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1 Introduction
Given the rapid growth of financial markets and the continued development of new and
complex financial instruments, there is increased need for theoretical and empirical
knowledge about the volatility of financial returns. In fact, volatility presents a
complex phenomenon in finance. Volatility affects a multitude of decisions in financial
markets. Despite its importance, volatility is still an ambiguous term; it is usually
defined as an indicator of the size of price movements. Gençay et al. (2001) described
volatility as the visible ‘footprint’ of less observable variables in financial markets.
Therefore, understanding the dynamics of volatility would enable strategies to be
implemented for coping with unpredictable fluctuations.
Several researchers have considered and studied volatility as a latent variable.
However, it has turned out that this latent volatility approach cannot identify all
the properties of financial returns. Thus, research on volatility has been developed,
and an alternative approach has emerged, namely, realized volatility. This approach
considers volatility as an observable variable based on high frequency return measures.
Since the introduction of the realized volatility measure by Andersen and Bollerslev
(1997a, 1997b), there has been significant interest in modelling this measure. These
authors proposed realized volatility, built from intraday returns, as a measure of
actual volatility. Today, realized volatility is widely used in measuring historical price
movements.
Recently, a debate has emerged about the nature of the volatility process of financial
returns in general and of exchange rates returns in particular. Researchers have
become interested in whether these series are characterized by a process of long
memory or structural breaks.
We start our analysis by considering a characteristic often quoted in financial
literature: exchange rate volatility persistence in the foreign exchange market.
Persistence means dependence between distant observations, which might
conveniently be described by a long memory process. Thus, Andersen, Bollerslev,
Diebold, and Labys (2001, 2003), Andersen, Bollerslev, Diebold, and Ebens (2001),
Koopman et al. (2005), and Ohanissian et al. (2008) suggested that the realized
volatility of financial returns and of exchange rate returns is often known and well
modelled as a long memory process. In particular, the presence of long memory in the
foreign exchange market might explain the highest order of the volatility correlation
structure. Thus, consideration of the presence of this property is important for
practitioners, investors, as well as for financial institutions requiring risk management
and trading strategies.
Andersen et al. (2003) used a fractional autoregressive model to capture the long
memory properties of exchange rate realized volatility. Several authors, such as
McAleer and Medeiros (2008) and Corsi (2009), have shown the presence of long
memory in series on volatility. Therefore, several studies have applied long memory
models to the volatility of financial returns (Cheung, 1993; Baillie, 1996; Breidt et
al., 1998; Davidson, 2004; Kumar and Maheswaran, 2015).
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However, other studies explain the long memory of the volatility process by the
presence of structural breaks. According to Diebold and Inoue (2001), the presence of
long memory might be a consequence of breakpoints which are not taken into account,
resulting in biased estimation of the long memory parameter. Similarly, Lamoureux
and Lastrapes (1990) found that the introduction of these structural break points
reduces the presence of long memory. Moreover, Granger and Teräsvirta (1999)
concluded that a short memory process with structural breaks provides a biased
fractional integration parameter, giving a spurious long memory. Recent studies
in this field suggest that several non-linear models exhibit long memory but they
incorporate a form of structural breaks (Liu, 2000; Granger and Hyung, 2004; Yalama
and Celik, 2013).
In this study, we explore the possibility of confusing long memory and structural
breaks in the daily exchange rate realized volatility for parity in the following exchange
rates: EUR/USD, EUR/JPY, EUR/GBP, EUR/CHF, and EUR/AUD. We model
the series with an autoregressive fractionally integrated moving average (ARFIMA)
model.
The rest of this paper is organized as follows. Section 2 reviews the literature related
to the presence of long memory and structural breaks in the foreign exchange market.
Section 3 presents the methodology used in this study. The data are described in
Section 4. Section 5 reports the empirical results. Finally, section 6 concludes.

2 Literature review
The gradual integration of international financial markets has led to rich literature on
the properties of exchange rate volatility in the foreign exchange market. The long
memory issue has attracted the attention of several researchers.
Mandelbrot and Wallis (1968) argued that the long memory phenomenon or long-term
dependency was described in the Bible and the Qur’an as ‘seven years of great plenty
throughout the land of Egypt, but seven years of famine will follow them’. Hurst
(1951) discussed the concept of long memory in a study about long-term dependency
of the series of Nile water flow. He noted that long periods of drought were followed by
long periods of flooding. Thus, the long memory process has been applied in various
fields, such as economics, meteorology, and geophysics (Lawrance and Kottegoda,
1977; and McLeod and Hipel, 1978).
Granger and Ding (1996) defined a time series as having long memory behaviour when
it has a slowly decreasing autocorrelation structure. Baillie (1996) and Baillie and
King (1996) showed that in a series with a long memory, time dependence exists even
between distant observations. This means that actual exchange rate volatility might
have an impact on future volatility for a long period.
Mandelbrot and Taqqu (1979) applied the long memory phenomenon or Joseph effect
in the field of finance. The successful application of long memory models to financial
time series has been widely proven. Empirically, Baillie et al. (1996) and Tse
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(1998) argued that the long memory process has been very successful in describing
the volatility of financial series. Then, Cheung (1993) using the Geweke–Porter-
Hudack (GPH) test for exchange rates series showed the presence of long memory.
Furthermore, he gave evidence that the ARFIMA model is the most appropriate for
these series. Similarly, Beran and Ocker (1999) and Velasco (1999) provided the same
evidence for the exchange rate series.
A large body of empirical literature has highlighted the presence of long memory in
the volatility process. Diebold et al. (1991), Ding et al. (1993), and Taylor and Xu
(1997) found that exchange rate volatility is characterized by a slowly hyperbolic
decreasing autocorrelation, inducing a long memory process. Ding and Granger
(1996) examined the long memory property in volatility series on the stock market
and foreign exchange market. They found that evidence of long memory is stronger
in the foreign exchange market. According to Baillie et al. (2000), long memory
is a fundamental characteristic in the volatility process. They observed that the
exchange rate volatility of the DEM/USD is generated by a long memory process for
different frequencies. Moreover, the authors found that the fractionally integrated
generalized autoregressive conditional heteroscedasticity (FIGARCH) model can
adequately describe the volatility of the DEM/USD.
Many empirical studies, using high-frequency data, have examined the presence of
long memory in exchange rate realized volatility. Andersen and Bollerslev (1997a,
1997b) and Andersen et al. (1999) suggested that the volatility built from high
frequency data facilitates the detection of the presence of long memory in the volatility
process. Andersen and Bollerslev (1998) demonstrated the existence of a long-
term dependency in volatility in the foreign exchange market. Andersen, Bollerslev,
Diebold, and Labys (2001) showed that the exchange rate realized volatility of the
DEM/USD and JPY/USD seems to be well described by a fractionally integrated
process due to the presence of a strong dependence in their processes. In addition,
Chiriac and Voev (2011) and Varneskov and Voev (2013) noted that the volatility
series exhibit characteristics comparable to a fractionally integrated process or long
memory.
The existant literature provides considerable evidence for the presence of long memory
in the exchange rate volatility. To account for this behavior of high persistence, several
models were introduced in the empirical literature. Bollerslev (1986), Hsieh (1989),
and Baillie and Bollerslev (1990) concluded that volatility series are characterized by
high persistence and can be well described by an integrated generalized autoregressive
conditional heteroscedasticity (IGARCH) model.
Beran and Ocker (1999) proposed a semiparametric fractional autoregressive model,
to estimate exchange rate volatility in the foreign exchange market. Baillie et al.
(1996) introduced the FIGARCH model, which enables the introduction of the long
memory process in conditional variance. The authors proved the performance of this
model for describing the exchange rate volatility of the DEM/USD.
Vilasuso (2002) reviewed nominal exchange rates of six industrialized countries, which
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correspond to the CAD/USD, FRF/USD, DEM/USD, ILT/USD, JPY/USD, and
GBP/USD during 1979–1997. The author proved the ability of the FIGARCH model
to detect the main features of the exchange rate volatility involved. Davidson (2004)
proposed the hyperbolic generalized autoregressive conditional heteroscedasticity
(HYGARCH) model. This model presents a generalized version of the FIGARCH
model, and can generate long memory even if the value of the fractional integration
parameter is very close to 1 in the exchange rate series.
For realized volatility, Andersen, Bollerslev, Diebold, and Ebens (2001) proposed
the ARFIMA model for many financial series. Then, Andersen, Bollerslev, Diebold,
and Labys (2001) applied the ARFIMA model on exchange rates volatility, they
demonstrated the success of this model in modeling the realized volatility series and its
ability to capture the long memory properties. Furthermore, Andersen et al. (2003)
proposed a vector autoregressive model to estimate realized volatility.
Pong et al. (2004) argued that the ARFIMA model proposed by Granger and
Joyeux (1980) outperforms other traditional models in forecasting exchange rate
realized volatility of the GBP/USD and the DEM/JPY. Recently, Chortareas et
al. (2011) showed the performance of the ARFIMA model in capturing the long
memory properties of the exchange rate realized volatility of parity for the EUR/USD,
EUR/CHF, EUR/GBP, and EUR/JPY.
Despite the evidence of the presence of long memory in the volatility of exchange
rates, recent studies, like Yang and Chen (2014), showed that the realized volatility
of financial returns generally exposes both long memory properties and structural
breaks.
We argue that the literature contains confusing evidence regarding the presence of
long memory in the volatility process. Engel and Hamilton (1990) modelled exchange
rate volatility with structural break models. The authors suggested that these models
take into account latent shocks that might influence the exchange rate.
Long memory might be an artefact due to structural breakpoints which are not
considered. In this case, we talk about the presence of spurious long memory that
leads us to analyse long memory with great caution. Modelling volatility without
considering breaks might overestimate the long memory parameter. The origin of
this problem was raised by Perron (1989, 1990). Zivot and Andrews (1992) suggested
that the presence of structural breaks could lead to a biased result of the augmented
Dickey-Fuller (ADF) test.
Liu (2000) demonstrated that the presence of long memory in the volatility process
of financial returns could be spurious as it could be attributed to the negligence of
structural breaks. In addition, Granger and Ding (1996) argued that long memories
could result from other processes, including the aggregation of several non-linear
short-term processes.
Mikosch and Starica (2000, 2004) supported the hypothesis of non-stationarity in
the volatility series in financial markets. They found that long-term dependence is
the result of the impact of non-stationarity in estimation procedures. The authors
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demonstrated that the apparent long memory in the series of the S&P500 and the
DEM/USD could be an artefact induced by the presence of structural breaks.
Granger and Hyung (2004) reported that it is difficult to distinguish between long
memory and structural breaks. They compared a model of structural breaks and a
long memory model to analyse the volatility of the S&P500. The authors found that
occasional structural breaks produce autocorrelations which decay slowly. Then, long
memory behaviour could be generated by the presence of structural breaks.
Choi and Zivot (2007) examined the presence of long memory or structural breaks
in exchange rate series. First, they estimated the long memory parameter without
considering the structural breakpoints. Then, they estimated a structural break model
and re-estimated the long memory parameter after the deletion of the breakpoints.
Finally, they opted for a Monte Carlo simulation to evaluate the estimation of the
structural breaks in the presence of long memory. They found that taking into
account breakpoints remarkably reduced persistence in the exchange rate process.
However, after removing structural breakpoints, the authors found strong evidence of
the presence of long memory. These results confirmed the importance of structural
breaks in exchange rate volatility.
Structural breaks can cause high persistence in the autocorrelation function, which
generates spurious long memory. In addition, a growing number of structural breaks
make the series process more persistent. Motivated by the results of Perron and Qu
(2007), Perron and Qu (2010) reported that a short memory process contaminated
with structural breakpoints might bias estimation of the fractional long memory
parameter upward and cause autocorrelations to decrease slowly, which suggests the
presence of long memory or spurious long memory. These authors modelled the
volatility of certain financial assets and proposed a simple test to discriminate long
from short memory processes with structural breaks.
Morana and Beltratti (2004) studied the properties of the exchange rate volatility of
the DM/USD and the JPY/USD. Through an analysis with various parametric and
semi-parametric models, the study provided evidence of the presence of structural
breaks. Choi et al. (2010) explored the possibility of the presence of structural
breaks in the volatilities of the DM/USD, JPY/USD, and JPY/DM, which appear to
be characterized by long memory observed behaviour. The authors found that these
series are generated by a structural break process.
Varneskov and Perron (2015) introduced structural breaks in the ARFIMA model.
They demonstrated that the inclusion of structural breaks is essential and can improve
the modelling of volatility in financial markets. Several structural change models have
been applied to describe the dynamics of exchange rate volatility. Hamilton (1990)
and Engel and Hamilton (1990) demonstrated that exchange rate volatility can be
described adequately by the regime-switching models of Markov. Recently, Lee and
Chen (2006) and Nikolsko-Rzhevskyy and Pordan (2012) showed that Markov regime-
switching models adequately describe the exchange rate with a floating exchange rate
regime. All these contradictions have motivated us to study the characteristics of
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exchange rate volatility and more precisely, realized volatility, constructed with high
frequency data.

3 Methodology
In this study, we conduct three types of tests for each series: (i) long memory tests,
(ii) structural break test, and (iii) a long memory versus structural break test. Once
the realized volatility series show a long memory process, the ARFIMA model is used
for the estimation.

3.1 Realized volatility measure
The availability of high frequency data enables us to measure the realized volatility
very simply. The notion of using only realized returns was introduced by French et
al. (1987), who estimated monthly realized volatility built through daily returns. Let
rt be the logarithmic return process. The realized variance over interval [t − h, t] is
defined as follows

RV art,h =
n∑
i=1

r2

t−h+
(
i
n

)
h
, (1)

where n is the number of observations over interval [t− h, t].
Thus, realized volatility, as the square root of the variance, is calculated as follows:

RV t,h =
√
RV art,h, (2)

3.2 Long memory tests
To test the presence of a long memory process for the series of exchange realized
volatility, we use different techniques used in the empirical literature.
The first long memory process presented in the literature is the Autoregressive
Fractionally Integrated Moving Average (ARFIMA) model developed by Granger and
Joyeux (1980) and Hosking (1981). A process {Xt}T1 , with t ∈ Z follows an ARFIMA
(p, d, q) process if:

φ (L) (1− L)dXt = θ (L) εt, (3)

where d is the order of fractional integration and L is the lag operator i.e. LXt = Xt−1.
φ (L) and θ (L) are the autoregressive and the moving average polynomials of order p
and q, and εt is a white Gaussian noise. If − 1

2 < d < 0, the series are antipersistent,
the autocorrelations decrease hyperbolically and tend to zero and the spectral density
is dominated by the high frequency components. If d = 0, the series have short
memory behavior and can be modeled by a standard ARMA model. If 0 < d < 1

2 , the
series are stationary with long memory behavior. The autocorrelations are positive,
decrease hyperbolically, and tend to zero when the delay increases. The spectral
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density is concentrated around the low frequencies and tends towards infinity when
the frequencies tend towards zero.
The testing method for the presence of a long memory behavior consists on testing
the null hypothesis of a short memory behavior against the alternative hypothesis of
long memory behavior: {

H0 : d = 0
H1 : d 6= 0

We start with the rescaled range statistic (R/S), introduced by Hurst (1951). This
statistic enables the classification of time series according to their nature and memory
by referring to a coefficient H, known as the Hurst exponent. Let yt, t = 1, . . . , T ,
a time series with an average yt, of T series; the R/S statistic, denoted as QT , is
written as:

QT = R/ST =

= 1[
1
T

∑T
j=1 (yj − yT )2

]1/2 ×
 max

1≤k≤T

k∑
j=1

(yj − yT )− min
1≤k≤T

k∑
j=1

(yj − yT )

(4)
This statistic is proportional to TH , where 0 < H < 1, and is given by H ∼ logQT

logT . It
allows to classify the time series according to their level of dependency. If 0 < H < 1

2 ,
antipersistence structure exists. If H = 0, the process is white niose. When
1
2 < H < 1, the long memory structure exists. If H ≥ 1, the process is non-stationary
and has infinite variance.
After Hurst (1951), Geweke and Porter-Hudak (1983) proposed a first semi-parametric
method in order to estimate the long memory parameter d. The semi-parametric
estimator of log-periodogram, called the GPH is extensively used. Let yt be the
exchange rate volatility, the GPH estimator of the long memory parameter d for
yt can be determined using the following periodogram:

log (I (wj)) = α+ βlog
(

4sin2
(wj

2

))
+ εj , j = 1, 2, . . . ,m, (5)

where α is a constant, wj = 2πj
T , εj is the residual term , T is the sample size, wj

represents the m =
√
T Fourier frequencies (it is required that m grows slowly with

respect to the sample size). I (wj) denotes the sample periodogram defined as

I (wj) = 1
2πT

∣∣∣∣∣
T∑
t=1

yte
−wjt

∣∣∣∣∣
2

Where yt is assumed to be a covariance stationary times series. The estimated d of
parameter integration d̂ is -β̂ and it can be estimated by ordinary least square (OLS),
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an asymptotically distributed estimator for 0 < d < 1
2 , yielding:

√
m
(
d̂GPH − d

)
→ N

(
0, π

2

24

)
, (6)

Robinson (1995) proposed an alternative estimation, which has been used often in
volatility series. Through analysis of the local Whittle estimator suggested by Künsch
(1987), he developed a local Whittle estimator, dr. The estimator of the long memory
parameter for a covariance stationary series, which is consistent and asymptotically
normal for 0 < d < 1/2. It can be expressed as follows:

√
m
(
d̂r − d0

)
→ N

(
0, 1

4

)
, (7)

m is less than [T/2] in order to evade aliasing effects; d0 represents the true value of
d, with the only additional requirement that m → ∞ slower than T , 1

m + 1
m → 0 as

T → 0.
Andrews and Guggenberger (2003) proposed an extension of the GPH estimator
to make it even more robust; this extension is called the AG test. They kept the
same asymptotic distribution of the GPH estimator. To reduce estimation bias, they
replaced the constant in the specification of the periodogram with

∑R
r=0 αw

2r
j . The

regression is as follows:

log (I (wj)) =
R∑
r=0

αw2r
j + βd log (wj) + εj , (8)

3.3 Structural break test
To test the possibility of the presence of structural breaks in the exchange rate realized
volatility, we use the test of multiple structural breaks proposed by Bai and Perron
(1998, 2003). The m-rupture (m+ 1 break) model can be defined as follows:

yt = cj + ut, t = Tj−1 + 1, Tj−1 + 2, . . . , Tj , (9)

where j = 1, 2, . . . ,m + 1, yt is the logarithm of the realized volatility and cj is the
average of the logarithmic realized volatility. Structural breakpoints (T1, T2, . . . , Tm)
are treated as unknown. The error term ut might be serially correlated and
heteroscedastic. The test is applied to each j regime with observations between the
dates T̂j−1+ 1 and T̂j (j = 1, 2, . . . , m+ 1), we consider sup FT (l), noting that the
F statistic for the hypothesis of no structural breakpoints is against the alternative
containing an arbitrary number of structural breakpoints, and we define M = 5
as the maximum allowed number of breakpoints. We define the double maximum
statistic UDmax = max1≤l≤M supFT (l), and the weighted double maximum statistic
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WDmax = max1≤l≤Mwl supFT (l), where weights wl are such that the marginal p-
values are equal across values of l.
The null hypothesis H0 of the test is the absence of structural breakpoints against
the hypothesis of the presence of an unknown number of structural breakpoints. The
sequential supFT (l+ 1|l) tests the null hypothesis of l breaks against the assumption
of l + 1 breaks. To estimate the number of breakpoints, we use UDmax and WDmax
to determine whether at least one break occurred. If there is evidence of a structural
break, we choose the number of structural breakpoints using supFT (l + 1|l). Thus,
the test can be defined as follows:

FT (l+1/l) =
{
QT

(
T̂1, . . . , T̂l

)
− min

1≤i≤l+1
inf

λ∈Λi,n

QT

(
T̂1, . . . , T̂i−1, λ, T̂i, . . . , T̂l

)} 1
σ̂2 ,

(10)
where Λi,n = {λ; T̂i−1 + (T̂i− T̂i−1)η ≤ λ ≤ T̂i− (T̂i− T̂i−1)η}, and σ̂2 is a consistent
estimator of σ2 under the null hypothesis.

3.4 Long memory versus structural break test
A simple test, based on the estimation of the log-periodogram, enables us to
distinguish the long and short memory contaminated by structural breaks proposed
by Perron and Qu (2010). Known as the PQ test statistic, this is given, under the
null hypothesis of realized volatility characterized by a long memory process against
the alternative hypothesis of a short memory process affected by structural breaks or
spurious long memory process. If 0 < a < b < 1 and b < 4/5, the test statistic is as
follow:

td (a, b) =
√

24 [T a]
π2

(
d̂a − d̂b

)
d−→N(0, 1), (11)

for d̂a and d̂b denote the log-periodogram estimate of the of the long memory
parameter for the frequencies, ma = T a and mb = T b, respectively. We follow Perron
and Qu (2007) and implement the test with a = 1/2 and b = 4/5.

3.5 ARFIMA model
The ARFIMA specification is chosen once the series show a long memory process.
The ARFIMA model (p, d, q) proposed by Granger and Joyeux (1980) for stationary
process yt is as follows:

φ (L) (1− L)d (yt − µ) = θ (L) εt, (12)

where d is the order of fractional integration and L is the lag operator in t. The
polynomial components AR and MA are given by φ (L) = 1 + φ1L+ · · ·+ φpL

p and
θ (L) = 1 + θ1L+ · · ·+ θqL

q, respectively, where µ is the mean of yt, which is defined
as the logarithm of the logarithmic daily realized volatility log(RV t), and εt is a white
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Gaussian noise.
Several studies, such as, Andersen, Bollerslev, Diebold and Labys (2001, 2003), Pong
et al. (2004), and Koopman et al. (2005), have suggested that the ARFIMA model
outperforms other traditional models for modelling exchange rate realized volatility.
According to the work of Andersen et al. (2003) and Chortareas et al. (2011), the
specification of the ARFIMA model (p, d, q) in the context of the realized volatility is
as follows:

φ (L) (1− L)d (log(RV t)− µ) = θ (L) εt, (13)

4 Data and descriptive statistics
In our study, we use high frequency data that cover the spot exchange rates of
EUR/USD, EUR/JPY, EUR/GBP, EUR/CHF, and EUR/AUD provided by Reuters
FX. The data cover the period from 1 January 2004 to 30 October 2014. To avoid
microstructure noise, we choose a 30-minute interval based on the work of Martens
(2001), Andersen et al. (2003), Koopman et al. (2005), and Pooter et al. (2008). The
currency pairs used in this study were chosen based on their importance in the global
foreign exchange market and the fact that most studies focus on the volatility of the
US dollar, despite the importance of the euro in the foreign exchange market. First,
we compute intraday returns ri,t from the fluctuations between t and t+ l. Then, we
build 48 intervals of 30 minutes each from 21:00 GMT to 21:00 GMT the following
day. The expression of realized volatility, based on French et al. (1987), is as follows:

RV T =

√√√√ 48∑
i=1

r2
i,t, (14)

We obtain 2722 observations. We mention that the foreign exchange market is open
24 hours a day, 7 days a week but transactions during weekends and holidays are less
important. Therefore, we follow the standard approach of Andersen and Bollerslev
(1998), and adjust the data to avoid the holiday effect by discarding the weekend
period from Friday 21:00 GMT to Sunday 21:00 GMT as well as public holidays. The
holiday period incorporates Christmas (24–26 December), New Year (31 December–2
January), Labour Day, and Thanksgiving Day and the day thereafter.
Table 1 provides descriptive statistics for the daily realized volatility and logarithmic
realized volatility. The skewness coefficients are negative for the logarithmic realized
volatility of EUR/CHF, which indicates a left-skewed distribution. For the other
series, the skewness coefficients differ from zero and are positive, indicating a right-
skewed distribution. The excess kurtosis indicates a leptokurtic distribution with
values concentrated around the mean and fat tails in the case of all series. Jarque–Bera
statistics confirm the rejection of the normality hypothesis for all series, indicating
non-linear behavior.
Figure 1 describes the evolution of the realized volatility for the five exchange rates.

11 A. Ben Maatoug et al.
CEJEME 10: 1-25 (2018)



Abderrazak Ben Maatoug, Rim Lamouchi, Russell Davidson, Ibrahim Fatnassi

Table 1: Descriptive statistics

Mean Standard
errors Skewness Excess Kurtosis Min Max Jarque-Bera

EUR/USD RVt 0.396 0.474 4.871 37.5923 0.0068 6.401 166459.428
LRVt −1.327 0.094 0.324 0.324 −4.983 1.856 15.583

EUR/YEN RVt 0.706 1.432 8.736 111.861 0.014 27.623 1416415.828
LRVt −0.976 1.021 0.447 0.602 −4.266 3.318 128.791

EUR/CHF RVt 0.194 1.063 38.244 1722.401 0 49.245 328091758.371
LRVt −2.83 1.532 −0.333 1.226 −8.672 3.896 215.191

EUR/GBP RVt 0.269 0.368 4.816 32.909 0.01 4.84 129779.526
LRVt −1.766 0.888 0.458 0.373 −4.541 1.576 108.151

EUR/AUD RVt 0.517 1.387 19.24 538.212 0.027 47.036 32136017.809
LRVt −1.183 0.85 0.894 2.142 −3.594 3.851 859.589

The figure show periods of high volatility followed by periods of high volatility, and
periods of low volatility followed by periods of low volatility, which indicates volatility
clustering. For the EUR/USD, we note an important spike of volatility between 2004
and 2008.
We observe in the figure of the EUR/USD an acceleration of volatility in the last
months of 2004, which can be explained by the depreciation of the US dollar that
began in 2002. The US dollar depreciated to record lows against the euro in late 2004.
In August 2004, news issued by central banks about foreign exchange reserves of the
United States highlighted the weakness of the US dollar. This weakness accelerated
the appreciation of the euro to the US dollar in the financial market against the dollar
and the yen. The euro seems to have remained stable against the British pound and
the Australian dollar and depreciated relative to the Swiss franc.
In 2007, there is a significant spike in the volatility of the EUR/JPY. This seems to
have been the result of monetary policy to depreciate the yen followed by Japan’s
central bank. In 2008, the foreign exchange market showed a sharp increase in
volatility for all currency pairs involved in this study. This very high level of volatility
was the result of the subprime crisis, which strongly affected the foreign exchange
market.
After August 2007, the appreciation of the euro led to high volatility, due to the
sentiments of investors that the eurozone was a less risky refuge. In late 2008, the yen
sharply appreciated against the euro, as the eurozone was affected by the subprime
crisis. The high cluster of volatilities during 2007 and 2008 came amid the recession of
the UK economy. The volatility of the EUR/AUD experienced a bullish acceleration
after the financial crisis.
Figure 2 shows the autocorrelation functions of the realized volatility and the
logarithm of the realized volatility.
We note that these functions have a hyperbolic slow decay; moreover, they exhibit
greater persistence in the autocorrelation functions of the logarithmic realized
volatility series, which can indicate the presence of long memory. Then, in accordance
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Figure 1: Plots of daily realized volatility (RV)
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with the previous literature (Andersen et al., 2003, Choi et al., 2010), we consider the
logarithmic specifications of the realized volatility.
Table 2 presents different stationarity tests. For the ADF and PP tests, we test the
null hypothesis of presence of unit root against the alternative hypothesis of absence
of unit root, i.e. a stationary process. For the KPSS test, the null hypothesis is the
presence of stationarity process. According to ADF, PP and KPSS test results, we
can reject the non-stationarity hypothesis.
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Figure 2: Autocorrelation plots for daily realized volatility (RV) and daily logarithmic
realized volatility (LRV)
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Table 2: Stationarity tests

LRVt ADF PP KPSS

EUR/USD −5.832 −26.445 0.02
EUR/YEN −12.421 −17.704 0.079
EUR/CHF −6.033 −11.328 0.139
EUR/GBP −3.067 −24.3902 0.11
EUR/AUD −10.494 −22.654 0.128

Critical-value −1.95 .− 2.863 0.146

5 Dynamics of forex realized volatility

5.1 Long memory test
As mentioned in the methodology, we first conduct the long memory tests. The
presence of long memory was firstly tested using Hurst exponent (H) produced by
the Rescaled range statistic. The value of H are indicating that the series have
long memory structure since 1

2 < H < 1. Table 3 shows the estimation results
of long memory parameter d for the logarithmic realized volatility. For the GPH,
Robinson, and AG tests, we choose m frequency based on the previous literature.
For the Robinson test, to estimate the fractional integration parameter, Robinson
(1995) proposed m = T 0.5. For the GPH and AG tests, we rely on the work of
Simotsu (2006), Aloy et al. (2011), and Charfeddine and Guégan (2011). Thus, we
take m = T 0.5, T 0.6, T 0.7, T 0.8.
We find that the Hurst coefficients are well above 0.5 for the different series, which
indicates the presence of a long memory process. The results of the other tests are
nearly the same. The values of long memory parameter d are between 0.322 and 0.541.
We observe a decline over the estimation of the long memory parameter based on the
periodogram method. There might well be long memory in the logarithmic realized
volatility of the five exchange rates. Therefore, a shock that occurs at some point
will affect the future evolution of the series over a relatively long period. The series
tend to move back to equilibrium values very slowly. The presence of a long memory
process in the realized volatility of the exchange rate of returns shows that shocks
are not permanent. A long-range dependent process might contain information which
makes forecasting more significant. One possible explanation for the long memory in
the process of volatility can be found in news about the market. This news might
be grouped in time. Thus, the shift in investor responses to this news, for example,
might cause autocorrelation in volatility. In addition, the long memory is connected
to the heterogeneity of market participants. Investors with limited rationality form
heterogeneous expectations about the future level of volatility.
The test results of GPH and AG show that parameter d is clearly unstable. This
instability might result from the presence of structural breaks. Therefore, long
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Table 3: Long memory test results

LRVt H Robinson m GPH AG

EUR/USD 0.822 0.494

0.5 0.552 0.396
0.6 0.347 0.342
0.7 0.368 0.49
0.8 0.113 0.114

EUR/YEN 0.85 0.47

0.5 0.337 0.301
0.6 0.541 0.572
0.7 0.278 0.495
0.8 0.231 0.477

EUR/CHF 0.829 0.46

0.5 0.454 0.322
0.6 0.371 0.389
0.7 0.391 0.361
0.8 0.595 0.193

EUR/GBP 0.832 0.48

0.5 0.5 0.409
0.6 0.415 0.58
0.7 0.385 0.369
0.8 0.125 0.133

EUR/AUD 0.815 0.49

0.5 0.4 0.407
0.6 0.392 0.406
0.7 0.242 0.55
0.8 0.608 0.242

memory and structural breaks might be confused. Davidson and Sibbertsen (2009)
suggest the existence of a bias in the log-periodogram regressions of a time series
believed to be long memory. Short-run autocorrelation being likely to feature in a
long memory process. Furthermore, Agiakloglou et al. (1993) suggest the presence
of short-run dynamic components can still severely bias the GPH estimator in finite
samples, and falsely indicating the existence of long memory.

5.2 Structural breaks test
In order to identify the possible presence of structural breaks in the realized volatility
process of the different exchange rates, we use the test proposed by Bai and Perron
(1998, 2003). The test results are reported in Table 4. These results show points
of structural breaks that seem to reflect the experience of the financial markets and
particularly the foreign exchange market. We can say that structural breakpoints seem
to coincide with historical events and major incidents related to financial markets. The
first breakpoint in June 2004 coincides with the end of the period of depreciation of
the US dollar against the euro, when US dollar appreciation affected other currencies.
The second breakpoint led to an increase in volatility and is associated with the
financial crisis of 2008 that spread worldwide. The crisis, which began in August
2007, has affected the entire financial system and generated high volatility in the
foreign exchange market. The financial crisis has caused strong appreciation of the
euro against the US dollar.
The two breakpoints of 2009 and 2011 coincided with the beginning and end of the
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Table 4: Structural breaks test results
LRVt EUR/USD EUR/YEN EUR/CHF EUR/GBP EUR/AUD

T1 2004:06:29 2004:09:24 2004:08:05 2006:02:02 2005:03:02
T2 2007:10:23 2008:10:09 2007:07:23 2007:11:14 2007:07:13
T3 2008:06:17 2009:06:24 2009:06:15 2008:09:18 2008:08:14
T4 2010:01:07 2009:09:16 2010:04:28 2009:04:06 2009:01:21
T5 2011:09:19 2011:06:13 2011:06:29 2011:11:24 2011:09:12

sovereign debt crisis in the euro area. During this crisis, the exchange rates of the
euro against the currencies considered in this study, especially the British pound
and Swiss franc, were extremely volatile. The breakpoint of 2011 for the EUR/CHF
coincides with the successful intervention of the Swiss National Bank in support of
a minimum exchange rate of 1.20 Swiss franc per euro; the break led to a decline in
realized volatility. It seems that structural change is an empirical property of exchange
rate realized volatility. In fact, we find that most breakpoints mainly arise from
significant events in the financial market. Based on previous results, long memory
and structural breaks are two important features of the data related to exchange rate
realized volatility.

5.3 Long memory versus structural break test

The presence of spurious long memory leads us to analyse long memory with great
caution. The test proposed by Perron and Qu (2010) enables us to distinguish long
memory from short memory contaminated by structural breaks. We test the null
hypothesis of the presence of long memory against the alternative hypothesis of the
presence of short memory with structural breaks. The results, shown in Table 5,
indicate that the null hypothesis is not rejected for all series reported. The results
indicate that no structural break has affected the long memory of the exchange rate
realized volatility involved in the study. Therefore, we retain the null hypothesis of
the presence of long memory. We argue that, despite the persistence of the shocks,
the presence of very large spikes and the instability of the long memory parameter,
realized volatility remains determined by long memory process, and seems to follow
a long-range trend. Thus, in this case, the significant events in the financial markets,
such as crisis, might affect, only in a short-run way, the long memory property of
foreign exchange market volatility. In other words, exchange rate realized volatility
follows a long memory process in stable periods. However, during period of crisis,
this process becomes unstable.
Pesaran and Timmerman (2004) and Beltratti and Morana (2006) suggested that the
volatility series can be affected by occasional structural breaks that might be caused
by various factors, like financial crisis, speculative bubbles, and changes in monetary
policy. However, we note that the presence of long memory involves volatility
persistence. This persistence reveals that uncertainty is a key determinant in the
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Table 5: Perron and Qu test results

LRVt EUR/USD EUR/YEN EUR/CHF EUR/GBP EUR/AUD

PQ statistics −1.7844 0.802 −0.793 −0.7534 −0.337
Critical-value 95% ±1.96

behaviour of exchange rate returns. Thus, this property is of significant importance
to investors and for forecasting.
Based on results above in this section (long memory versus structural break test), we
use the ARFIMA specification for modelling the exchange rate realized volatility.

5.4 ARFIMA results

Based on the work of Andersen et al. (2003), the long memory parameters d are
obtained by implementing Robinson’s estimator for each series. Thus, we consider
the ARFIMA(5, d, 0) model. The optimal lag lengths for both the AR and MA
are selected using the Akaike information criteria (AIC). We consider a number of
alternative models, and based on the AIC, the order (5, d, 0) is the most reliable. Our
specification is consistent with the specification of the ARFIMA model in Andersen
et al. (2003) and Chortareas et al. (2011).
The results of the estimated parameters of ARFIMA(5, d, 0) model are presented in
Table 6, indicating a high degree of dependence for different series. In addition, the
Q test results for the standardized residuals show that the ARFIMA model captures
the realized volatility dependency well.

Table 6: Results of ARFIMA(5, d, 0)

LRVt EUR/USD EUR/YEN EUR/CHF EUR/GBP EUR/AUD

d 0.494 0.47 0.46 0.48 0.49
AR(1) -0.280** (-14.6) -0.057** (-2.95) 0.054** (2.84) -0.216** (-11.3) -0.137** (-7.20)
AR(2) -0.115** (-5.81) -0.031 (-1.554) 0.077** (4.02) -0.087** (-4.46) -0.031 (-1.61)
AR(3) -0.058** (-2.95) 0.006 (0.296) 0.041** (2.18) -0.079** (-4.06) -0.014 (-0.771)
AR(4) 0.009 (0.466) 0.056** (2.778) 0.040** (2.11) -0.010 (-0.523) -0.011 (-0.601)
AR(5) 0.075** (3.93) 0.050** (2.487) 0.074** (3.88) 0.032** (1.68) 0.057** (3.02)

Residual test
Q(30) 138.233** 113.017** 188.884** 143.171** 106.760**

Note: The t-statistics are given in parentheses. *, **, and *** denote significance at the 10%, 5%, and
1% levels, respectively.
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6 Conclusions
This study aimed to model the realized volatility of daily foreign exchange rates
using high frequency data. We explored the possibility of confusing long memory and
structural breaks in daily realized volatility. The results of long memory tests showed
evidence of the presence of long memory in the realized volatility of the different
exchange rates used in this study. We applied the Bai–Perron (1998, 2003) test in
order to detect the structural breaks. We identified structural breakpoints that match
significant historical events in financial markets. Furthermore, Perron and Qu (2010)
who distinguished between long memory and spurious long memory provided strong
evidence in favour of long memory.
In fact, long memory plays an important role in describing realized volatility exchange
rates. Moreover, we found that significant events in financial markets might affect the
long memory property of the realized volatility in the foreign exchange market only
in a short-run way. These findings reveal that uncertainty is a key determinant of the
behaviour of exchange rate returns and are important for investors and forecasters.
A long-range dependent process might contain information, which makes forecasting
more significant. We show that the ARFIMA model is more appropriate for modelling
exchange rate realized volatility.
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