, FL, USA (1975).

	 [4]	 P. Mell and T. Grance, “The NIST definition of cloud com-
puting”, National Institute of Standards and Technology 53 (6),
50 (2009).

	 [5]	 M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zah-
aria, “A view of cloud computing”, Communications of the ACM
53 (4), 50–58 (2010).

	 [6]	 L. Columbus, “Roundup Of Cloud Computing Forecasts And
Market Estimates, 2016”, www.forbes.com/sites/louisco-
lumbus/2016/03/13/roundupof-cloud-computing-fore-
casts-and-market-estimates-2016, accessed: 2016‒06‒16.

	 [7]	 D. Kliazovich, J.E. Pecero, A. Tchernykh, P. Bouvry, S.U. Khan,
and A. Y. Zomaya, “CA-DAG: Modeling Communication-Aware
Applications for Scheduling in Cloud Computing”, Journal of
Grid Computing 14 (1), 23–39 (2016).

	 [8]	 M. Guzek, P. Bouvry, and E.-G. Talbi, “A Survey of Evolutionary
Computation for Resource Management of Processing in Cloud
Computing [Review Article]”, IEEE Computational Intelligence
Magazine 10 (2), 53–67 (2015).

Fig. 4. An example slot of the constructed schedule for P(1), N(1)jchain, pj = 1jCmax

Part of feasible instance for 3-partition:
b = 9, a1 = 2, a2 = 3, a3 = 4; Si = {a1, a2, …, a3}
and the corresponding schedule for the cloud computing problem:

X :  – T P
k ,  – T N

k ,  ((i ¡ 1)b + 1 ∙ k ∙ ib);  Y :  – T N
jk ,  – T P

jk ,  {aj 2 Si, 1 ∙ k ∙ aj}

2(i ¡ 1)b (2i ¡ 1)b 2ib

P

N

191

A note on the complexity of scheduling of communication-aware directed acyclic graph

Bull. Pol. Ac.: Tech. 66(2) 2018

	 [9]	 M. Guzek, A. Gniewek, P. Bouvry, J. Musial, and J. Blazewicz,
“Cloud Brokering: Current Practices and Upcoming Challenges”,
IEEE Cloud Computing 2 (2), 40–47 (2015).

	[10]	 J. Blazewicz, N. Cheriere, P.-F. Dutot, J. Musial, and D. Trys-
tram, “Novel dual discounting functions for the Internet shop-
ping optimization problem: new algorithms”, Journal of Sched-
uling 19 (3), 245–255 (2016).

	[11]	 J. Blazewicz, P. Bouvry, M.Y. Kovalyov, and J. Musial, “Internet
shopping with price sensitive discounts”, 4OR – A Quarterly
Journal of Operations Research 12 (1), 35–48 (2014).

	[12]	 J. Blazewicz, P. Bouvry, M.Y. Kovalyov, and J. Musial, “Erratum
to: Internet shopping with price-sensitive discounts”, 4ORA Quar-
terly Journal of Operations Research 12 (4), 403–406 (2014).

	[13]	 J. Blazewicz and J. Musial, “E-Commerce Evaluation – Multi-
Item Internet Shopping. Optimization and Heuristic Algorithms”,
in Operations Research Proceedings 2010 (edited by B. Hu,
K. Morasch, S. Pickl, and M. Siegle), Springer-Verlag, Berlin,
149–154 (2011).

	[14]	 M. Zotkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry, “Min-
imum Dependencies Energy-Efficient Scheduling in Data Cen-
ters”, IEEE Transactions on Parallel and Distributed Systems
PP (99) (2016).

	[15]	 J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, CRC Press, Inc.,
Boca Raton, FL, USA (2004).

	[16]	 H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program
Tasks Onto Arbitrary Target Machines”, J. Parallel Distrib.
Comput. 9 (2), 138–153 (1990).

	[17]	 C.H. Papadimitriou and M. Yannakakis, “Towards an Archi-
tecture-independent Analysis of Parallel Algorithms”, SIAM J.
Comput. 19 (2), 322–328 (1990).

	[18]	 O. Sinnen and L.A. Sousa, “Communication contention in task
scheduling”, IEEE Transactions on Parallel and Distributed
Systems 16 (6), 503–515 (2005).

	[19]	 D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E.
Schauser, R. Subramonian, and T. von Eicken, “LogP: A Prac-
tical Model of Parallel Computation”, Commun. ACM 39 (11),
78–85 (1996).

	[20]	 G. Srikanth, A. Shanthi, V. Maheswari, and A. Siromoney,
“A Survey on Real Time Task Scheduling”, Eur. J. Sci. Res. 69
(1), 33–41 (2012).

	[21]	 P. Choudhury, P.P. Chakrabarti, and R. Kumar, “Online Sched-
uling of Dynamic Task Graphs with Communication and Con-
tention for Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems 23 (1), 126–133 (2012).

	[22]	 R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan, “Opti-
mization and Approximation in Deterministic Sequencing and
Scheduling: a Survey”, in Proceedings of the Advanced Research
Institute on Discrete Optimization and Systems Applications of
the Systems Science Panel of NATO and of the Discrete Opti-
mization Symposium co-sponsored by IBM Canada and SIAM
Banff, Aha. and Vancouver (edited by E. J.P.L. Hammer and
B. Korte), volume 5 of Annals of Discrete Mathematics, Elsevier,
287–326 (1979).

	[23]	 J. Blazewicz, J. Lenstra, and A. Rinnooy Kan, “Scheduling
subject to resource constraints: classification and complexity”,
Discrete Applied Mathematics 5 (1), 11 – 24 (1983).

	[24]	 M. Garey and D. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, New York, Freeman (1979).

	[25]	 M.C. Lopez-Loces, J. Musial, J. E. Pecero, H.J. Fraire-Huacuja,
J. Blazewicz, and P. Bouvry, “Exact and heuristic approaches to
solve the Internet shopping optimization problem with delivery
costs”, International Journal of Applied Mathematics and Com-
puter Science 26 (2), 391–406 (2016).

	[26]	 J. Musial, J.E. Pecero, M.C. Lopez-Loces, H.J. Fraire-Huacuja,
P. Bouvry, and J. Blazewicz, “Algorithms solving the Internet
shopping optimization problem with price discounts”, Bull. Pol.
Ac.: Tech. 64 (3), 505–516 (2016).

Part of feasible instance for 3-partition:
b = 9, a1 = 2, a2 = 3, a3 = 4; Si = {a1, a2, …, a3}
and the corresponding schedule for the cloud computing problem:

