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In this paper, a new simple method for determination of flow parameters, axial dispersion coeffi-
cients DL and Péclet numbers Pe was presented. This method is based on an accurate measurement
model considering pulse tracer response. Our method makes it possible to test the character of gas
flow motion and precisely measure flow parameters for different pressures and temperatures. The idea
of combining the transfer function, numerical inversion of the Laplace transform and optimisation
method gives many benefits like a simple and effective way of finding solution of inverse problem and
model coefficients. The calculated values of flow parameters (DL and/or Pe) suggest that in the consid-
ered case the gas flow is neither plug flow nor perfect mixing under operation condition. The obtained
outcomes agree with the gas flow theory. Calculations were performed using the CAS program type,
Maple®.
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sion coefficient, Maple®

1. INTRODUCTION

The Laplace transform is a very powerful analysis tool for the solution of differential and integral equa-
tions. However, application of this technique to practical problems is limited, because an analytical inver-
sion of problems to the time domain can be difficult or even impossible to obtain, so numerical methods
have to be used. The term numerical inversion of the Laplace transform was introduced in the 1960s by
Bellman et al. (1967), approximating the Laplace integral by a Gauss–Legendre polynomial. Many algo-
rithms for the numerical computation of the inverse Laplace transform can be found in the literature. There
are four main groups: i) the Fourier series method, which is based on the Poisson summation formula, (ii)
the Gaver–Stehfest algorithm, which is based on combination of Gaver functionals, (iii) the Weeks method,
which is based on bilinear transformations and Laguerre function expansion, (iv) the Talbot method, which
is based on deforming the contour in the Bromwich inversion integral (Abate and Valko, 2004), that differ
from each other with respect to accuracy, computational time and method parameter choice, which results
in their differing scope of applicability. A comprehensive review of methods of the numerical inversion of
the Laplace transform based on a comparison of fourteen algorithms in terms of numerical accuracy, com-
putational efficiency and simplicity of implementation is presented by Davies and Martin (1979). Other
reviews were given by Duffy (1993), Narayanan and Beskos (1982), and Cohen (2007).
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According to the literature reports, many scientists have recommended numerical algorithms of inverse
Laplace transform to find a solution in the time domain of a specific type of problem. The Gaver–Stehfest
method is a popular numerical inversion method used in groundwater flow and petroleum engineering
applications (Yang et al., 2011). This algorithm has been applied successfully by several authors to solving
various problems in chemistry (Montella, 2008), geophysics (Knight and Raiche, 1982), mathematics
(Endah and Surjanto, 2017), electrical engineering (Smith and Brančik, 2016). The Gaver–Stehfest method
is often used in engineering fields to solve linear and non-linear diffusion problems. The Stehfest, the
Honig and Hirdes, and Zakian’s methods were recommended for the dispersion-dominated problems, but
for radial dispersion problems – the de Hoog, the Talbot, and the Simon methods (Wang and Zhan, 2015)
are more effective than others. Li-Wei Chiang (1989) presented many methods to obtain a solution of
groundwater problems, the Schapery, the Widder, the Koizumi, the Weeks, and the Talbot methods. Escobar
et al. (2014) presented a comparison of two algorithms, the Stehfest’s and Iseger’s method to solve two
well-known oil-industry reservoir models in the Laplace domain. The Dubner and Abate method has been
applied to modelling of tracer transport in heterogeneous media, oil and geothermal reservoirs, and in
groundwater aquifers (Kocabas, 2011). Chen et al. (1996) employed the Crump algorithm to obtain a
solution of the radial dispersion in the real-time domain from the Laplace domain. The de Hoog algorithm
was used to determine the fate and transport of groundwater contaminants (i.e. chromium), biotracers and
microorganisms (Boupha et al., 2004). Taiwo et al. (1995) compared and used two methods, the Honig and
Hirdes, and Zakian’s method to four typical chemical engineering problems. Also, Zakian’s algorithm was
applied to determine the kinetic parameters for the adsorption of human serum albumin (Taiwo and King,
2003). The application of the Hosono method to the determination of the signal velocity in dispersive
pulse propagation is presented in (Wyns et al., 1989). The method of Juraj and Lumboir was employed to
solve an unsteady thin film flow problem of a second grade fluid through a porous medium and estimate
fluid parameters (Ali and Awais, 2014).

This article presents a new simple method to determine quantities that characterise gas flow motion (axial
dispersion coefficient or a Péclet number). The method is based on a precise measurement instrument
model development. The model takes into account the internal construction of an instrument. It was split
into separate zones, which differ one from another by geometry, function, or both. A conception of transfer
function was applied to simplify analysis and solution of the resultant model. The transfer function is a
complex function, known from process control, but this work indicates that it is applicable also out of this
field. It is derived using the Laplace transform and, as a result, the application of the numerical inverse
Laplace transform method seems to be a logical way of finding solution of the model. In combination with
any optimisation method it creates a simple and effective inverse problem solving method. The presented
scheme is very advantageous to determine model coefficients and competitive when compared to other
methods. The well-known advantages of the transfer function also appear, in particular ease of rebuilding
the model, when one part of instrument (e.g. vessel) is exchangeable.

1.1. The Gaver–Stehfest method

The Gaver–Stehfest method is a simple algorithm for the numerical inversion of the Laplace transform,
which approximates the time domain solution by the following formula (Zhang, 2007):
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where: F(s) ∧
= f (t).

http://journals.pan.pl/dlibra/journal/98834224



Numerical interpretation of a mathematical model of membrane gas separation with energy transfer...

The parameter N is called the Stehfest number N. It is the number of terms used in Eq. (1). Parameter N
must be an even integer. The precision of calculation depends on the parameter N because the inversion
is based on a summation of N weighted values. Theoretically, a large value of parameter N determines
the more accurate solution but if N is too large the results may be worsened due to the round-off errors.
In practice, N should be chosen by trial and error method to get the best results. Thus, a suitable choice
of the value N is important to achieve the most accurate solution (Hassanzadeh and Pooladi-Darvish,
2007). Many authors propose a different value of the parameter Nto obtain the most accurate solution.
For example, Cheng and Sidauruk (1994) recommended that the optimal choice of N should be within
the range from 6 to 20. Our preliminary numerical tests confirmed efficiency of this algorithm for gas
flow problems (Wójcik et al., 2015; Wójcik et al., 2017) and on the basis of results performed, N = 30
was accepted.

2. DESCRIPTION OF THE EXPERIMENTS

The system was flushed for 15–30 minutes with a constant flow of helium (carrier gas) until a stable TCD
signal was received. At the same time, the volume of sample loop (2.50× 10−7; 5.000× 10−7 m3) was
flushed also with a constant flow of nitrogen (tracer). Next, the 8-way valve was opened to allow the flow
of helium with the constant volumetric flow rate (of 3.333×10−7 or 5.000×10−7 or 6.667×10−7 m3/s)
at STP through the sample loop, the zones (vessel and pipes), and the detector TCD. After all, the TCD
signal was recorded.

The experiments have been conducted in New Chemical Synthesis Institute in Puławy (Poland) at each
combination of process variable:

• pressure: 1.200×105; 2.000×105; 3.000×105 Pa
• temperature: 313.15; 333.15; 353.15 K.

3. HYDRODYNAMIC MODEL OF GAS FLOW INSIDE APPARATUS

The simplified scheme of measuring system for experiments is shown in Fig. 1. The system consists of the
following elements:

1) a unit called vessel, consisting of two steel pipes (1a) and (1b). The part of larger diameter (1a) is
usually filled with porous pellets (not in experiment described below),

2) the 8-way valve,
3) the sample loop,
4) pipes,
5) the thermal conductivity detector (TCD).

In order to create a mathematical model of the gas flow, the unit between the 8-way valve (1) and the TCD
detector (2) was divided into three zones. They are distinguishable on the basis of geometry and/or its
function. A volume of the fragment between the 8-way valve and vessel is negligible. Geometry of the
apparatus was determined on the basis of its technical data and previously made investigations. Table 1
gives a complete list of technical data.
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Fig. 1. Simplified schematic representation of apparatus (Micromeritics’ AutoChem 2950HP)

Table 1. Technical data

Number
of the zone

Description Li [m] dw,i [m]

1
Vessel

1a 1.7700×10−1 7.6500×10−3

2 1b 2.3500×10−1 1.5875×10−3

3 pipe connecting 8-way valve and TCD detector 5.7000×10−1 1.5875×10−3

4. MATHEMATICAL MODEL EMPLOYED IN THIS STUDY

The model is based on the following assumptions:
• the system is operated under isothermal conditions;
• gases satisfy equation of state of an ideal gas.

The mass balance of the tracer (nitrogen) in each zone can be described by the following of partial dif-
ferential equations and the initial and boundary conditions (Table 2): c(L1 +L2 +L3, t) corresponds to the
concentration recorded by the TCD-detector. In this work, we used a rectangular signal pulse which is
given by

c0 =


0 t < 0

cT 0 ≤ t ≤
Vimp

Fv

0 t >
Vimp

Fv

(2)

where
cT =

P
Rg ·T
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Table 2. Mathematical model

Equation
∂c(x, t)

∂ t
= DL,i

∂ 2c(x, t)
∂x2 − 4Fv

πd2
w,i

· ∂c(x, t)
∂x

i-th zone 1 2 3

IC c(x,0) = 0 c(x,0) = 0 c(x,0) = 0

BC1

Danckwerts boundary conditions
were used for the closed-closed
boundaries as:
4Fv

πd2
w,i

c0 =

=
4Fv

πd2
w,i

c(0+, t)−DL,i
∂c(x, t)

∂x

∣∣∣
x=0+

c(L+
1 , t) = (L−

1 t) c(L1 +L+
2 , t) = c(L1 +L−

2 , t)

BC2
∂c(x, t)

∂x

∣∣∣∣
x=L−

i

= 0
∂c(x, t)

∂x

∣∣∣∣
x=(L1+L2)+

= 0
∂c(x, t)

∂x

∣∣∣∣
x=(L1+L2+L3)+

= 0

5. RESULTS AND DISCUSSION

To obtain the outlet concentration of tracer, c(L1 + L2 +L3, t), the following procedure was applied for
each zone separately:

• the governing equation with the appropriate initial and boundary conditions was transformed into
Laplace domain; as a result the problem is reduced to ordinary differential equation

• the analytic solution of ordinary differential equation was found and, next, an outlet concentration was
determined

• the quotient Gi(s) of outlet and inlet concentration was found.

Multiplication of Gi(s) gives:

G1(s)G2(s)G3(s) =
c(L1,s)
c0(s)

c(L1 +L2,s)
c(L1,s)

c(L1 +L2 +L3,s)
c(L1 +L2,s)

=
c(L1 +L2 +L3,s)

c0(s)
(3)

which can be easily rearranged into

c(L1 +L2 +L3,s) = G1(s)G2(s)G3(s)c0(s) (4)

where

G1(s) =
c(L1,s)

c0
=−

8Fve(a+b)L1(π2d4
w,1DL,1s+F2

v −2Fvc)

(2Fv − c)(DL,1π2d4
w,1s)e(a−b)L1 +8F2

v e(a−b)L1 −4Fv(e(a−b)L1)c
(4a)

G2(s) =
c(L1 +L2,s)

c(L1,s)
=− 2e(d+ f )(L1+L2)g

2Fve(d− f )(L1+L2)e( f−d)L1 −g(e(d− f )(L1+L2)e( f−d)L1)
(4b)

G3(s) =
c(L1 +L2 +L3,s)

c(L1 +L2,s)
= − 2e(h+i)(L1+L2+L3) j

2Fve(h−i)(L1+L2+L3)e(i−h)(L1+L2)− j(e(h−i)(L1+L2+L3)e(i−h)(L1+L2))
(4c)
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where

a =
2Fv −

√
DL,1π2d4

w,1s+4F2
v

DL,1πd2
w,1

b =
2Fv +

√
DL,1π2d4

w,1s+4F2
v

DL,1πd2
w,1

c =
√
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g =
√
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v

h =
2Fv −

√
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√
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The complex function c̄(L1+L2+L3,s) was transformed into the real domain applying the Gaver–Stehfest
algorithm. c̄(L1 +L2 +L3,s) corresponds to the function F in Eq. (1).

The values of model parameters DL,i were determined using trial and error procedure (determining prelim-
inary values) and inner optimisation procedure NLP Solve of the program Maple® (improving precision).
As the correct value of parameter DL,i was accepted the one with the lowest value of the standard deviation
between the numerical and experimental results (solution of the inverse problem). All calculations were
carried out with precision up to 64 decimal digits using Maple®17.

The Péclet number is defined by

Pe =
νLi

DL,i
(5)

Results are shown in Tables 3 and 4. We assumed that DL,2 = DL,3 due the same diameter of pipes (see
Tables 3 and 4).

As can be seen from Table 3, the values of the axial dispersion coefficient increase with temperature and
decrease with increasing pressure. These observations agree with the flow theory.

The calculated values of Péclet numbers (see Table 4) indicate that gas flow is neither ideal plug flow nor
perfect mixing in the tested system.
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Table 4. Values of Péclet numbers

Vimp [m3]

Number Fv[m3/s]
2.500×10−7 5.000×10−7

P [Pa] T [K] of zone
313.15 333.15 353.15 313.15 333.15 353.15

Pe [–]

1.200×105

18 18 17 19 18 17 1
3.333×10−714 11 12 15 15 15 2

42 35 36 47 46 47 3

28 28 27 28 28 27 1
5.000×10−712 12 12 13 12 13 2

37 35 37 40 35 39 3

38 37 36 38 37 36 1
6.667×10−710 10 10 10 10 12 2

31 31 31 32 31 35 3

2.000×105

17 17 17 18 17 17 1
3.333×10−716 17 19 24 29 35 2

48 53 36 74 88 108 3

26 26 26 27 26 26 1
5.000×10−718 17 18 33 47 38 2

56 53 55 102 146 117 3

36 36 35 35 35 35 1
6.667×10−715 15 15 26 26 26 2

45 45 45 79 78 80 3

3.000×105

17 17 17 17 17 17 1
3.333×10−715 13 14 22 22 22 2

45 39 42 67 67 67 3

26 26 26 26 26 26 1
5.000×10−714 15 16 18 19 21 2

43 47 49 55 59 66 3

35 35 34 34 34 34 1
6.667×10−713 15 16 20 23 28 2

41 45 48 60 71 86 3

6. CONCLUSIONS

The main results of this paper can be summarised as follows:

• Application of the Gaver–Stehfest algorithm is suitable for solution of the model of gas flow. It works
fast and with high accuracy. An additional advantage is its simplicity.

• The value of axial dispersion coefficient can easily be determined.

• The gas flow is neither plug flow nor perfect mixing under operation condition.
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• The Computer Algebra System (CAS) – Maple® is very helpful for researchers to transform model
equations to the Laplace domain, solve the resultant set of equations and execute the inverse Laplace
transform properly and without errors.

• The pulse tracer technique, the Laplace transform and modern software system simplify analysis of
the task and make it possible to determine gas dispersion coefficients without any problems.

SYMBOLS

c(L1 +L2 +L3, t) outlet concentration of tracer, mol/m3

c̄(Li,s) solution of model for zone in Laplace domain, i = 1 . . .3
c̄0 inlet concentration of tracer, mol/m3

DL,i axial dispersion coefficient in i-th zone, m2/s, i = 1 . . .3
dw,i diameter of the zone, m, i = 1 . . .3
Fv volumetric flow rate, m3/s
Gi(s) transfer function for zone, i = 1 . . .3
Li length of i-th zone, m, i = 1 . . .3
N number of terms used in numerical approximation
P pressure, Pa
Pe Péclet number
Rg universal gas constant, J ·mol−1·K−1

s Laplace transform parameter
T temperature, K
Vimp volume of sample loop, m3

v gas flow velocity, m/s
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