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Abstract. The most recent incarnation of distributed paradigm is cloud computing. It can be seen as the first widely accepted business model 
of mass consumption of the distributed computing resources. Despite the differences in business models and technical details regarding cloud 
platforms, the distributed computing underlies cloud. Communications in cloud systems include transmissions of the results of cloud applications, 
users interactions, and exchange of data between different services that compose applications. The latter becomes more critical as applications 
become richer as well as more complex, and may consist of services operated by various providers. The effective communication between 
components of cloud systems is thus critical to the end user satisfaction and to the success of cloud services. We will discuss different cloud 
computing models (communication aware and unaware). Main focus will be placed on communication-aware directed acyclic graph (CA-DAG), 
which extends the classical DAG model by explicitly modeling communication tasks. Moreover, we will analyze and consult computational 
complexity of this innovative distributed computation model inspired by the characteristics of cloud computing. Providing a proof of strong 
NP-hardness of the problem allows for a future implementation and evolution of the communication-aware DAG models.
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less, it has to be noted that the parallel processing is strongly 
connected with a networking and hardware issues.

If we consider a parallel application as a set of communi-
cating processes then it can be easily modeled using a directed 
acyclic graph (DAG) [1, 3]. Most of the general scheduling 
theory assumptions can be applied. However, one should notice 
that the task execution in parallel distributed systems is con-
nected with some communication delays. This communication 
delay cost occurs when two consecutive tasks are performed 
(on different machines, on the same machine, on the same pro-
cessor, or even on the same processor’s core).

The most recent incarnation of distributed paradigm is cloud 
computing [4]. It can be seen as the first widely accepted business 
model of mass consumption of distributed computing resources. 
The resources are offered as services (or their components) which 
means that they are no longer addressed to the IT professionals, 
but can be also directly offered to the end users. The users can 
use the resources seamlessly, as the necessary knowledge about 
a service set up and the underlying hardware [5].

The exact predictions of cloud market growth vary [6], but 
all of them recognize its large potential, justified by the strong 
growth in the past. Despite differences in business models and 
technical details regarding cloud platforms, the distributed 
computing underlies cloud. Communications in cloud systems 
include transmissions of the results of cloud applications, users 
interactions, and exchange of data between different services 
that compose applications. The latter becomes more critical as 
applications become richer and therefore, more complex. They 
may consist of services operated by various providers. The ef-

1.	 Introduction

Scheduling is undoubtedly one of the most important fields of 
operations research. The scheduling problems can be generally 
described as the allocation of resources over time to execute 
a group of tasks, which are a part of the processes [1]. Each 
task needs a particular resource to be completed. The nature 
of resources, tasks, connections and relations between them 
can be defined in many different ways. Predominantly, the 
scheduling is motivated by applications from industry and 
service operations management like: transportation planning, 
factory production lines, events planning, timetabling for gen-
eral transportation purposes, vehicle routing, duty roster, and 
many more. Actually, if we perceive scheduling problems in 
general, they can be observed almost everywhere in real world 
situations.

If one runs many computers in parallel and the goal is to 
solve a problem computationally (which is very often compli-
cated and intensive), it can be described as a parallel processing/
computing [2]. The main idea is to provide the results in a time 
that no single computer could deliver. The idea is not new, 
however, its nature is experimental and therefore is being still 
strongly developed and studied. There are many new concepts 
that constantly try to increase speed of computations. Neverthe-
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fective communication between components of cloud systems 
is thus critical to the end user satisfaction and to the success 
of cloud services.

In this paper, we discuss the complexity of an innovative 
distributed computation model inspired by these characteristics 
of cloud computing. The model, communication-aware directed 
acyclic graph (CA-DAG), extends the classical DAG model by 
explicitly modeling communication tasks. It enables to model 
multicast communications or gather and scatter patterns, and 
explicitly schedule communications on various network topol-
ogies. Because of its relevance, the model has been already 
studied experimentally [7] however, rapid practical develop-
ments left the theoretical analysis behind. This paper is devoted 
to filling that gap.

2.	 Resource allocation in cloud computing

Basic requirements of cloud computing (such as managing 
multiple machines, providing services that work on different 
systems) have already been addressed and initially solved 
with some first ideas, analysis and computations with specific 
algorithms [8]. Further improvements require more holistic 
approaches, i.e. simultaneous taking into account different 
aspects and layers of the system to enhance efficiency and 
performance of cloud computing systems. New research oppor-
tunities and challenges reside also in linking the existing cloud 
computing issues [9] with other known problems, sometimes 
from different or neighboring fields [10], e.g. problems that 
tackle shopping optimization of products available over the 
Internet [11, 12] and the analysis of possible usage of their 
algorithms [13].

As communications are crucial for cloud services, a net-
work becomes one of the most important resources. The cur-
rent approach to resource optimization and scheduling is far 
from optimal. One of the reasons is that cloud computing is 
a highly dynamic online environment. Therefore, management 
of resources must react and adapt to a large amount of state 
changes in communication. Traditional approaches to resource 
optimization are not sufficient [14].

At this point it is worth mentioning some general informa-
tion regarding task scheduling and the scheduling area (cf. [1] 
or [15] for a general treatment of the topic).

Let us remind a basic presentation of the scheduling problem 
with a set J = {J1, J2, …, Jn} of jobs/tasks which need to be sched-
uled on a set M = {M1, M2, …, Mm} of non-identical, parallel ma-
chines. Additional parameters that describe the problem are:

●	 pij – processing time of job Ji on the machine Mj,
●	 tj – setup (warm-up) time for machine Mj.

The goal is to find a non-preemptive schedule that minimizes 
total time (including set-ups) the machines used to process 
the jobs.

Workflows can be modeled by directed acyclic graphs 
(DAG) Gj = (Vj, Ej). Vj is the set tasks. Ej = (Tu, Tv) is the set of 
directed arcs between tasks where Tu, Tv 2 Vj and u  6= v. There 
should be no cycles Tu → Tv → Tu. Precedence constraints are 
represented by arcs (Tu, Tv), where task Tu has to be completed 

before execution of Tv. It is worth noting that arc can be addi-
tionally connected with communication costs. Communication 
delays are not taken into account if two following tasks are 
executed by the same processor [16].

Task scheduling with communication costs is a recognized 
and extensively studied problem in the scheduling community 
and it was investigated for different systems and applications, 
e.g. complete and homogeneous network [17], network com-
munication model with shared medium [18], or more detailed 
way of communication delay descriptions based on LogP model 
[19]. Classification of scheduling problems with communica-
tion delays was widely described by Drozdowski [2].

Recently Kliazovich et al. [7] proposed an innovative cloud 
computing model where communications between tasks are 
crucial – the Communication-Aware DAG model (CA-DAG, 
Fig. 3). They showed many advantages of the model over al-
ready known CU-DAG [20] (Communication-Unaware DAG, 
Fig. 1) and EB-DAG [18, 21] (Edges-Based DAG, Fig. 2), and 
discussed the positive impact of the CA-DAG model on existing 
scheduling algorithms.

The computational experiments showed that the usage of 
CA-DAG model enables more efficient scheduling in distrib-
uted systems.

Since the great part of cloud computing applications are 
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that fo-
cuses on sophisticated communication-aware issues. A new type 
of task is introduced: the computing tasks Vc correspond to tasks 
in the classical DAG model, while all communications are mod-
eled as a new type of task: communication tasks Vcomm. Each 
communication task is additionally described by parameters S 
and Dcomm. Dcomm determines deadline for transmitting S bits 
of information. Moreover with each node vi there is associated 
cost of communication vi

comm.

Fig. 1. CU-DAG model
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The CA-DAG model for cloud computing applications is 
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However, 
the CA-DAG model has a large weakness, which is the lack 
of adequate mathematical presentation of formal model with 
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and 
evolution of the CA-DAG model and its derivatives.

3.	 Computational complexity of CA-DAG

As discussed in [7], the problem of cloud computing can be 
defined by a set of tasks 

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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of adequate mathematical presentation of formal model with
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intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
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Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
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j ,
● processing tasks - TP, each requiring a processor to be pro-
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j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:
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Using some ideas from [23], we can prove strong NP-
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● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
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feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
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thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
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We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.
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cessed,◻ - T P
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noted by c, while the cardinality of the processor set by
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scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
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b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
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We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
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and to schedule chains Y P
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of adequate mathematical presentation of formal model with
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THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
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S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm
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Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
b + 1	

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

T N
b + 2

X = 				  

A Note on the Complexity of Scheduling of Communication-Aware Directed Acyclic Graph

DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N
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and to schedule chains Y P
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
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. . .
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(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:
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We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
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≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
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. . .
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(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
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● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
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S bits of information. Moreover with each node vi there is as-
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Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺
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b+1 ≺T P
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b+1 ≺T N
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≺ . . . ≺T N
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● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P
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j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:
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where Y N
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We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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highly dependent on communication requirements (cost, dead-
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focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:
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j and Y P
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ja j

Y P
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where Y N
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j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N
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≺ . . . ≺T N
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(t−1)b+1 ≺T N
(t−1)b+2
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● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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eters S and Dcomm. Dcomm determines deadline for transmitting
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The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
Two subsets are distinguished:

● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:
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≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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DAG model enables more efficient scheduling in distributed
systems.

Since the great part of cloud computing applications are
highly dependent on communication requirements (cost, dead-
lines, stability, etc.) the CA-DAG is a complex model that
focuses on sophisticated communication-aware issues. A new
type of task is introduced: the computing tasks Vc correspond
to tasks in the classical DAG model, while all communications
are modeled as a new type of task: communication tasks Vcomm.
Each communication task is additionally described by param-
eters S and Dcomm. Dcomm determines deadline for transmitting
S bits of information. Moreover with each node vi there is as-
sociated cost of communication vcomm

i .

Fig. 3. CA-DAG model

The CA-DAG model for cloud computing applications is
thus a novel proposition, which overcomes shortcomings of ex-
isting approaches using communication awareness. However,
the CA-DAG model has a large weakness, which is the lack
of adequate mathematical presentation of formal model with
computational complexity analysis. The model and the com-
plexity analysis is necessary for the proper implementation and
evolution of the CA-DAG model and its derivatives.

3. Computational Complexity of CA-DAG
As discussed in [7], the problem of cloud computing can be
defined by a set of tasks T requiring an access to the commu-
nication network Nand processor set P.
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● communication tasks - TN, each requiring an access to the
network,◯ - T N

j ,
● processing tasks - TP, each requiring a processor to be pro-

cessed,◻ - T P
j .

Every task Tj is characterized by its processing time p j. Tasks
are ordered by the precedence relation prec (≺).

The capacity of the communication network (a number of
tasks transmitted in parallel through the network) will be de-

noted by c, while the cardinality of the processor set by
m. Thus, by using a slightly modified three-field notation of
scheduling problems [22], we can denote the problem of min-
imizing Cmax for the cloud computing as:

P(m),N(c)∣prec, p j ∣Cmax (1)

Using some ideas from [23], we can prove strong NP-
hardness of problem P(1),N(1)∣chain, p j = 1∣Cmax.

THEOREM 1. Problem P(1),N(1)∣chain, p j = 1∣Cmax is
strongly NP-hard.

Proof. We will prove this theorem by using a pseudo-
polynomial transformation from strongly NP-complete prob-
lem partition [24] to the decision version of problem
P(1),N(1)∣chain, p j = 1∣Cmax, denoted by Π1 hereafter. The
first problem is defined as follows.
partition: Given a set S = {a1,a2, . . . ,a3t} of positive integers
a1,a2, . . . ,a3t and integer b with ∑a j∈S a j = tb, can S be parti-
tioned into t disjoint 3-element subsets Si such that ∑a j∈Si

a j =
b, for i = 1, . . . ,t?
In this problem we assume without loss of generality that
1
4 b < a j < 1

2 b for all a j ∈ S. Given any instance of this prob-
lem, we construct an instance of Π1 in the following way.

● There is a single chain X of 2tb tasks:

X =T P
1 ≺T P

2 ≺ . . . ≺T P
b ≺T N

1 ≺T N
2

≺ . . . ≺T N
b ≺

T P
b+1 ≺T P

b+2 ≺ . . . ≺T P
2b ≺T N

b+1 ≺T N
b+2

≺ . . . ≺T N
2b ≺

. . .

T P
(t−1)b+1 ≺T P

(t−1)b+2 ≺ . . . ≺T P
tb ≺T N

(t−1)b+1 ≺T N
(t−1)b+2

≺ . . . ≺T N
tb .

● For each a j ∈ S, there are two chains Y N
j and Y P

j of a j tasks:

Y N
j = T N

j1 ≺ T N
j2 ≺ . . . ≺ T N

ja j

Y P
j = T P

j1 ≺ T P
j2 ≺ . . . ≺ T P

ja j

where Y N
j ≺Y P

j .
We will prove that partition has a solution if and only if

there exists a feasible schedule with value Cmax ≤ 2tb.

Supposing that partition has a solution {Si,S2, . . . ,St}. A
feasible schedule with value Cmax = 2tb is then obtained as fol-
lows (cf. Figure 4). First, chain X is assigned to processor
P and after b time units its communication tasks use network
N for b units. Then this pattern is repeated t times. As a re-
sult one gets free slots for the communication network in the
intervals [2(i−1)b,(2i−1)b], i = 1,2, . . . ,t, and free slots for
processor P in the intervals [(2i−1)b,2ib], i = 1,2, . . . ,t. For
each i ∈ 1,2, . . . ,t, it is now possible to assign the three chains
Y N

j (a j ∈ Si) to network N in the interval [2(i−1)b,(2i−1)b]
and to schedule chains Y P

j (a j ∈ Si) on processor P in interval
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We will prove that 3-partition has a solution if and only if 
there exists a feasible schedule with value Cmax ∙ 2tb.

Fig. 3. CA-DAG modelFig. 2. EB-DAG model
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Supposing that 3-partition has a solution {Si, S2, …, St}. 
A feasible schedule with value Cmax ∙ 2tb is then obtained as 
follows (cf. Fig. 4). First, chain X is assigned to processor P 
and after b time units its communication tasks use network N 
for b units. Then this pattern is repeated t times. As a result 
one gets free slots for the communication network in the in-
tervals [2(i ¡ 1)b, (2i ¡ 1)b], i = 1, 2, …, t, and free slots for 
processor P in the intervals [(2i ¡ 1)b, 2ib], i = 1, 2, …, t. For 
each i 2 1, 2, …, t, it is now possible to assign the three chains 
Yj

N(aj 2 Si) to network N in the interval [2(i ¡ 1)b, (2i ¡ 1)b] 
and to schedule chains Yj

P(aj 2 Si) on processor P in interval 
[(2i ¡ 1)b, 2ib]. The obtained schedule is feasible with respect 
to processor, network and precedence constraints and its length 
is equal to 2tb.

On the other hand, supposing that there exists a feasible 
schedule with value Cmax ∙ 2tb. It is clear that in this schedule 
both the processor and then network are saturated until time 
2tb. Moreover, chains Yj

N(aj 2 S) are executed in intervals 
[2(i ¡ 1)b, (2i ¡ 1)b], (i = 1, 2, …, t) and chains Yj

P(aj 2 S) in 
the remaining intervals. Let Si be the index set of chains Yj

N 
completed in interval [2(i ¡ 1)b, (2i ¡ 1)b], for i = 1, 2, …, t. 
Consider set Si. It is impossible that ∑aj 2 Si

aj > b, due to the 
definition of Si; the case ∑aj 2 Si

aj < b cannot occur either, since 
this would lead to processor idle time in [b, 2b]. It follows that 
∑aj 2 Si

aj = b, and our assumption about the size of aj(aj 2 S) 
implies that jSij = 3. This argument is easily extended to 
an inductive proof that Si, S2, …, St constitutes a solution to 
3-partition.� □

4.	 Conclusions

Cloud computing and its applications are gaining enormous 
popularity in recent years, what resulted in building a vast 
market of services. Communication-aware directed acyclic 
graph is a novel distributed computation model inspired by the 
characteristics of cloud computing.

In the paper we widely discussed the CA-DAG computa-
tional complexity and prove strong NP-hardness of the problem. 

This step enables future implementation and evolution of the 
communication-aware DAG models including optimization as-
pects [25, 26] driven from known problems that are partially 
similar.

A great number of applications is highly dependent on band-
width and a low latency communication (e.g. cloud gaming, 
a video conferencing, a collaborative editing, an online office, 
a remote desktop, and so on). The CA-DAG model overcomes 
shortcomings of existing communication aware approaches. 
With current adequate mathematical modeling and computational 
complexity analysis future paths of research are open wider.
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