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On Transformation of a Logical Circuit to a Circuit
with NAND and NOR Gates Only

Samary Baranov and Andrei Karatkevich

Abstract—In the paper we consider fast transformation of a
multilevel and multioutput circuit with AND, OR and NOT gates
into a functionally equivalent circuit with NAND and NOR gates.
The task can be solved by replacing AND and OR gates by
NAND or NOR gates, which requires in some cases introducing
the additional inverters or splitting the gates. In the paper the
quick approximation algorithms of the circuit transformation are
proposed, minimizing number of the inverters. The presented
algorithms allow transformation of any multilevel circuit into a
circuit being a combination of NOR gates, NAND gates or both
types of universal gates.
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I. INTRODUCTION

THE gates which are most popular in the logic synthesis
are NOR and NAND gates. It follows from two facts.

First one is the functional completeness - each Boolean
function can be implemented by using a combination of NOR
gates or NAND gates. The second fact is that those gates
require few transistors (e.g., in NMOS logic a NAND gate
is simpler than an AND or OR gate) [1]-[3].

However, people naturally use to think in the basis AND-
OR-NOT, not in the basis NOR-NAND. Besides, almost
all known methods for minimization of logic circuits, from
Karnaugh maps to the algorithms used in the Espresso logic
minimizer, produce results in the same AND-OR-NOT basis
[4], [5]. Only after such minimization the special mapping
algorithms are used to cover the circuit by the librarian
elements, NOR and NAND gates as well. In case of two-
level minimization in the form of sum of products or product
of sums, such mapping is trivial. But in the FPGA circuits,
consisting of the logic blocks, a multilevel implementation
of the Boolean functions is typical [6]-[9]. Optimization of
transformation of a multi-level circuit from AND-OR-NOT
basis to NOR-NAND basis is not an easy task.

In this paper we discuss a rather simple method for trans-
formation of any multilevel and multioutput circuit consisting
of AND, OR and NOT gates into the circuit consisting of
NOR and NAND gates without using of Boolean expressions.
We show that the task of construction of an optimal circuit is
reduced to the task of coloring of the circuit graph into two
colors with minimization of violations in such a coloring.
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TABLE I
TRUTH TABLE FOR FUNCTION NOR

x1 x2 x1 + x2 (x1 + x2)′

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

II. CIRCUITS WITH NOR GATES

Table I presents the truth table for function NOR. This
function produces a value 1 only when both arguments are
equal to 0 (the first row), otherwise it is equal to 0.

Implementation of functions OR and AND with NOR gates
is evident from the simple logical transformations. Thus, to
realize OR-function f = x1 + x2 with NOR gates we must
use the same inputs x1, x2 as the inputs for NOR gate and
invert its output (which can be done by providing its output
value to the inputs of another NOR gate). Implementation of
AND-function f = x1x2 with NOR gates follows from the
De Morgan’s law: x1x2 = (x1′ + x2′)′, so the inputs for the
NOR gate have to be inverted.

As the first example, we will discuss mapping of a logic
circuit shown in Fig. 1 with NOR gates. Here a gate by gate
transformation is used. Thus, every gate OR in this circuit is
replaced by a gate NOR and an inverter at its output, and every
AND gate is replaced by a NOR gate and the inverters at its
inputs. Fig. 2 demonstrates the result of such transformation.
In the circuit thus constructed, two sequential inverters may be
found (such cases are dotted in Fig. 2). The final step consists
of deleting of such pairs of inverters (Fig. 3).

Fig. 1. Example 1 with AND and OR gates.
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TABLE II
TRUTH TABLE FOR FUNCTION NAND

x1 x2 x1 + x2 (x1 + x2)′

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

III. CIRCUITS WITH NAND GATES

Table II presents the truth table for function NAND. This
function produces 0 only when both arguments are equal to 1
(the last row), otherwise its value is 1.

Implementation of the functions AND and OR with the
NAND gates is analogous to the implementation with the NOR
gates. Thus, to realize the function AND f = x1x2 with a
NAND gate we must use the same inputs x1, x2 and invert

Fig. 2. Gate by gate mapping of the circuit in Fig. 1 with NOR gates.

Fig. 3. Final step of the mapping with NOR gates.

the output. To realize the runction OR f = x1 + x2, we have
to use the inverted inputs (x1 + x2 = (x1′x2′)′, according to
De Morgan law).

As an example, let us consider the mapping of the same
logic circuit (Fig. 1) with NAND gates. Again, here we use a
gate by gate transformation. Thus, the gates OR in this circuit
are replaced by gates NAND with inverted inputs. Every gate
AND in Fig. 1 is replaced by a gate NAND and an inverter at
its output. The result of the transformation is shown in Fig.4
As above, in the circuit thus constructed, the couples of two
sequential inverters may be found (such cases are dotted in
Fig. 4). At the final step such pairs of inverters are deleted
(Fig. 5).

IV. CIRCUITS WITH NOR AND NAND GATES

In both previous cases each AND gate and OR gate is
replaced by a NOR gate or by a NAND gate with the inverters
(which can be considered as the NAND or NOR gates with
a single input) added when necessary. Such transformation

Fig. 4. Gate by gate mapping of the circuit in Fig. 1 with NAND gates.

Fig. 5. Final step of the mapping with NAND gates.
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is deterministic, and there is no room for optimization. The
situation is different if we can use both NAND and NOR gates.
Then, depending of which kind of gate replaces each AND and
OR gate, number of the additional inverters can differ.

Suppose that a number 0 or 1 is used to mark every AND
and OR gate, and the following simple rules are used to decide
what gate (NOR or NAND) should cover the gate:

1) If an AND gate is marked by 1, then it is realized by a
NAND gate;

2) If an OR gate is marked by 1, then it is realized by a
NOR gate;

3) If an AND gate is marked by 0, then it is realized by a
NOR gate;

4) If an OR gate is marked by 0, then it is realized by a
NAND gate.

In Fig. 6a four copies of the same two-level circuit directly
implementing function f1 = x1x2 + x3 are shown. In these
circuits, we numbered the gates by all possible combinations
of zeroes and ones. Then, in Fig. 6b we have implemented
these circuits with NOR and NAND gates according the rules
presented above.

It can be seen in Fig. 6 that:
1) If two gates in the sequence are marked by different

numbers (0-1 in the second circuit and 1-0 in the third
circuit), then there is no inverter between the NOR and
NAND gates;

2) If two gates in the sequence are marked by the same
numbers (0-0 in the first circuit and 1-1 in the last one),
then there is an inverter between the NOR and NAND
gates.

It is easy to see that the above is true not only for the
combination AND-OR, but for three other possible combina-
tions of AND and OR gates, too. Hence, minimization of the
number of cases in which two connected gates are marked
by the same number leads to minimization of number of the
additional gates. Besides, if an output of the whole circuit is
taken from a gate marked by 1, then an additional inverter
at the output is needed. Analogously, an input of the whole
circuit has to be inverted, if it is connected to an input of
a gate marked by 0. However, we may suppose that for a

Fig. 6. Four implementations of the same circuit with NOR NAND gates.

circuit which is complicated enough the number of the internal
connections is much greater than the number of the external
ones, so minimization of the number of additional inverters
inside the circuit is more important.

Consider a graph with vertices corresponding to the AND
and OR gates. Let two vertices be connected by an edge if and
only if output of one of the corresponging gates is connected
to the input of another. Then, the task of minimization of the
number of additional gates is reduced to the task of coloring
of the graph by two colors (0 and 1) with minimization of the
number of failures in such coloring - i.e. with minimization
of the number of cases in which two connected vertices are
colored by the same color.

Following from the above, the rules for transformation of
any logic circuits with AND-OR gates into the circuit with
NAND-NOR gates can be briefly formulated in the following
way:

Step1. Marking. At this step, we mark each OR and AND
gate of the OR-AND-NOT circuit with 1 or 0, minimizing the
number of cases in which two connected gates are marked
with the same number (such minimization will be discussed
in more detail in the next section).

Step2. Mapping. At this step, each gate marked by 1, should
be replaced with a ”consonant” gate (OR by NOR, AND by
NAND). Each gate marked by 0, should be replaced with a
non-consonant gate (OR by NAND, AND by NOR). In such
mapping, inverters appear only between gates marked by the
same numbers (0-0 or 1-1).

One of the possible markings for the circuit shown in Fig.
1 is presented in Fig. 7. The circuit in Fig. 13 consisting of
NOR and NAND gates is the result of mapping of the circuit
consisting of AND and OR gates according to Fig. 7. Note
that the number of gates of the circuit in Fig. 13 is less than
the numbers of gates of the circuits shown in Figs 3 and 5
(and the same as of the circuit shown Fig. 1).

Since there are no violations in the marking of the circuit
shown in Fig. 7, there are no inverters between gates in Fig.
13. Evidently, it is not always the case. In the circuit shown in
Fig. 9 (Example 2), a violation in marking cannot be avoided
(in this example two connected gates AND4 and AND7 are
marked by 0), and an inverter between the corresponding gates
has to be inserted in the transformed circuit shown in Fig. 10.

Fig. 7. Circuit from Fig. 1 with a marking.
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Summarizing, the process of transformation of an AND-
OR-NOT circuit into a NOR-NAND circuit can be described
in short as follows:

1) Mark the AND and OR gates with 1 and 0, minimizing
the violations as described above;

2) If a gate is marked by 0, replace AND by NOR or OR
by NAND;

Fig. 8. Example 1 with NOR and NAND gates.

Fig. 9. Example 2 with AND and OR gates (marked).

Fig. 10. Example 2 with NOR and NAND gates.

3) If a gate is marked by 1, replace AND by NAND or OR
by NOR;

4) If an output of the circuit is connected to an output of
a gate marked with 1, invert the output;

5) If an input of the circuit is connected to an input of a
gate marked with 0, invert the input;

6) If an output of a gate marked with 1 is connected to an
input of an inverter, remove the inverter;

7) If an input of a gate marked with 0 is connected to an
output of an inverter, remove the inverter;

8) Put an inverter between two connected gates if they have
the same marks;

9) Replace every inverter by a NAND or NOR gate with
connected inputs.

V. OPTIMIZED MARKING

As it was mentioned in the previous section, the task of
optimal marking of a circuit has something in common with
the task of graph coloring. Chromatic number of a graph is
equal to 2 if and only if the graph is bipartite [10]. Hence, the
considered task is reduced to the task of removing the minimal
number of edges of a graph necessary to make it a bipartite
graph, which is known as the edge bipartization problem [11].
The decision version of the problem is NP-hard; there are
some exact (exponential time) and approximation (polynomial
time) algorithms of edge bipartization [11]-[15]. The known
approximation algorithms of edge bipartization use the linear
programming methods [12].

We propose a quick approximation method of edge bipar-
tization using a spanning tree construction. A fundamental
cycle basis of an undirected graph is a minimal set of cycles
that allows to obtain any cycle of the graph by applying the
operation of symmetric difference. A fundamental cycle basis
can be obtained from a spanning tree of the graph, where
every edge belonging to the graph and not belonging to the
spanning tree creates together with the edges of the tree a
cycle belonging to the cycle basis [10]. A spanning tree can
be found in linear time using depth-first search or breadth-first
search [16], so the whole process of detecting the fundamental
cycle basis is polynomial.

Now, it is easy to see that if all the cycles in the fundamental
cycle basis have an even length, then the graph is bipartite
(symmetric difference of two cycles of an even length results
in a cycle of an even length). If there are the cycles with
odd length, let us break them by removing some edges. To
minimize the number of removed edges, it ts reasonable to
detect a minimized hitting set of the collection of sets of edges
of the odd cycles (and to remove the edges belonging to the
hitting set). Such a set can be obtained by a polynomial time
approximation algorithm of set covering [16].

Unfortunately, the graph obtained after this operation still
may be not bipartite. Then, it has to be repeated until the graph
is bipartite (at each iteration at least one edge is removed,
hence the loop terminates). When a bipartite graph is obrained,
it should be colored with 2 colors, which can be done by DFS
or BFS [17].

The proposed marking method can be briefly described as
follows.
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1) Create for given circuit a graph G such that its vertices
correspond to AND and OR gates; two vertices are
connected by an edge if and only if output of one of
the corresponging gates is connected to the input of the
other one;

2) Construct a spanning tree of G by means of DFS or
BFS;

3) Obtain a fundamental cycle basis from the spanning tree;
4) If every cycle in the obtained basis has even length, go

to item 6;
5) For the sets of edges of all the odd length cycles in the

basis, find a hitting set using a greedy algorithm;
6) Remove from G all the edges belonging to the obtained

hitting set and go to item 2;
7) Color G with 2 colors by means of DFS or BFS;
8) Mark every AND and OR gate of the circuit with 0 or

1, according to the obtained coloring.
Consider the example shown in Fig. 11. The corresponding

graph is shown in Fig. 12 (numbers of the nodes correspond
to the numbers of the gates in Fig. 11). The solid lines depict
the edges belonging to a spanning tree (Fig. 12a). The cycles
created by other edges together with the spanning tree are as
follws: 1-2-3, 2-3-4, 2-3-5-4 and 2-3-5-6-4. Three of them
are of odd length (1-2-3, 2-3-4, 2-3-5-6-4). They have in
common the edge 2-3, so removing this edge breaks all of
them. However, the obtained graph is still not bipartite (Fig.
12b). A spanning tree for this graph is shown by the solid
lines in Fig. 12b. The fundamental cycle basis obtained from
the tree contains of the cycles 1-2-4-5-3, 3-4-5 and 4-5-6. All
these cycles have odd length, and all of them have common
edge 4-5. Removing of this edge leads to a bipartite graph
shown in Fig. 12c - here the removed edges are marked by
the dotted lines, and the white and black nodes show the results
of the coloring.

The final result of the transformation, according to the
proposed method, is shown in Fig. 13.

VI. ONE MORE POSSIBILITY OF OPTIMIZATION:
SPLITTING OF THE GATES

There is one more possibility of minimization of the number
of gates when transforming logic circuit with AND-OR-NOT
to a circuit in the NAND-NOR basis. Consider the circuit
shown in Fig. 14a. Suppose that it is a part of a bigger circuit,
and the gates have to be marked as it is shown, i.e. gates 1,
4, and 5 are marked with 0. The transformation as described
in Section IV leads to the circuit shown in 14b, with two
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Fig. 11. Example 3 with OR and AND gates.

additional inverters introduced between the gates marked with
the same marking - between gate 1 and gate 5 and between
gate 4 and gate 5.

Now, let us split the gate OR into two OR gates, as shown in
Fig. 14c. After that we do not have the same marking for two
sequential gates, as far as the new gate between gates 1 and
5 can be marked with 1. As a result, the NAND-NOR circuit
in Fig. 14d does not contain the additional inverters between
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Fig. 12. Graph corresponding to Example 3.
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the gates. The circuit shown in Fig. 14d has less gates than
the circuit shown in Fig. 14a.

The general rule allowing to use the presented possibility
can be formulated as follows: If the outputs of more than one
gate N marked with 1 (0) are connected to the inputs of a
gate n also marked with 1 (0), then split the gate n into two
gates n1, n2 (implementing the same logical function as n)
in such a way that the outputs of all the gates belonging to
N are connected to the inputs of gate n1, the output of n1 is
connected to an input of n2, and the outputs of all the gates
marked with 0 (1), which were connected to the inputs of n,
are connected to the inputs of n2.

Applying of such operation makes sense between the steps
of marking and mapping of the presented transformation.
Generally, it allows to use a single gate instead of several
inverters.

VII. CONCLUSION

In the paper a method allowing to transform a combinational
logical circuit from AND-OR-NOT basis to NAND-NOR basis
is presented. The problem statement is caused by the fact that
the NAND and NOR gates are universal, simple and because
of that they are very popular in digital design. Each of the
functions NAND and NOR is functionally complete, and in
the paper the methods for quick transformation of a circuit
into the circuius in NAND basis or NOR basis are described.
However, using both of those types of gates allows obtaining
more compact circuits than using only one, and using NAND-
NOR basis is an original feature of the third of the proposed
methods.

Using both types of the gates makes room for minimization
of the number of the gates in the obtained circuits. We
show that such minimization requires an edge bipartization
of a graph describing the structure of the circuit. A new
approximation method solving the edge bipartization problem
is proposed.

Future research is going to concentrate on deeper investiga-
tion of minimization of the obtained circuits. The additional
method of gate minimization described in Section VI requires

studying of the cases in which output of a gate is connected
to the inputs of several gates marked with the same number
and some other possible circuit structures.
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