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Abstract 

Single-frame methods of determining the attitude of a nanosatellite are compared in this study. The methods 

selected for comparison are: Single Value Decomposition (SVD), q method, Quaternion ESTimator (QUEST), 

Fast Optimal Attitude Matrix (FOAM) − all solving optimally the Wahba’s problem, and the algebraic method 
using only two vector measurements. For proper comparison, two sensors are chosen for the vector observations 

on-board: magnetometer and Sun sensors. Covariance results obtained as a result of using those methods have a 

critical importance for a non-traditional attitude estimation approach; therefore, the variance calculations are also 

presented.  The examined methods are compared with respect to their root mean square (RMS) error and variance 
results. Also, some recommendations are given. 

Keywords: attitude determination, single-frame methods, algebraic method, covariance analysis, vector 

observation. 
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1. Introduction 
 

The attitude determination and control subsystem of a nanosatellite is important for 

maintaining a required direction of the spacecraft and its instruments. There are several methods 
for determining the satellite’s attitude using attitude sensors. Sun sensors and magnetometers 

are very common sensors for nanosatellites because of their cost-effectiveness and commercial 
availability on the market with various mass and size versions. After determination of its 
attitude, using the actuators, a satellite should be oriented towards a specified direction. For 

doing that, two or more vectors should be used as reference directions in a single-frame method 
which this paper is mainly focused on. Commonly used reference vectors are the Earth’s 

magnetic field and unit vectors in the direction of the Sun, a known star or the centre of the 
Earth. Given a reference vector, the orientations of these vectors can be obtained from the 
measurement results of the attitude sensor. 

The algebraic attitude determination methods [1−4] are based only on the vector 
observations. These methods are based on computing any two analytical vectors in the reference 
frame and measuring them in the body coordinate system [2]. The paper [3] deals with 

estimating and enhancing the accuracy of an algebraic method of attitude determination. This 
method was examined with the use of three different vector pairs: 1) Earth’s magnetic field and 

Sun vectors; 2) Earth’s magnetic field and nadir vectors; 3) Sun and nadir vectors. In order to 
determine the attitude accuracy, some analytical relations were found for the attitude angles 

(pitch, roll and yaw). These relations include terms of the measured and theoretical vectors, 
used in the attitude determination. The effects of various factors on the attitude determination 
were examined and those which most significantly affect the accuracy were determined. 

In order to increase the attitude determination accuracy, a redundant data processing algorithm, 
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based on the Maximum Likelihood method, was used to carry out the statistical operation on 

the measurement results of three algorithms mentioned above and appropriate formulas were 
derived. As a result, the attitude was determined with a high accuracy in a wide range (even 
when the reference vectors were almost parallel). This method involves different vector pairs, 

therefore it may require redundant hardware and a substantial computational load.  
The vectors obtained from selected sensor data and the developed models can be used in 

solving the Wahba’s problem [2, 5]. Coordinate systems used as the reference frame and the 
body frame can be transformed to each other with necessary input parameters. The system uses 
single-frame methods: SVD, q, QUEST and FOAM to minimize the Wahba’s loss function and 

to determine the attitude of the satellite. They are different from the algebraic method, because 
they use an unlimited number of direction vectors and can process all of them in one attitude 

determination algorithm. In [6], the algebraic and SVD methods are compared to find  an 
optimum attitude determination method. Also, the effects of magnetometer biases are examined 
in the study. 

Kalman filters can give more improved results than the single-frame methods. In [7], 
a sigma-point Kalman filter is derived using the modified Rodrigues parameters and the real 

data of attitude sensors of CBERS-2 (China Brazil Earth Resources Satellite). The unscented 
Kalman filter algorithm is used for attitude estimation and a gyro-based model is considered 
for attitude propagation. The estimated attitude is very similar to the one obtained by the Euler 

angles’ propagation. Single-frame methods can also be used in filtering techniques as 
measurement of inputs in order to estimate the satellite’s attitude with a high accuracy. Also, 

the covariance analysis can be used directly in a non-traditional method which is an integrated 
algorithm using linear measurements. In [8, 9], a non-traditional attitude estimation scheme has 
been presented and it is shown that the non-traditional methods give the attitude results for 

a satellite that are superior to the traditional Kalman filters, even in the eclipse period.  
In [10], the performance of several methods is examined regarding their computational load 

and accuracy of used algorithms. Attitude determination and estimation methods are divided 
into two categories: those that use and those that do not use spacecraft attitude motion models 

inside their algorithms. The attitude determination methods which are considered in this paper 
as single-frame methods do not use knowledge about the attitude motion because they find the 
attitude at a single moment from the sensor-model data. In that paper, the attitude determination 

algorithms are characterized as ones with a low computation load in addition to a low accuracy 
of spacecraft attitude angles, in comparison with such attitude estimation methods as the 

extended Kalman filter, which is obvious. There were examined only methods based on 
observation of two vectors. Also, classification of the methods (attitude determination and 
estimation methods) is different; thus, there only the single-frame methods are compared to find 

the most robust and the fastest method in their classification. 
The goal of this study is to examine the errors and variances of errors for most of the vector-

observation-based satellite attitude determination methods which are single-frame methods. 
Also, based on this error and variance analysis, these attitude determination methods are 
compared. 

 

2. Measurement models and attitude determination methods 

 

To find the attitude of a spacecraft, minimum two vectors should be known. In order to find 
these vectors, many different sensors can be applied. In this study, the sensors of magnetic field 

and Sun direction vectors are used because these sensors are very common for on-board use in 
small satellites. In this paper,  the orbital parameters are calculated using the orbit propagation 

from the Two Line Elements (TLE) data for the TIMED satellite. Using mathematical models, 
the Sun vector (SR) and the Earth’s magnetic field vector (HR) are calculated in the orbital frame 
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(see Fig. 1). A Sun sensor and a magnetometer measure those vectors in the body frame. 

In order to transform data between these frames, a transformation matrix must be known. From 
the dynamic and kinematic equations, the Euler angles (θ is the pitch angle, ϕ is the roll angle 
and ψ is the yaw angle) are calculated to form this matrix. The transformation- attitude matrix 

(A) can be created using the Euler angles [11]. Numerical or analytical methods can be used to 
solve the kinematic and dynamic equations for the spacecraft attitude propagation [12].  

 

2.1. Measurement models 
 

International Geomagnetic Reference Field (IGRF) 12 is a basic magnetic field model 

defining 4-input variable (r, θ, φ, t) in nT, using numerical Gauss coefficients (g, h) − global 

variables in the IGRF algorithm [13]. In (1), a  is a magnetic reference spherical radius 

a = 6371.2 km, θ is a colatitude (deg) and φ is a longitude (deg). The transformed magnetic 
field model in the body coordinates with added a defined noise matrix forms the measurement 

model. The mathematical (Bo) and the measurement models (Bb) of the magnetic field can be 
written as in the (1) and (2), respectively. B indicates the magnetic field, whereas S indicates 

the Sun direction vector. 
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Fig. 1. A block diagram of the Sun and Earth’s magnetic field vectors-based single-frame attitude  

determination methods. 
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The Sun direction in the Earth Centred Inertial (ECI) frame can be modelled. The ecliptic 

longitude of the Sun is
eclipticλ  and a linear model of the ecliptic longitude of the Sun is ε [14]. 

A unit Sun direction vector (
ECI

S ) in the ECI frame can be obtained as in (3). Measurements 

can be modelled in the (4) with transforming data into the body coordinates and adding 

a defined noise matrix. The subscript notation used in the equations defines their coordinate 
systems as the orbital, body or ECI frames. 
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2.2. Algebraic method 
 
In the algebraic method, transformation-attitude matrix (A) is determined by the observations 

of two vectors.  û  and v̂  are any vectors which define an orthogonal coordinate system. In this 

study û  and v̂  are chosen as the Sun direction (S) and magnetic field (B) vectors.  

The equations can be defined as follows [15]: 

                                                                 ˆ ˆ,q u=                                                                         (5) 
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×
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                                                              ˆ ˆ .̂s q xr=                                                                             (7) 

A reference matrix MR can be calculated using two reference vectors in the orbital 

coordinates, ˆ
R

u  and ˆ .
R
v  

                                                        [ ]ˆ ˆ ˆ .
R R R R

M q r s= ⋮ ⋮                                                            (8) 

A body matrix MB can be calculated using two measured vectors in the spacecraft body 

coordinates, ˆ
B

u  and ˆ .
B
v  

                                                          [ ]ˆ ˆ ˆ .
B B B B

M q r s= ⋮ ⋮                                                            (9) 

An attitude matrix is calculated  as: 
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−

=                                                   (10) 

To calculate the attitude covariance matrix [1] which is in the Euler form, first the Cartesian 

attitude covariance matrix (Pθθ) must be known.  
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where 
2

1
σ  is a variance of the magnetometer; 

2

2
σ is a variance of the Sun sensor and I is a unit 

matrix with a dimension of 3 × 3. 
The attitude covariance matrix is a set of Euler angles: 

                                                               ,
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j
φ  are the Euler angles (ϕ, θ, ψ),  respectively [1] . 

 

2.3. SVD method 

 

In 1965, Wahba defined a problem which aims to minimize the loss (L(A)) between chosen 

reference and measured unit vectors [5]. In the (14), bi (a set of unit vectors in the body frame) 
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and ri (a set of unit vectors in the reference frame) with their ai (a non-negative weight) are the 

loss function variables obtained for instant time intervals. 

                                                       
21

( ) | b Ar | ,
2

i i i

i

L A a= −∑                                                         (14) 

                                                           
*

,

T

i i i
B abr=∑                                                                     (15) 

                                                       
*

0
( ) ( ).

T
L A tr ABλ= −                                                                (16) 

To simplify the loss function, *
B  matrix can be defined. The (16) shows that the trace of the 

product of transformation matrix A and transposition of the defined matrix *
B  in (15) should be 

maximized using statistical methods. In this study, the Singular Value Decomposition (SVD) 

Method is chosen to minimize the loss function problem as the optimal statistical method 
[16, 17]. 

                                             11 22 3

*

3
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                                                [1 1 det( )det( )] .
T

opt
A Udiag U V V=                                                    (18) 

The matrices U and V are orthogonal left and right matrices, respectively, and the primary 

singular values (
11 22 33
, ,∑ ∑ ∑ ) obey the inequalities

11 22 33
0∑ ≥ ∑ ≥ ∑ ≥ . To find the rotation 

angles of the satellite, a transformation matrix should be found from the (18) first with the 
determinant of one. 

A rotation angle error covariance matrix (
SVD
P ) is necessary for determining the instant time 

intervals which give higher error results than desired.  

                                       1 1 1

2 3 3 1 1 2
[(s s ) (s s ) (s s ) ] ,

T

SVD
P Udiag U− − −

= + + +                                 (19) 

where the secondary singular values are 
1 11 2 22 3 33

,  ,  det(U)det(V)s s s= Σ = Σ = Σ . The 

satellite has only two sensors (e.g. Sun and magnetic field sensors), thus the SVD-method fails 
when the satellite is in eclipse and when two observations are parallel with the same trend of the 

absolute error results.  

 

2.4. q method 

 

In (14), a Wahba’s loss function has been defined. The attitude matrix can be parameterized 

with quaternions. Davenport suggested a useful solution with a unit quaternion denoted q 
[16, 18]: 
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Because of the quaternion definition by the Euler theorem, there will be a rotation of the axis 

and the angle. The quadratic function from (21) includes scalar and vector quaternion elements. 
If K is defined as a traceless matrix, the eigenvector corresponding to the maximum eigenvalue 

is the optimum quaternion vector qopt in (26). 
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                                                        maksimum
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There is only one problem: if the eigenvectors are equal, then the correct solution cannot be 
obtained. Markley stated in [19] that it is not a problem of the q method, since in this situation 

the available data are not suitable to determine attitude (2010). The expected results in this 
situation are, like the results with a Sun sensor in the eclipse, going to infinity. The q method is 

used in various projects and studies [16, 20] . 
The rotation angle error covariance matrix can be found from the (19). A covariance goes to 

infinity if the eigenvectors are equal. Also, if the attitude cannot be observed then the covariance 
would be infinite, too. 

 

2.5. QUEST method 

 

The QUEST method as one of the single-frame methods aims to minimize the Wahba’s loss 
function in (14). Iterative techniques can be used to solve the characteristic equation in the q 
method. Additionally, some assumptions can be made to obtain the solutions faster. QUEST is 

one of methods that uses numerical iterative techniques. In this paper, QUEST is using the 
Newton Raphson method as an iterative approach with a Gibbs vector. However, with the Gibbs 

vector a singularity problem is associated that studies like [21] are working on to remove. The 
q and QUEST methods use only quaternions to obtain the attitude, but the SVD method can 
solve the Wahba’s problem with Euler angles directly besides using quaternions. An advantage 

to the method can be brought by comparing both results obtained in the same conditions. 
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To find 
max

,

imum
λ  from the ( ) 0

max
det K Iλ− =  characteristic equation, a defined

0
λ  can be used as 

the initial value for simplicity [16].  The parameters are the same as in the q method.  
Also, from the reference [19], the covariance matrix can be obtained as follows:  

                                                    ( )
1

.

T
iQUEST i ii
aP I bb

−

 = − ∑                                                                (32) 

The covariance matrix (
QUESTP ) is a result that can be used as the initial value for filtering 

approaches like EKF, UKF or variance values for the whole mission period. Besides, 

instantaneous time intervals when the algorithm should be switched to another one can be found 
out by the covariance analysis. 
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2.6. FOAM method 

 

The loss function in (14) can be also minimized using the FOAM method [22]. First of all, 
the Frobenius norm should be defined in (33) using the G symbol. From this definition, the 

optimal attitude matrix can be determined (35): 
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2 2
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T

i , jF
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max F
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max opt
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Using the FOAM method, the optimal attitude matrix can be found, and from that 
a quaternion or Euler angle representation can be used.  

The covariance Matrix (PFOAM):  

                                              ( ) ( )
1

T

FOAM max
P I BBdet B κκλ

−

= +−   .                                                  (37) 

The matrix B defined in (17) is directly used in (37) to find the error covariance. 
 

3. Simulation results 

 

The simulations were performed in order to estimate the attitude of the satellite and compare 

the methods to find the optimum one. The simulations were based on the orbital parameters 
of TIMED satellite. The algorithm was run for almost one orbital period (6000 seconds) with 1 
second sampling time of the sensors. Direction cosines of standard deviations for the 

magnetometer and Sun sensors were taken as 0.008 and 0.002, respectively. The attitude angle 

errors found by using single-frame methods are presented in Figs. 3−7. In Fig. 2, the angles 
between the vector observations coming from the sensors and the pitch angle propagation can 
be seen in the respective frames. The angles between the vectors are close neither to 0 degree 
nor 180 degrees; therefore, they are not parallel to each other and will not affect the attitude 

of the satellite by being not observable vectors. On the other hand, the pitch angle is closing up 
to 90 degrees (at about 1000th sec and 3800th sec) which causes oscillations because of the 

trigonometric calculations in the methods, especially in the algebraic method. 
 

 
Fig. 2. From top to bottom: An angle between measurement vectors and a pitch angle.  
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In Figs. 3−7, the absolute attitude errors obtained by using the algebraic, SVD, q, QUEST 
and FOAM methods are presented. All three axes as frames in the figures can be seen as the 

roll, pitch and yaw angles, respectively. Inside the dotted lines the eclipse period is defined as 

a 1000−1500 second time interval. In Fig. 3, the attitude of the satellite found by the algebraic 

method can be seen − with a variance propagation given in deg2 units − in the bottom frame. 
It should be kept in mind that single-frame methods are not capable to find accurate results for 

the eclipse period because of no data are available from the Sun sensor. 
 

 
Fig. 3. The attitude error and variance results obtained by the algebraic method. 

 

 
Fig. 4. The attitude error and variance results obtained by the SVD method. 
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in Fig. 6. Here, QUEST is not able to follow the trend of the error as the error covariance values. 

Lastly, the absolute attitude errors and variances found by the FOAM method are shown 
in Fig. 7. The results of FOAM have some gaps in their propagation even if the algorithm uses 
measurements at a single moment, and there are some jumps in the determined attitude. 

 

 
Fig. 5. The attitude error and variance results obtained by the q method. 

 

 
Fig. 6. The attitude error and variance results obtained by the QUEST method. 
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having Sun sensors. Here, as seen from the table, the SVD and q methods are the most reliable 

ones regarding robustness. If the computational burden is concerned, then the QUEST or 
algebraic method can possibly be selected as the base method to determine the attitude 
of a satellite. 

 

 
Fig. 7. The attitude error and variance results obtained by the FOAM method. 

 
Table 1. The RMS results for attitude angles obtained with different single-frame methods.  
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Q Method 

Error 1 3,38 1,79 0,97 

Error 2 100,19 30,09 194,19 

Error 3 2,69 1,65 1,07 

QUEST Method 

Error 1 3,39 1,87 0,98 

Error 2 93,19 30,12 194,21 

Error 3 2,72 1,65 1,11 

FOAM Method 

Error 1 4,26 2,21 1,00 

Error 2 nd nd nd 

Error 3 2,93 0,84 1,98 
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vector observations. The orbit propagation of a satellite is achieved by using chosen satellite’s 

orbital parameters for 1 period of the mission. In this study, magnetometer and Sun sensors are 
selected as attitude sensors because of their common usage on nanosatellites. According to the 
simulation results, the optimal attitude results can be obtained by using the SVD or q methods. 

However, the suggested methods may fail in the process of finding the desired solutions in some 
situations. Neither methods can estimate the attitude angles if at least one of the sensors cannot 

send any measurement data. Moreover, if the Sun direction and magnetic field vectors are 
parallel to each other, both algorithms would also fail. In the paper there is demonstrated that 
the SVD gives more accurate and robust results and the QUEST is the fastest of the other 

methods. 
Filtering methods such as the extended Kalman filter or unscented Kalman filter can be used 

after those coarse attitude determination methods, to improve the results with an integration. 
Also, the variance information becomes an important issue to make the filter naturally adapt to 
the measurement results by direct using the attitude error covariance values. 
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