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Abstract: A method of the improvement of the total station observations 3D adjustment by
using precise geoid model is presented. The novel concept of using the plumb line direction
obtained from the precise geoid model in combined GPS/total station data adjustment is
applied. It is concluded that results of the adjustment can be improved if data on plumb line
direction is used. Theoretical background shown in the paper was proved with an experiment
based on the total station and GPS measurements referred to GRS80 geocentric reference
system and with the use of GUGIK2001 geoid model for Poland.
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1. Introduction

Three-dimensional models of terrestrial objects are created on the basis of a set of
points with X, Y , Z coordinates obtained using direct (total station observations, laser
scanning) and indirect methods (close range photogrammetry).

The accuracy of created 3D model depends on accuracy of coordinates obtained
for object individual points. In the case of direct surveying methods the accuracy of
surveyed points depends on good knowledge of the six total station or laser scanner
external orientation parameters:
• XS,YS,ZS geocentric GRS80 coordinates of the origin S of the total station or

scanner measuring frame (x, y, z) (Fig. 1 and Fig. 2),
• orientation angles Σ, ξ, η of the measuring frame (x, y, z) with respect to the

ETRF89 external reference frame (X, Y , Z) (Fig. 2).
The orientation angles ξ, η are the components of the deflection of the total

station or laser scanner vertical axis from normal to the GRS80 ellipsoid (Fig. 2). The
directional horizontal angle Σ is called an instrument orientation constant.
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The description of the adjustment of the total station observations according to
such assumptions is given e.g. in the manual (Osada, 2002). The observations being
adjusted there are x,y,z coordinates in the total station or laser scanner measuring frame
(Fig. 1). In this article, the observational system is modified in such a way that the
directly measured spatial distances s, horizontal angles α and vertical angles β are to
be adjusted (Fig. 1). On the testing basis of five measured GPS points P1, P2, P3, P4,
S (Fig. 1) the adjustment accuracy is analysed with the assumptions that the position
of the total station point S is known or unknown. The effect of the deflection of the
vertical components ξ, η obtained from the actually official GUGIK2001 geoid model
for Poland (Pażus et al., 2002) (Fig. 3) is examined.

Hence, the principal objective of the current research is to prove the hypothesis
that the deflection of the vertical components ξ, η obtained from the geoid model
can substantially improve the effects of the spatial 3D adjustment of the total station
observations.

According to the producers of total stations, the direction of the vertical axis of
the total station is consistent with the plumb line direction to the level of 1 arcsec.
Tests of the GUGIK2001 geoid model conducted by GUGiK (Head Office of Geodesy
and Cartography, Warsaw) show that the components of the deflection of the verti-
cal calculated from that geoid model coincide with the measured components with
accuracy of 0.5 arcsec (Krynski and Lyszkowicz, 2006). It substantiates the use of
the deflection of the vertical components calculated from the geoid model instead of
measured components with an average error about 1 second. This prevents accidental
arrangement of the total station axis in the 3D adjustment, and ultimately leads to good
results.

2. Data used in numerical experiment

2.1. The total station and GPS measurements

The four reference points P1, P2, P3, P4 and the control point Q were surveyed
using a total station set on the point S (Fig. 1). The standard deviations of the spatial
distance s, horizontal angle α, vertical angle β, reflector height j and total station
height above ground point i are given in Figure 1.

Coordinates X, Y , Z of the reference points P1, P2, P3, P4 and the total station
position point S were also surveyed using GPS receivers with standard deviations
shown in Figure 1.
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Fig. 1. Total station (s, α, β), GPS (X, Y , Z) and plumb line (ξ, η) data

2.2. Computation of external orientation parameters of the total station

Knowledge of six external orientation parameters Σ, ξ, η, XS, YS, ZS of total station
or laser scanner is needed for conversion of coordinates from the measuring frame (x,
y, z) to the external reference frame (X,Y,Z) (e.g. Osada, 2002)



X
Y
Z

 =



XS

YS

ZS

 +
[
R (Σ) ·Q (ξ, η, ϕS) · P (ϕS, λS)

]T ·



x
y
z

 (1)

where P, Q, R are rotation matrixes in three dimensional space

P (ϕS, λS) =



− sin(ϕS) · cos(λS) − sin(ϕS) · sin(λS) cos(ϕS)
− sin(λS) cos(λS) 0

cos(ϕS) · cos(λS) cos(ϕS) · sin(λS) sin(ϕS)

 (2)

Q (ξ, η, ϕS) =



1 −η · tan(ϕS) −ξ
η · tan(ϕS) 1 −η

ξ η 1

 (3)

R (Σ) =



cos(Σ) sin(Σ) 0
− sin(Σ) cos(Σ) 0

0 0 1

 (4)

Approximate values of northern ξ, and eastern η components of deflection of the
vertical at position S of the total station (Fig. 2) can be evaluated from the geoid model
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Fig. 2. Six parameters of the total station external orientation: Σ, ξ, η, XS ,YS ,ZS

GUGIK2001 for Poland using the geoid PL GUGIK2001 computer program (written
by E. Osada) (Fig. 3)

ξ = 6.01′′, σξ = 1′′ and η = 6.80′′, ση = 1′′ (5)

The height of the point S is only about 120 m above geoid. For the biggest heights
one should add corrections due to curvature of the plumb line (e.g. Osada, 2002).

Fig. 3. The geoid PL GUGIK2001 computer program

Approximate value of the total station orientation constant Σ can be obtained by
solving the set of transformation equations (1) for the surveyed GPS points. Using
the well known Levenberg−Marquardt method of conjugate gradients (Nocedal and
Wright, 2006) one obtains Σ 386.0907 grad.
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3. The total station spatial 3D adjustment algorithm

In the examined task of the spatial adjustments of the total station observations
in relation to the GPS points and normal plumb line direction, the Gauss-Markov
observational model

v = Ax − l; P = C−1l (6)

is determined on the basis of equations:
measured spatial distances s, horizontal α and vertical β angles (Fig. 1 and Fig. 2)



vs

vα
vβ

 =



cos(α) · sin(β) sin(α) · sin(β) cos(β)

− sin(α)
s · sin(β)

cos(α)
s · sin(β)

0

cos(α) · cos(β)
s

sin(α) · cos(β)
s

−sin(β)
s


·



vx

vy

vz

 (7)

where

vx = (− cos(Σ) · sin(ϕs) · cos(λs) − sin(Σ) · sin(λs)) · (dX − dXs)
+ (− cos(Σ) · sin(ϕs) · sin(λs) + sin(Σ) · cos(λs)) · (dY − dYs)
+ (cos(Σ) · cos(ϕs)) · (dZ − dZs) − cos(Σ) · zg · (ξ + dξ)
+

(
sin(Σ) · tan(ϕs) · xg − cos(Σ) · tan(ϕs) · yg − sin(Σ) · zg

)
· (η + dη)

+
(
− sin(Σ) · xg + cos(Σ) · yg

)
· dΣ + cos(Σ) · xg + sin(Σ) · yg − x

(8)

vy = (sin(Σ) · sin(ϕs) · cos(λs) − cos(Σ) · sin(λs)) · (dX − dXs)
+ (sin(Σ) · sin(ϕs) · sin(λs) + cos(Σ) · cos(λs)) · (dY − dYs)
+ (− sin(Σ) · cos(ϕs)) · (dZ − dZs) + sin(Σ) · zg · (ξ + dξ)
+

(
cos(Σ) · tan(ϕs) · xg + sin(Σ) · tan(ϕs) · yg − cos(Σ) · zg

)
· (η + dη)

+
(
− cos(Σ) · xg − sin(Σ) · yg

)
· dΣ − sin(Σ) · xg + cos(Σ) · yg − y

(9)

vz = cos(ϕs) · cos(λs) · (dX − dXs) + cos(ϕs) · sin(λs) · (dY − dYs)
+ sin(ϕs) · (dZ − dZs) + xg · (ξ + dξ) + yg · (η + dη) + zg − z

(10)

and



xg

yg

zg

 =



− sin(ϕS) · cos(λS) − sin(ϕS) · sin(λS) cos(ϕS)
− sin(λS) cos(λS) 0

cos(ϕS) · cos(λS) cos(ϕS) · sin(λS) sin(ϕS)

 ·



X − XS

Y − YS

Z − ZS

 (11)

measured coordinates X, Y , Z of the GPS points (Fig. 1 and Fig. 2):
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vX = dX
vY = dY
vZ = dZ

(12)

components ξ, η of the deflection of the vertical (5) obtained from geoid model (Fig. 2
and Fig. 3)

vξ = dξ
vη = dη

(13)

The observational equations of x, y, z coordinates in the total station coordina-
te system (6)-(8) are obtained on the basis of differential transformation equations
(X,Y,Z) → (x, y, z) inverse to (1) (e.g. Osada, 2002). The observational equations of
directly measured values s, α β as functions of residuals vx, vy, vz (5) are obtained on
the basis of differential transformation



dx
dy
dz

 =



cos(α) · sin(β) −s · sin(α) · sin(β) s · cos(α) · cos(β)
sin(α) · sin(β) s · cos(α) · sin(β) s · sin(α) · cos(β)

cos(β) 0 −s · sin(β)

 ·



ds
dα
dβ

 (14)

respectively for the known conversion (s, α, β)→ (x, y, z) (Fig. 1).
The Gauss-Markov observational model (6), for the complete experiment data

(Fig. 1) is defined as follows:
x – vector of unknown corrections:

dξ, dη, dΣ, dX1, dY1, dZ1, ..., dX4, dY4, dZ4, dXS, dYS, dZS;

v – vector of unknown observational error residuals:

vs1 , vα1 , vβ1 , ..., vs4 , vα4 , vβ4 , vX1 , vY1 , vZ1 , ..., vX4 , vY4 , vZ4 , vXS , vYS , vZS , vX4 , vξ , vη;

A – known n × k design matrix;
l – known observational vector: ls1 , lα1 , lβ1 , ..., ls4 , lα4 , lβ1 , 0, ..., 0;
Cl – covariance matrix of observations, composed of standard deviations (Fig. 1):

σs1 , σα1 , σβ1 , ..., σs4 , σα4 , σβ4 , σX1 , σY1 , σZ1 , ..., σX4 , σY4 , σZ4 , σXS , σYS , σZS , σξ , ση

The solution of the Gauss-Markov model by least squares method is given by

x = (ATPA)−1ATPl (15)

with covariance matrix Cx = (ATPA)−1 and testing parameter

m0 =

√
vT · P · v

n − k
� 1 (16)
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It is well known that if the result of adjustment is not positive (m0 � 1) due to the
low precision or movements of reference GPS points: |vX | > σX , |vY | > σY , |vZ | > σZ ,
k = 2, 3 then the calculations can be continued iteratively. The weights p of coordinates
with large corrections v that were obtained in a previous step are corrected in every
step of the iteration process p← p f (v), where f (v) is a damping function, for example
Huber function (Walter and Pronzato, 1997):

f (v) =


1 |v| ≤ a
a
|v| |v| > a (17)

where a is a parameter determined empirically.
In this case the experimental data were measured with high accuracy (Fig. 1) and

the problem with an outlying data does not occur.

4. The numerical experiments

Data observed with the total station were adjusted according to the algorithm
presented in section 3, in 11 experiments I – XI:

In the numerical experiment I (Table 1) all possible directional GPS points P1,
P2, P3, P4 (Fig. 1) were taken to the adjustment in combination with 4 modes: known
or unknown XS, YS, ZS coordinates of total station point S and known or unknown ξ,
η components of the deflection of the vertical.

In the numerical experiments II, III, IV, V (Table 2) 4 combinations of 3 out of
four GPS directional points P1, P2, P3, P4 were taken to the adjustment in combination
with 4 above mentioned modes concerning knowledge of XS, YS, ZS coordinates of total
station point S as well as ξ, η components of the deflection of the vertical.

In the numerical experiments VI, VII, VIII, IX, X, XI (Table 3) 6 combinations
of 2 out of four GPS directional points P1, P2, P3, P4 with assumed known XS, YS,
ZS coordinates of total station point S were taken to adjustment in combination with 2
modes: known or unknown ξ, η components of the deflection of the vertical.

The adjusted ξ, η components of the deflection of the vertical at the total station
point S and the horizontal HD and vertical VD displacements of the control point Q
(Fig. 1) are given in Tables 1, 2, and 3.

The results of numerical experiments performed are as follows:
1) adjusted corrections v to the observations in all 11 experiments are smaller than

their double standard deviations σ, i.e. |vi| ≤ 2σi where i = s, α, β, X, Y , Z , ξ, η;
2) in all experiments with assumed unknown GPS coordinates XS.GPS, YS.GPS, ZS.GPS

of the total station point S the differences between the adjusted coordinates XS, YS,
ZS and the respective ones obtained from GPS measurements are smaller than their
double standard deviations: |XS −XS.GPS | < 2σX , |YS −YS.GPS | < 2σY , |ZS −ZS.GPS | <
2σZ ;

3) in the majority of experiments with assumed unknown components of the deflection
of the vertical the differences between the computed ξ, η components and the
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Table 1. Numerical experiments: I

I: P1 P2 P3 P4

coordinates of GPS and total station point S assumed known

yes yes no no

ξ, η assumed known from geoid model

yes no yes no

adjustment results: ξ, η at S, and HD, VD at Q

ξ [arcsec] 6.1 2.9 6.1 2.9

η [arcsec] 6.7 5.7 6.7 5.7

HD [mm] 0.0 0.7 2.3 2.9

VD [mm] 0.0 3.1 0.5 3.2

Table 2. Numerical experiments: II, III, IV, V

II: P1 P2 P3 III: P1 P2 P4 IV: P2 P3 P4 V: P3 P4 P1

coordinates of GPS and total station point S assumed known

yes yes no no yes yes no no yes yes no no yes yes no no

ξ,η assumed known from geoid model

yes no yes no yes no yes no yes no yes no yes no yes no

adjustment results: ξ, η at S, and HD, VD at Q

ξ [arcsec] 6.1 5.6 6.2 6.6 6.0 1.7 6.0 0.9 6.1 3.3 6.1 3.3 6.1 -1.1 6.1 -2.2

η [arcsec] 6.8 6.7 6.8 7.0 6.8 8.8 6.8 10.8 6.7 4.1 6.7 4.0 6.7 5.2 6.7 5.1

HD [mm] 0.7 0.6 1.3 1.2 3.9 3.0 2.9 3.7 4.1 1.2 4.1 4.2 1.7 2.1 2.9 4.5

VD [mm] 1.5 1.7 2.1 1.9 -0.1 -1.2 -0.1 -4.6 -0.1 3.6 -0.1 3.4 0.0 6.7 0.0 8.4

respective ones obtained from geoid model ξgeoid= 6.0”, ηgeoid = 6.8” are much
bigger than triple standard deviations of the components of the deflection of the
vertical, i.e. | − ξgeoid | > 3σξ , |η − ηgeoid | > 3ση, (Tables 1-3);

4) in the majority of experiments with assumed known components of the deflection
of the vertical ξgeoid , ηgeoid the vertical displacements VD of the control point Q are
significantly smaller than in the respective experiments with unknown deflection
of the vertical;

5) in the numerical experiment X very good results were obtained with assumed
known components of the deflection of the vertical ξgeoid , ηgeoid but on the other
hand – very bad results with unknown components of the deflection of the vertical;
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Table 3. Numerical experiments: VI, VII, VIII, IX, X, XI

VI: P1 P2 S VII: P2 P3 S VIII: P3 P4 S IX: P4 P1 S X: P1 P3 S XI: P2 P4 S

ξ,η assumed known from geoid model

yes yes yes yes yes no yes no yes no yes no

adjustment results: ξ, η at S, and HD, VD at Q

ξ [arcsec] 6.1 4.1 6.1 4.3 6.1 1.8 6.1 -0.9 6.2 -94.0 6.1 4.6

η [arcsec] 6.8 8.7 6.8 4.9 6.7 4.3 6.8 7.6 6.8 -15.0 6.8 0.5

HD [mm] 3.3 2.8 2.5 2.1 0.3 1.1 15.2 14.0 1.9 19.3 3.2 3.6

VD [mm] 1.2 -1.0 1.2 2.9 -0.7 4.8 -0.7 2.7 1.3 76.3 -0.8 7.6

in those cases the vertical displacements of the control point Q was estimated as
VD = 1.3 mm and VD = 76.3 mm, respectively (Table 3).

5. Conclusions

The results of numerical experiments performed show that the presented algorithm
makes possible to obtain more accurate results of the adjustment of the total station
observations with assumed known components ξgeoid , ηgeoid of the deflection of the
vertical, taken from GUGIK2001 geoid model as compared to the adjustment with
unknown components of the deflection of the vertical when vertical displacements of
the surveyed points can reach up to 10 cm.

The method of improvement of the total station 3D adjustment by using geoid
model GUGIK2001 for Poland, proposed in the article can thus be applied to obtain
a precise metric 3D model of terrestrial objects in the geocentric coordinate system
GRS80.

The quality of available geoid model is critical to ensure accuracy improvement
by using geoid model according to the method proposed. The accuracy of components
of the deflection of the vertical calculated from that model on the level 0.5 arcsec is
required.
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Podniesienie dokładności wyrównania przestrzennego stanowiska tachimetru przy zastosowaniu
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Streszczenie

W artykule jest zaproponowana metoda podniesienia dokładności wyrównania przestrzennego stanowiska
tachimetru nawiązanego do punktów GPS przy zastosowaniu składowych odchylenia pionu, pozyskanych
z precyzyjnego modelu geoidy.

Na podstawie eksperymentalnych pomiarów stwierdzono, że otrzymuje się znacznie bardziej do-
kładne wyniki wyrównania z uwzględnieniem odchylenia pionu w porównaniu do wyników wyrównania
z nieznanym odchyleniem pionu. W drugim przypadku można otrzymać wyniki o małej dokładności,
z pionowymi przemieszczeniami mierzonych punktów sięgającymi nawet 10 cm.

Zaproponowana metoda ta może być stosowana do tworzenia precyzyjnych metrycznych 3D modeli
naziemnych obiektów w geocentrycznym układzie odniesienia GRS80.




