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On the new characteristics of Miller indices for centered lattices
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Abstract. This work proposes and justifies a clarification of the description of the crystal structure with the use of centered lattices, and

concerns also the following: (1) the graphical and analytical criterion for the existence of lattice planes, described by selected Miller indices,

(2) the correct way to use the parametric equation of families of planes, (3) “geometric derivation of the integral reflection conditions” and

“Laue indices of Bragg peaks versus Miller indices of families of lattice planes”, (4) the characteristics of Miller indices describing nodes

of reciprocal lattices for centered direct lattices, (5) the characteristics of Miller indices describing the faces of single crystals and also (6)

the characteristics of the information included in Miller indices. Reciprocal lattice nodes associated with families of lattice planes in direct

lattices do not form the centered lattices in the reciprocal space themselves. The centered lattices in reciprocal space are created by points

with coordinates equal to the Laue indices of Bragg reflections, which are allowed by the integral systematic absences. Parts of them are

not associated with any of the direct lattice planes.

Key words: Miller indices, families of lattice planes, reciprocal lattice, centered lattice, transformations in crystallography, Laue indices of

Bragg reflections and integral systematic absences.

1. Introduction

Miller indices, which are the topic of this work, have been

a concept well-known for a long time (most sources quote the

year 1839, i.e. publication of Miller’s book [1]), used in every

specialist book, and in most crystallographic publications and

also in works on solid state physics and chemistry. Mean-

while, there is no work, including [2–39], and the latest work

[40], which would correctly describe all the problems related

to the Miller indices for centered lattices. The vast majori-

ty of the works taking up the problem of correct description

of lattice planes (families of planes) completely exclude non-

relatively prime Miller indices. Those include, for example,

[2–26]. In most cases, this exclusion is given without sepa-

rating the case of centered lattices, which requires a different

description. An attempt to include the centered lattices in this

description can be found in book [7]. In chapter 4 on page

75, the cubic lattices, face and body centered (cF and cI) are

replaced by cubic, primitive lattices with a base (2 points for

cI and 4 points for cF). An attempt to solve this problem in

another way can be found in book [9]. In chapter 1.1, there is

the following characteristics of lattice points: “Only if each of

the three fractional coordinates of a point is an integer does

the point represent one of the lattice points”. In fact, both of

these attempts to resolve the problem of Miller indices and

reciprocal lattice nodes with common divisors are reduced to

eliminating centered lattices from the considerations on Miller

indices.

Also in book [9], you can find a reference to (two page)

publications [10]. It is supposedly proved in those that also
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for centered lattices, Miller indices must be relatively prime.

However, this proof does not exist in the above-mentioned

publication.

There are also several books where Miller indices with

common divisors, e.g. (200), are used for a family of lat-

tice planes in centered lattices. These included for example

[27–35]. The justification given there for the specific use cases

of Miller indices with common divisors is convincing. How-

ever, there is no complete, broader and more general reasoning

for this position, covering all existing cases.

There are also studies/books in which the inaccuracy of

the use of Miller’s indices is located on exactly the opposite

side of the correct version, in stark contrast with the work

discussed earlier. Namely, Miller indices are not restricted to

the relatively prime numbers, no matter whether the lattices

are primitive or centered. This is to be found, for example, in

[37], figure 14 on page 12.

Also you can find other, incorrect views on Miller indices

and lattice description of crystals structure. For example, in

[36], subsection 2.6, we read: “The same plane may belong

to two different sets, the Miller indices of one set being mul-

tiples of those of the other; thus the same plane belongs to

the (210) set and the (420) set, and, in fact, the planes of the

(210) set form every second plane in the (420) set”. In book

[13], subsection 4.7.2, we can read: “Many texts books do

not distinguish between Miller indices of a plane and Bragg

indices of a family of planes”. Similarly, in book [3], sub-

section 1.1, the following characteristics of lattice points can

be found: “Only if each of the three fractional coordinates of

a point is an integer does the point represent one of the lattice

points”.

For primitive lattices, it can be proved that: (1) each lat-

tice plane (family of lattice planes) is described by a triple of

relatively prime integers (hkl), and (2) each triple of the rel-
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atively prime integers (hkl), describes/characterizes a lattice

plane (family of planes).

However, for centered lattices (non-primitive, with cen-

tered conventional unit cells), none of these characteristics of

Miller indices are correct. To prove it, you only need to show

examples that do not match these characteristics.

In particular, it can be shown that for centered (not prim-

itive) lattices: (1) there are lattice planes (families of lattice

planes) described by a triple integer (hkl) that is not rela-

tively prime. For example, the (220) planes in the cF and

(200) planes in the cI and cF lattices have a common divisors

equal 2, or planes (333)hR in the hR lattices have a common

divisors equal 3; (2) there exist triples of relatively prime

integers (hkl) that do not describe any lattice plane (family

of planes). For example, there are no (100) and (111) lattice

planes in the cI lattice, or (100) and (110) in the cF lattice.

An extensive and more comprehensive study of Miller

indices in centered lattices can be found in book [39], for ex-

ample on page 76. To formulate an analytical criterion for the

existence of lattice planes described by Miller indices (related

to the centered lattices), the transformations in crystallogra-

phy were first used there. These are transformations from the

description related to a lattice with a centered, conventional

unit cell to a description related to a lattice with a primitive

unit cell. A selection of conclusions derived from the book is

presented below. For cI or cF lattices, factor 1
2

in the trans-

formation matrices into a primitive lattice gives the integer

values of the Miller indices only if indices (hkl)F are all odd

or all even integers or if the sum of all indices (hkl)I is an

even number. However, integer values of Miller indices for

primitive lattices (chosen by Hermann [39] as an analytical

criterion) are necessary but not sufficient for the existence of

such family of lattice planes. At the same time, the hkl values

allowed by this criterion are identical to Laue indices of the

Bragg reflections allowed by systematic integral absences. In

this paper, it was justified (and exemplified) by the need for

another formulation of this criterion and new consequences

for reciprocal lattices.

Moreover, a new statement on the lattices reciprocal to

centered direct lattices was proposed and justified. Nodes in

reciprocal lattices, associated with families of lattice planes of

centered, direct lattices, do not form complete, centered recip-

rocal lattices. The centered lattices in the reciprocal space are

created by points with coordinates equal to the Laue indices

of Bragg reflections, which are allowed by integral systematic

absences.

Recently, work [40] presented a view consistent with the

works which allow non-relatively prime Miller indices for

centered lattices, i.e. those with common divisors equal to

2 for centered lattices A, B, C, I and F and equal to 3 for

lattices type R. This work does not include references to Her-

mann’s book but, among other topics, work [40] discusses

also: (1) a proposal for how to use the equations of fami-

lies of planes as an analytical criterion for the existence of

a family of lattice planes (hkl); (2) the topic of “Geometric

derivation of the reflection conditions”, with the following

conclusion: “a straightforward relation exists between the in-

dexing of lattice planes and the integral reflection conditions,

which are purely geometric in nature”; (3) the topic of “Laue

indices of Bragg peaks versus Miller indices of families of

lattice planes”, coming to the following conclusion in partic-

ular: “Therefore, Laue indices nh nk nl do not represent the

first-order diffraction from a family (nh nk nl) but the nth or-

der diffraction from the family (hkl)”; and (4) the following

characteristics of the information contained in Miller indices;

“Miller indices represent the orientation of a crystal face” an

“Miller indices do not give the position of any of the lat-

tice planes of a family, which is instead represented by the

equation hx + ky + lz = n”.

In this paper, for each of these topics, a correction or re-

finement of the position/view given in [40] was proposed (also

justified and illustrated by examples).

To conclude this introduction, it should be emphasized that

the key fact behind the way to formulate the thesis contained

in this paper was the original observation, at the beginning of

2014, that the following families of lattice planes (and thus

their associated reciprocal lattice nodes) do not exist: (220),

(202) and (022) in the cI lattice, and (222) in the cF lattice.

2. Graphical and analytical criteria

for the existence of lattice planes described

by selected Miller indices

In work [40] it was proposed to use the equation of families

of planes hx+ky+ lz = C (this equation has been known for

a long time and was given already in book [5]) for: (1) analyt-

ical determination of whether there exists a family of lattice

planes (hkl) passing through a lattice node with coordinates

xyz, (2) analytical determination of which of the planes in the

(hkl) family (counting from zero, passing through the origin)

passes through the node.

In Sec. 3 of the above-mentioned publication, we read: “If

the value n obtained is fractional, then the hkl indices chosen

to represent the family of planes are not correct” and “Now,

n should take only integer values (ITB1) when the coordinates

of a lattice node are put as the x, y, z values in equation (2).

In particular, it should give the first plane of the family after

the origin, in the positive direction, when n = 1”.

However, even if the first two of these statements are al-

ways correct, the third one might not be in some cases. For

example, in the cF lattice, if we put x, y, z = 1
2
, 1

2
, 0, in

equation hx + ky + lz = C and assume that hkl = 110,

we receive: 1 ·
1
2

+ 1 ·
1
2

+ 0 · 0 = 1. In this case, although

C = 1, there exists no family of lattice planes (110), because

this family would not contain a half of lattice nodes (or 2/3 of

centering nodes). For example, this family would not contain

nodes: 1
2
,0, 1

2
; 0, 1

2
, 1
2
; 1

2
,1, 1

2
and 1, 1

2
, 1
2
. However there does

exist a parallel family (220) (Fig. 1).

Similar reasoning applies to other integer values of C, too.

If we put x, y, z = 1
2
, 1
2
, 0 in equation hx + ky + lz = C and

assume that hkl = 222, we receive: 2 ·
1
2

+ 2 ·
1
2

+ 2 · 0 = 2.

In this case, although C = 2, there exists no family of lattice

planes (222) because every second plane of the family does

not pass through any lattice nodes. For example, the plane
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cutting the axes on 1
2
, 1

2
, 1
2

does not pass through any lattice

nodes (Fig. 1, left).

Fig. 1. Left: positions of existing nodes in direct lattice cF Right:

positions of reciprocal lattice points/nodes, associated with existing

families of direct lattice planes (full circles). Positions of reciprocal

lattice points/nodes, which are non-associated with existing fami-

lies of direct lattice planes “but can refer to reflections of higher

order from the planes” (empty circles). Positions in the reciprocal

lattice, which are not compatible with the integral systematic condi-

tions/absences (e.g. 110 or 121), are not marked at all

Similar reasoning applies to other lattices, too. For ex-

ample, in the cI lattice for the substitution in equation

hx + ky + lz = C with the x, y, z = 1
2
, 1
2
, 1
2
, and 220 be-

hind hkl, we get: 2 ·
1
2

+ 2 ·
1
2

+ 0 ·
1
2

= 2. Also in this

case even if C is an integer equal to 2, there exists no family

of lattice planes (220) in the cI lattice because every second

plane of the family does not pass through any lattice nodes.

For example plane cutting the axes on 1
2
, 1
2
,∞ does not pass

through any lattice nodes. This example is visible in Fig. 2

(on the left).

Fig. 2. Left: positions of existing nodes in direct lattice cI Right:

positions of reciprocal lattice points/nodes, associated with existing

families of direct lattice planes (full circles). Positions of reciprocal

lattice points/nodes, which are non-associated with existing fami-

lies of direct lattice planes “but can refer to reflections of higher

order from the planes” (empty circles). Positions in the reciprocal

lattice, which are not compatible with the integral systematic condi-

tions/absences (e.g. 111 or 120), are not marked at all

Similar reasoning applies to other crystal systems too.

For example in hR lattice for the substitution to the equa-

tion; hx + ky + lz = C, with the x, y, z = 1
3
, 2

3
, 2

3
, and 220

behind hkl, we get; 2 ·
1
3

+ 2 ·
2
3

+ 0 ·
2
3

= 2. Also in this

case even if C is an integer equal to 2, in the hR lattice there

exists no family of lattice planes (220). Every second plane

of the (220) family (e.g. cutting the a1 axis on 1
2
) does not

pass through any lattice nodes.

Therefore a conclusion whether a plane is a reticular (lat-

tice) plane (family of planes) or not cannot be based auto-

matically on a parametric equation of the family of planes,

i.e. hx + ky + lz = C, after substituting node coordinates

x, y, z, and Miller indices hkl. In particular, the following

interpretation of equation hx + ky + lz = C: “Integer values

of C correspond to reticular (lattice) planes, and non-integer

values to non-reticular planes”∗, resulting from [40], though

not formulated there explicitly, should be considered invalid.

(∗ The author has such an interpretation given by the Reviewer

of Acta Cryst., J. Appl. Cryst., and Acta Phys. Pol.).

The correct causal link is different here. A family of lattice

planes corresponds to the integer value of C but the integer

values of C may correspond to either a family of (reticular)

lattice planes or to the non-reticular ones. It is true that if C
is not the integer, then the plane is not reticular, but it is not

true that in the case of the integer being equal to C, there

always exists a reticular plane.

Therefore, the equation of family of planes cannot be used

as a criterion for the existence of families of lattice planes,

described by the particular Miller indices (hkl) in the cen-

tered lattices. In addition, the use of this equation for planes

that were not graphically or analytically determined to be lat-

tice planes can lead to incorrect results (related to a fictional

family of planes).

In other words, the correct lattice description of the struc-

ture of crystals requires both the equation of a family of

planes, i.e. hx + ky + lz = C, for a quantitative calcula-

tion, and graphical or analytical verification of whether the

family of planes is a reticular or not.

In graphical verification, we can use the following char-

acteristics of the family of lattice planes: “regularly spaced”,

“planes equivalent by translation”, “each plane of the fami-

ly passes through the lattice points” and “each lattice points

is found on one of the planes of the family” (or otherwise

expressing the same: “each family of lattice planes passes

through all the lattice points”), “there exist no two mutual-

ly parallel families of lattice planes”, “there can only be one

family of lattice planes of the same orientation”.

To formulate the analytical criterion determining whether

Miller indices describe a family of lattice planes or not, we

can use the transformation of Miller indices into primitive

lattices. Miller indices (hkl) (and therefore the coordinates of

reciprocal lattice vectors) transform in the same way as the

base vectors of the direct lattice.

For example, for the transformation from lattices cI and cF

into primitive lattices, as per the figure above, the following

equations need to be used:

~aP =
1

2
(−~aI +~bI + ~cI); ~bP =

1

2
(~aI −

~bI + ~cI);

~cP =
1

2
(~aI +~bI − ~cI);
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and

~aP =
1

2
(~bF + ~cF ); ~bP =

1

2
(~aF + ~cF );

~cP =
1

2
(~aF +~bF ).

Fig. 3. Relationships between base vectors of conventional (centered)

and primitive unit cells in cI and cF centered lattices

Transformation matrices of base vectors of the direct lat-

tice, from centered cI or cF into primitive lattices, can assume

one of the following forms:

1

2







1 1 1

1 1 1

1 1 1






or

1

2







0 1 1

1 0 1

1 1 0






.

Probably it was these equations that were used for formu-

lation of the analytical criterion, first time by Hermann [39].

In book [39], on page 76, it was found that the factor 1
2

in

transformation matrices, i.e. I → P and F → P restricts

possible values of Miller indices (hkl)I and (hkl)F . Transfor-

mation yields integer-valued Miller indices (hkl)P only if the

indices (hkl)F are all even or all odd integers or if the sum

of all indices (hkl)I is an even integer. These conditions are

identical to the integral systematic absences/conditions

However, it can be seen that these conditions are necessary

but not sufficient for the existence of the families of lattice

planes (hkl)I and (hkl)F and the reciprocal lattice nodes asso-

ciated with those. For example, these conditions are sufficient

to justify the absence of families of lattice planes (100) and

(110) in cF lattices and families of lattice planes (100) and

(111) in cI lattices. However, they are not sufficient to justi-

fy the absence of families of lattice planes (222) in cF and

(202), (220) and (022) in cI lattices. Meanwhile, graphical

verification of planes (202), (220) and (022) in the cI lattice

or (222) in the cF lattice shows that every second plane of

these families of planes would not pass through any lattice

node.

It follows that cI and cF centered lattices do not have

families of lattice planes described by these Miller indices,

although they fulfill the condition given by Hermann [39].

Restrictions of h, k, and l, described by Hermann [39], are

necessary and sufficient as a criterion for the Laue indices

of Bragg reflection allowed by integral systematic absences.

However, they are not sufficient as a criterion for the Miller

indices of existing families of lattice planes and the recip-

rocal lattice nodes associated with those. These restrictions

also allow for Miller indices of reciprocal lattice nodes not

associated with existing families of direct lattice nodes.

The correct criterion of existence of Miller indices (hkl)

of families of direct lattice planes (and therefore the coor-

dinates of reciprocal lattice vectors associated them) in the

centered lattices can be obtained from the same transforma-

tional equations as in book [39], but in another manner Miller

indices (hkl)p of existing families of direct lattice planes (and

therefore the coordinates of reciprocal lattice vectors associat-

ed them) obtained after transformation into primitive lattices

should be relatively prime integers. Miller indices which do

not satisfy this condition do not describe families of lattice

planes in centered lattices, regardless of whether in the cen-

tered lattice they are relatively prime integers or not.

This statement is different from the sections on Miller in-

dices to be found in International Tables For Crystallography.

For example, in [2] section 5.1.3 we read: “Usually, the Miller

indices are made relative prime before and after the transfor-

mation”, in [3] section 1.1.2: “where h, k and l are relatively

prime integers (i.e. not having a common factor other than +
or −1) known as Miller indices of the lattice plane”, and in

[4] section 1.1.2: “If the coefficients h, k, l of r∗ are co-prime,

the symbol (hkl) describes that family of nets”.

If we denote the matrix of transformation X → P
(X = P , I ,F etc.) as MX, the general formula will take

the following form: (hkl)XMX = (hkl )P. The use of these

matrices gives for instance, the following results.

For lattice cI we obtain: (100)I →

(

1
2

1
2

1
2

)

P
, (111)I →

(

1
2

1
2

1
2

)

P
and (220)I → (002)P which excludes the existence

of families of lattice planes (100)I, (111)I and (220)I. Planes

(100)I and (111)I are excluded because they do not transform

into integer indices (likewise, they do not obey the systemat-

ic absence condition for the relevant centering type, i.e. the

Hermann condition). Plane (220)I is excluded because it does

not transform into relatively prime indices, although it obeys

the Hermann condition.

For lattice cI we obtain also: (200)I → (111)P and

(110)I → (001)P which allows for the existence of a fam-

ily of lattice planes; (200)I and (110)I.

For lattice cF we obtain: (100)F →

(

0 1
2

1
2

)

P
, (110)F →

(

1
2

1
2
1
)

P
and (222)F → (222)P, which excludes the ex-

istence of families of lattice planes: (100)F, (110)F and

(222)F. For lattice cF we obtain also: (200)F → (011)P,

(220)F → (112)P and (111)F → ( 111)P which allows for

the existence of a family of lattice planes: (200)F, (220)F and

(111)F.

Note that in centered lattices the exclusion or admission

of lattice planes is completely independent of whether they

are described with respect to those lattices by Miller indices

relatively prime or not.

Similarly for the transformation from the conventional,

centered hR into the primitive unit cell (obverse setting), there

are the following equations:

~aP =
1

3
(2~ahR+~bhR+~chR); ~bP =

1

3
(−~ahR+~bhR+~chR)
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and

~cP =
1

3
(−~ahR − 2~bhR + ~chR);

which result from the figure below.

Fig. 4. Relationships between base vectors of conventional (centered)

and primitive unit cells for the centered hR lattice. Next to the nodes,

their relative coordinates in the direction perpendicular to the plane

of the drawing are provided

Transformation matrices of base vectors of direct lattices

from conventional (centered hR) unit cell into primitive rhom-

bohedral assume the following form:

1

3







2 1 1

1 1 2

1 1 1






.

The use of these matrices gives e.g. the results which ex-

clude the existence of families of lattice planes (10 · 0)hR,

(20 · 0)hR, (22 · 0)hR, (33 · 0)hR and (11 · 1)hR and allow for

the existence of families of lattice planes (30·0)hR, (11·0)hR,

(10 · 1)hR and (33 · 3)hR.

For monoclinic centered lattices, transformations from the

conventional (centered mI) into a primitive unit cell one can

be derived from the figure below.

Fig. 5. Relationships between base vectors of conventional (centered)

and primitive unit cells in the centered mI lattice. Relative coordi-

nates of direct lattice nodes in the direction perpendicular to the

plane of the drawing, marked by empty circles, are 1/2

For centered lattice mI, these transformations have the fol-

lowing form:

~aP = ~amI ; ~bP =
1

2
(~amI +~bmI + ~cmI); ~cP = ~cmI .

Meanwhile, for centered lattice mA, these transformations

have the following form:

~aP = ~amA; ~bP = ~bmA; ~cP =
1

2
(~bmA + ~cmA).

The transformation matrices of the direct lattice base vec-

tors from conventional centered mI into the primitive unit cell

have the following form:

1

2







2 1 0

0 1 0

0 1 2






.

The use of these matrices gives e.g. the results which

exclude the existence of families of lattice planes (100)mI ,

(111)mI , ( 210)mI , (220)mI , (202)mI and (022)mI and al-

lows for the existence of families of lattice planes (110)mI ,

(101)mI , (011)mI , (200)mI and (222)mI .

The transformation matrices of the direct lattice base vec-

tors from conventional centered mA into the primitive unit

cell have the following form:

1

2







2 0 0

0 2 1

0 0 1






.

The use of these matrices gives e.g. the results which

exclude the existence of families of lattice planes (001)mA,

(010)mA, (200)mA, (101)mA, (110)mA, (202)mA, (210)mA,

(201)mA, (022)mA, and (222)mA, and allows for the ex-

istence of families of lattice planes (100)mA, (002)mA,

(020)mA, (011)mA and (120)mA.

Comparing the Hermann criterion [39] with that proposed

by Nespolo [40], one can conclude that none of them correctly

determine the existence of families of lattice planes described

by indices (hkl). However, the Hermann criterion [39], unlike

the method proposed by Nespolo [40], correctly selects hkl

indices consistent with integral systematic absences. On the

other hand, some results of Nespolo [40] are also contrary to

integral systematic absences. This applies, for example, to the

admission (via the Nespolo method) of the family of lattice

planes (110) and associated reciprocal lattice points 110 to

cF lattices.

The advantage of the graphical criterion is the direct use

of definitional physical properties of families of lattice planes.

The advantage of the analytical criteria is to bring the problem

to the automatic application of universal equations of transfor-

mation. This eliminates the need for a graphical check of the

spatial location of each lattice plane in the family with respect

to the lattice points in different types of centered lattices.

For existing families of lattice planes, equation hx+ky+
lz = n gives the correct results regardless of whether the

lattice is primitive or centered, and for all lattice points (be-

cause each family of lattice planes passes through all the lat-

tice points). If it will be a (fictional) family of non-reticular

planes, these results may be false, related to non-existent (fic-

tional) family of non-reticular planes. E.g. in lattice cI for

(hkl) equal to (110) we obtain correct values n for each lat-

tice node but for (hkl) equal to (220) we can obtain incorrect

values of n. A reverse conclusion that the integral value of

n implies the existence of a family of lattice planes (hkl) is

obviously not correct.
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According to all cited sources (e.g. ITCr vol. A chapter 5),

the same Miller indices are used to describe both crystal faces

and planes (families of planes) of direct lattices as well as co-

ordinates of reciprocal lattice nodes. As a consequence, the

same equations apply to transformations of these indices from

centered into primitive lattices.

However, as it was shown earlier in this chapter, in the cen-

tered lattices there exist only such families of lattice planes

whose Miller indices, after transformations into primitive lat-

tices, are relatively prime integers. Thus there are no families

of planes (222) for the cF and (220) for the cI lattice as their

Miller indices are not relatively prime after the transforma-

tions into primitive lattices. Likewise, there are no families of

planes (110) for the cF and (111) for the cI lattice as their

Miller indices are not integers after the transformations into

primitive lattices. Does this also mean lack of reciprocal lat-

tice nodes described by these indices? The correct answer to

this question does not exist in the literature because a correct

description of the lattice planes in the centered lattices is also

missing.

One can propose such an answer and its justification. In

centered lattices only those Miller indices of families of lattice

planes (and associated reciprocal lattice nodes) are allowed

which, after transformation into primitive lattices, are rela-

tively prime integers. For example, families of lattice planes

and associated reciprocal lattice nodes with Miller indices

220 are not allowed in the cI lattice. The graphic criterion

also confirms this thesis.

However, in both primitive and centered lattices, recipro-

cal lattices contain also nodes with Miller indices, i.e. nh nk

nl, where h k l are indices of the existing family of lattice

planes and n can take values of 2, 3, 4, etc. These nodes are

not associated with families of lattice planes “but can refer

to reflections of higher order from the planes”. The length of

reciprocal lattice vectors drawn to these nodes is not equal

to the inverse of the spacing of any family of direct lattice

planes.

The criterion given by Hermann [39], based on the use of

transformational equations, concerns (is correct for) the Miller

indices not of families of lattice planes but of reciprocal lattice

nodes. This also applies to Miller indices of reciprocal lattice

nodes not associated with direct lattice families. It is also pos-

sible to formulate this criterion in a simpler and more general

way, applicable to all centered lattices. This means that in the

centered lattices there are nodes of the reciprocal lattice with

Miller indices (hkl) that are integers after the transformation

into primitive lattices. If they are not associated with families

of lattice planes, then they do not have to be relatively prime

numbers after transformation. For example, in the cI lattice

there are nodes 220, although there are no families of lattice

planes (220). After they were transformed into a primitive

lattice, they now have indices 002.

This approach distinguishes Miller indices of direct lat-

tice planes hkldlp, describing existing families of direct lattice

planes and associated reciprocal lattice nodes, from Miller in-

dices hklrlp, describing higher order nodes of reciprocal lat-

tices, not associated with existing families of direct lattice

planes. Transformational equations are used for them in a dif-

ferent way. The first ones are supposed to be relatively prime

after the transformation, but the latter cannot be so. A sim-

ilar distinction between Miller indices can also be made for

primitive lattices.

In bibliography, one can find examples of different expla-

nations in the description of this problem. In work [38] on

page 274 one can read: “By definition the reciprocal lattice

G is a primitive lattice”, although the author did not provide

justification for this statement there. In a later work [39] of the

same author, on pages 69–70 one can read: “The fcc lattice

whos reciprocal lattice defines a bcc lattice”, and “The bcc

lattice whos reciprocal lattice defines an fcc lattice”. The latter

statement is in line with descriptions given in ITCr vol. A.

There are also other uses of Miller indices. External crys-

tal faces, formed by the growth process, overlap with select-

ed lattice planes (families of lattice planes). Therefore they

should be described using Miller indices, as set out in the

text for lattice planes.

For instance, for description of crystal faces with cI or cF

lattices, instead of using (100), (110) and (111) plane sym-

bols, which are admittedly very popular in literature, indices

(200), (220) and (111) should be used in face-centered sys-

tems, while indices (200), (110) and (222) will prove useful

for describing body-centered systems.

You can also find studies in which inaccuracy of the use of

Miller indices for describing crystal faces is located on the op-

posite side of the correct version as compared with the works

discussed earlier. For example, in [41] symbols (004) and

(040) are incorrectly used when describing crystal faces for

LiNa5Mo9O30 crystals with the face-centered system (space

group Fdd2).

3. Discussion of “Geometric derivation

of reflection conditions” and “Laue indices

of Bragg peaks versus Miller indices

of families of lattice planes”

In Sec. 5 of work [40], the geometric derivation of systematic

integral reflection absences/reflection conditions was recalled.

The idea of a geometric approach to derivation/explanation of

systematic absences is very attractive because of its teaching

advantages, listed in [40]. However, there are examples show-

ing that the lack of some families of lattice planes and the lack

of associated reciprocal lattice nodes are not equivalent with

integral systematic absences of reflections for centered lat-

tices. Integral systematic absences (derived from the formula

for the structural factor) concern not reciprocal lattice nodes

but Bragg reflections, described by Laue indices. It seems that

these are two separate issues, and only proper consideration

of both of them can properly/correctly describe diffraction by

crystals.

If the Miller indices describe the existing family of lattice

planes (there are families of lattice planes described by these

Miller indices), it is implied that Laue indices of Bragg re-

flection, equal to the Miller indices, are allowed by integral

systematic absences. For example, in cI lattices, if a family of
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lattice planes described by Miller indices (110) does exist,then

Bragg reflection described by Laue indices 110 exists, too.

But if the Miller indices describe a non-existent family of

lattice planes (there are no families of lattice planes described

by the Miller indices), this does not imply that Bragg reflec-

tion described by Laue indices (which are equal to the Miller

indices) are not allowed by integral systematic absences. For

example, in cI lattices, the family of lattice planes (220) does

not exist but Bragg reflections with Laue indices 220 exist. If

we made a conclusion on the basis of the lack of the fami-

ly of lattice planes (220) (as well as reciprocal lattice nodes

220) about integral systematic absences, i.e. that there are no

reflections 220 in the cI lattice, we would commit a mistake.

An inverse inference might not always be right., either.

For example, the fact that for cI lattices, the Laue indices of

Bragg reflections 220 are allowed by the reflection conditions

(integral systematic absences) does not imply that in cI lattice

there is a family of lattice planes (220). Therefore, we should

keep in mind limitations such as the ones for “Geometric

derivation of the reflection conditions”.

The above-formulated cause-effect relations are illustrat-

ed in Figs. 1 and 2. Full and empty circles were used in

the graphics (Figs. 1 and 2 right) for illustrative purposes.

Circles (both full and empty) mark positions of reciprocal

lattice nodes compatible with the integral systematic condi-

tions (absences) of corresponding reflections for a given type

of centering. Full circles mark positions of existing reciprocal

lattice nodes associated with existing families of direct lat-

tice planes. Empty circles mark positions of reciprocal lattice

nodes associated with non-existing families of direct lattice

planes, but not prohibited by integral systematic absences.

For example, for the cF lattice, the empty circle marks

that there is no family of lattice planes (222) and the associ-

ated reciprocal lattice node 222. However, although there are

no diffraction reflections of the first order from a family of

planes (222), because the family does not exist, in the same

direction we observe a reflection of a second-order diffraction

from the family of lattice planes (111), which is not prohib-

ited by the conditions of integral systematic absences. In the

second-order diffraction on the family of lattice planes (111),
the situation is geometrically equivalent to the diffraction of

the first order on the family of lattice planes (222). It is also

consistent with the physical sense, because only every second

plane of the hypothetical/non reticular family (222) in lattice

of type cF passes through the lattice nodes.

If there is no family of planes (222) in lattice cF or (220)

in lattice cI, then there are also no reciprocal lattice nodes

associated with them. With these orientations, there exist on-

ly families of planes (111) in lattice cF or (110) in lattice cI

along with associated reciprocal lattice nodes 111 in lattice

cF or 110 in lattice cI. Meanwhile, systematic absences do

not prohibit reflections of Laue indices such as 222 in lattice

cF or 220 in lattice cI. They are compatible with the inte-

gral conditions which for lattice cI take the following form:

h + k + l = 2n. For lattice cF they require a mixed parity of

h, k, l. However, there are no reflections by families of lattice

planes having the same Miller indices (hkl) as Laue indices

of reflection, because the family of lattice planes in these lat-

tices does not exist. For example, reflections 222 in lattice cF

or 220 in lattice cI are reflections of the second order from

the families of lattice planes (111) in lattice cF or (110) in

lattice cI.

Another situation that we observe exists for reflections of

existing families of planes described by non-relatively prime

Miller indices, e.g. 220 in lattice cF, 222 in lattice cI or 200

over both lattices cI and cF. Then, these reflections (although

they also have the form of nh nk nl) are reflections of the first

order from existing families of planes, e.g. (220) in lattice cF,

(222) in lattice cI or (200) in both lattices cI and cF, etc.

The second case, which exists in the centered lattice at

the correct (allowing non-relatively prime Miller indices) de-

scription of families of lattice planes, was not explicitly speci-

fied in the considerations contained in work [40] in section 4:

“Laue indices of Bragg peaks versus Miller indices of families

of lattice planes”. This concerns particularly the conclusion:

“Therefore, the Laue indices nh nk nl do not represent the

first-order diffraction from a family (nh nk nl) but the nth

order diffraction from the family (hkl)”. This proposal does

not distinguish between the description of completely exclud-

ing non-relatively prime Miller indices but allowing them for

the case of centered lattices. If according to this proposal, we

would interpret reflections 220 in lattice cF (or 222 in lattice

cI) not as representing the first-order diffraction from fami-

ly (220) in lattice cF (or family (222) in lattice cI), but as

representing the second-order diffraction from family (110)

in lattice cF (or family (111) in the lattice cI), we would be

making a mistake. This conclusion ceases to be valid in cen-

tered lattices for existing families of lattice planes, described

by non-relatively prime Miller indices. Therefore clarification

of the conclusion, allowing in the case of centered lattices,

e.g. cF (or cI), for Laue indices 220 (or 222) to represent

the first-order diffraction from family (220) or (222) should

also be an important and inherent part of the changes in the

characteristics of Miller indices, from absolutely excluding

non-relatively prime indices, to admitting non-relatively prime

indices for centered lattices.

4. Which characteristics of Miller indices should

be selected?

Which characteristics of Miller indices should be selected?

(1) “Miller indices represent the orientation of a crystal face”

an “Miller indices do not give the position of any of the lattice

planes of a family, which is instead represented by equation

hx+ ky + lz = n” or (2) “The three indices h, k, and l com-

pletely define the family, i.e. orientation and positions of every

nth plane of this family, if you know the lattice parameters of

the crystal”.

In work [40] section 3, we read: “Miller indices represent

the orientation of a crystal face”, The notation (hkl) indicates

a family of lattice planes, i.e. the whole set of lattice planes

having the same orientation”and “Miller indices do not give

the position of any of the lattice planes of a family, which is

instead represented by equation hx + ky + lz = n”. Howev-

Bull. Pol. Ac.: Tech. 66(4) 2018 535



E. Michalski

er, we can formulate and justify a statement that characterizes

Miller indices more accurately and is fundamentally different,

even exactly opposite to that given in [40]. For this purpose,

let us recall what we mean by the concept of “position of the

lattice planes of the family” and what is the physical meaning

of the parameter n (C) in the equation of a family of planes

(some literature uses notion C instead of n).

The position of the lattice planes of a family can be de-

termined stating either the orientation and distance from the

origin, as measured in a direction perpendicular thereto, or

in an equivalent manner, by entering the relative coordinates

for cutting its axes (intercepts n/h, n/k and n/l on the a, b
and c axes, respectively).

To explain and highlight the physical meaning of con-

stant n or C in equation hx + ky + lz = C, let me point

out that this equation can be seen as projection of vector of

position ~rx,y,z of lattice nodes on the normal ~n to the lat-

tice plane (family of planes) divided by its spacing, dhkl:
~rx,y,z ·~n

dhkl
= hx + ky + lz = C. This way we can see that inte-

ger C (or n) indicates only the serial number of planes in the

family, by specifying their distance from the origin, expressed

by the spacing number.

To determine its distance from the origin of the system,

we have to multiply the serial number (parameter C or n) by

spacing dhkl, and for this the Miller indices are necessary. To

obtain the relative coordinates on the axes cut by this plane,

one must, using the parametric equation, divide parameter C
(or n) successively by Miller indices h, k and l. As we can

see, in both of these approaches (using the formula for dhkl or

a parametric equation), to obtain information about the posi-

tions of lattice planes, it is necessary to use Miller indices. To

put it differently, Miller indices provide information necessary

to determine the position of the lattice plane.

On the other hand, one cannot speak about the position

of one lattice plane without indicating which plane from the

entire family of planes this concerns (such action would prove

senseless). This role in the equation of the family of lattice

planes is played by parameter C(n), i.e. parameter C gives

only the serial number of the plane in the family of planes.

However, we can say that Miller indices give information

about the location of all planes of the family for which it can

be assumed that parameter C(n) overtake all possible integer

values. For example, the positions of individual planes of fam-

ily (200) are different than family (100), although they have

the same orientations. Already in [5] section 1, it was written:

“A set is completely defined by its spacing and its orientation

with respect to the crystal”. Similar statements can be found in

many textbooks. And since orientation and spacing are deter-

mined only by the lattice parameters and Miller indices, and

those two parameters fully define a family of planes, we can

conclude that Miller indices contain information also about

the positions of all planes of the family – full definition of

a family of planes allows us to describe every single plane in

detail.

In parametric equation hx + ky + lz = C, indicated in

[40] as defining the position, there are both parameter C and

Miller indices. Any change in values of hkl in this equation re-

sults in a change of spacing and of the position of the planes.

Therefore it does not seem correct to say that the parametric

equation hx + ky + lz = C and parameter C determine the

position of lattice planes while the indices hkl appearing in

a parametric equation do not define the position of the lattice

planes.

There exists also yet another important reason for the fol-

lowing statement: “Miller indices do not give the position

of any of the lattice planes of a family” to be rejected or

corrected. The fact that Miller indices do not give informa-

tion about the positions of lattice planes of the family played

an important role and had some justification in the concept

of completely excluding non-relatively prime Miller indices

also for the centered lattices. It was consistent with that con-

cept. And in exactly that concept (currently already rejected)

of removing internal contradictions, caused by exclusion of

non-relatively prime Miller indices, it was assumed that for

centered unit cells the Miller indices did not in fact determine

spacing.

Consequently, in that concept for centered lattices, the gen-

eral formula for spacing dhkl was considered invalid. For ex-

ample, in [11] subsection A3.1.7, to get real (correct) spacing

from the equation for dhkl, an additional “rule” was intro-

duced. It read: “The rule for obtaining the true lattice plane

spacing from Equation A3.1 in a body-centered (I) lattice is

therefore to double the Miller indices whenever (h+ k + l) is

odd. In a face-centered (F ) lattice, the rule is to double the

Miller indices if either h or k or l is even, (. . . )”.

While if we allow non-relatively prime Miller indices for

centered lattices, no justification exists for a statement that

Miller indices would not define spacing and thus the position

of the indicated individual plane or all planes of a family,

either. Therefore, the rejection of the view that “Miller in-

dices do not give the position of any of the lattice planes of

the family” should be a very important and inherent part of

the changes in the characteristics of Miller indices, from ab-

solutely excluding non-relatively prime indices to admitting

non-relatively prime indices for centered lattices.

5. Conclusions

Until now, the descriptions of crystal structures with centered

lattices contained inconsistencies regarding the problems list-

ed in the abstract. In this work, it was described in detail and

illustrated with examples what these inconsistencies are and

how to refine the description to eliminate them.

This included the following in particular:

(1) A new analytical criterion for the existence of lattice

planes (family of planes) with given Miller indices was formu-

lated. In centered lattices only those families of lattice nodes

are available whose Miller indices after transformations into

primitive lattices are relatively prime integers. This produces

the same results as the graphical criterion. An analytic criteri-

on previously formulated by Hermann [39] was equivalent to

the requirement of Miller indices after transformations being

integers. Instead of Miller indices, of the families of lattice
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planes and associated reciprocal lattice nodes, it selects on-

ly Miller indices for all nodes in the reciprocal lattice. Also

those non-associated with families of lattice planes.

(2) It was shown that the parametric equation of a family

of lattice planes, proposed by Nespolo [40], is not suitable for

use as a criterion for the existence of lattice plane families.

Correct use of parametric equations of families of planes, for

inference based on n values, requires prior graphical or ana-

lytical determination that we are in fact dealing with a family

of lattice planes.

(3) It was shown that interpretations concerning the “Geo-

metric derivation of the reflection conditions” and “Laue in-

dices of Bragg peaks versus Miller indices of families of lat-

tice planes”, proposed by Nespolo [40], may in some cases

lead also to erroneous conclusions.

(4) Reciprocal lattices, both primitive and centered ones,

also contain nodes that are not associated with existing fami-

lies of lattice planes “but can refer to higher order reflections

from these planes”. In centered lattices, these nodes, both as-

sociated and non-associated with the families of direct lattice

planes, form centered reciprocal lattices together. The coor-

dinates of these nodes in the reciprocal space are equal to

Laue indices of Bragg’s reflections which are allowed by the

systematic integral conditions. This property was used in the

criterion formulated by Hermann [39]. However, contrary to

what Hermann has provided in [39], this criterion does not se-

lect only Miller indices of families of direct lattice planes and

associated nodes in reciprocal lattices. Instead, it selects all

nodes of reciprocal lattices in the centered lattices, including

those not associated with the lattice plane families.

(5) The external faces of the crystals, formed by the growth

process, should also be described using the Miller indices, as

set forth in the text for the lattice planes.

(6) With known lattice parameters, the Miller indices pro-

vide clear information not only about the orientation of the

families of lattice planes but also their spacing. This is a com-

plete set of information about the position of all lattice planes

(or each individual chosen plane) of a given family.
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