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Abstract. This paper is designed to deal with the convergence and stability analysis of impulsive Caputo fractional order difference systems.
Using the Lyapunov functions, the Z“transforms of Caputo difference operators, and the properties of discrete Mittag-Leffler functions, some
effective criteria are derived to guarantee the global convergence and the exponential stability of the addressed systems.
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1. Introduction

During the past decades, fractional order systems, including
fractional order difference systems and fractional order dif-
ferential systems, have been paid much attention due to their
significant applications in the fields such as biology, physics,
aerodynamics, electrical circuits, nonlinear oscillation of earth-
quake. Many significant results on the theory and application
of fractional order systems have been obtained, see [1-20]. The
basic theory of the fractional calculus are given in [1, 2]. The
existence of solutions for fractional differential systems has
been investigated in [6-9]. The stability of fractional differen-
tial systems has been considered in [5, 19]. The applications
of fractional order differential systems in HIV model, SIR
model, multi-agent systems and chaotic systems have been dis-
cussed in [3, 4, 10] and [11], respectively. The the initial value
problem of fractional difference systems has been investigated
in [12, 13, 16]. The stability of fractional difference systems has
been considered in [14, 16, 18]. The observability of fractional
difference systems has been studied in [15, 17]. The control-
lability and stabilising model predictive control of fractional
difference systems are discussed in [15] and [20], respectively.

In addition, impulse effect exists in many evolution pro-
cesses in which the states exhibit abrupt changes at certain mo-
ments. In recent years, some scholars try their efforts to intro-
duce impulses into fractional order differential systems, and the
dynamical behaviors of impulsive fractional order differential
systems have become an active research topic. Many results
are now available in the literature concerning stability [21-23],
convergence [24-26] and existence and uniqueness [27, 28] of
impulsive fractional order differential systems. However, the
corresponding theory for impulsive fractional order difference
systems has not been developed. Therefore, it is necessary and
urgent to do research on the theory of impulsive fractional order
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difference systems. There is no doubt that stability is the main
concern for dynamical systems. However, under perturbation
of impulses, the equilibrium point probably does not exist in
many practical systems. Therefore, the study of convergence is
far more meaningful than the study of stability for impulsive
systems. Meanwhile, convergence is an important asymptotic
property of dynamical systems, which plays a key role in inves-
tigating the basic properties of the solutions such as stability,
existence, persistence, and boundedness.

Motivated by the above discussion, this paper is mainly
focused on the convergence of impulsive fractional order dif-
ference systems. Several sufficient criteria of the global con-
vergence are obtained by using the Lyapunov functions, the
Ztransforms of Caputo difference operators, and the properties
of discrete Mittag-Leftler functions.

2. Preliminaries

To begin with, we recall some useful notations, definitions and
facts. For more details, one can see [14—16].

Foranya € R, N, = {a,a+ 1,a + 2, ...}. The family of
binomial functions on Z parameterized by ¢ > 0 and given by

values: ¢, (n) = (n * ’Z B 1) for n € Ny and ¢, (n) = 0 for n < 0.

Definition 1. [14] For a function y : N, — R the fractional sum
of order o > 0 is given by

wo=2"" 5,

k=0 n—3s

where y(s):=y(a +s) and € N, .

Definition 2. [14] The Caputo-type difference operator
A% of order a for a function y: N, — R is defined by
(JAY) (1) := (aA*(l"")(Ay)) (t), where 1€ N,;;_, and
a € (0,1].
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Definition 3. [15] Letn € Ng, L € (-1, 1), and @, 8 € R, The
one and two parameter discrete Mittag-Leffler functions are
defined by

a ﬁ(;]“ n Z/l (DkoHrﬂ(n - k)
(2)

= kz‘aik@kowrﬁ(n - k)a

where the second equation only claim that for £ > n we have
values of @pq p(n — k) =0,

= Zik(/_’kaﬂ(”*k)
k=0 (3)
<~ k n—k—l—ka>
,;f( n—k '

Ey (A, n):=

Lemma 1. [16] Let E, g(4, -) be defined by (2). Then the
Z-transform of E,, 4(4, -) is given by

2ete= () -4 )] @

1'% > |A].

where |z| < 1 and |z —

Lemma2.[16]Leta € R, @ € (0, 1]and definey(n) :=
where € N, _,. Then

(AZY)(20),

Z[y)@) = ( i

z—1

Y“W—mw—w@] )

where Y (z) = Z°[7](z) and y(n) := y(a + n).
Consider the following impulsive fractional order difference
systems:

— fn, @+ m)n £ 1> m,
y(”k+ a) = Li(ne — Ly(ne — 1+ a)), keN;  (6)
y(a+ng) = yo

where0 < a<l,a=a—1,f: N, xR" = R", [ : NgxR" —
— R”, and n(k € Ny) satisfy n; < np, < - < ny < - and
limy,_ 1, = oc. In this paper, we always suppose that f'and
satisfy the necessary conditions for the global existence and
uniqueness of solutions for all #n > n.

Definition 4. System (6) is said to be globally convergent to
the ball

S ={yeR": |y < @)

if for any initial value y, € R”, the solution y(a + n; ng, yy) con-
verges to . as n — oc.
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Definition 5. System (6) is said to be globally exponentially
stable with the exponential convergence rate A, if there exist
positive constants ¢, A and K such that for any initial value
yo€R”,

Iy(@+m)| < Kllyoll'e "=, n > ny.

3. Convergence and stability analysis

Lemma 3. Letn € Ny, A € (-1, 1) and « € (0, 1). The discrete
Mittag-Leffler functions have the following properties:
(a) E4(A, n)>0and E, 44 1(4, n) > 0;
(b) E4(A, n) and E,,_, 1 1(A, n) are monotonically increasing
on Ny,

Proof. (a): The proof of (a) follows from (2) and (3).
(b): Let m, n € Ny such that m > n. Then m —n =s € Nj.
Using (2) and (3), we have

Ea(la m) - Ea(l’ n) =
:,;)l Prar1(m— k) — Z Pra+1(n — k)

E@

m— k+ka> (n—k+koc>
k O/l< m k /; k

Ta+s—k+ka+1)
Cka+1)(n+s—k+1) @)

2.2
k=0
= < L, Tn—k+ka+1)
,;)’1 Cka+)T(n—k+1)’ nzk
0,n<k

=

. x [n—k+ka+1) S( N .
/;)A Clka+1)T(n— k+1) L . >0,n>k;

n+j—
0,n <k,

_ilk<mfk+ (k+ 1o
- m—k+a

) Zlk(n e+ ( k+1)>

n—k+a

N0 gk Tts—k+ (k+Da+1)
=22 Tka+)T(n+s—k+a+1)

k=0
gk Po—k+ (k+Da+1 ®)
k:ZO Tka+1)T(n—k+a+1)

S

Z 2 Fn—k+ (k+1)a+1)
= Tka+)Tn—k+a+1)
n+o>k;

0,n+a<k.

(o) oo
1 n+a+j—k

j=

Bull. Pol. Ac.: Tech. 66(5) 2018



www.czasopisma.pan.pl P N www.journals.pan.pl
=

Global convergence analysis of impulsive fractional order difference systems

Therefore, for any m, n € Ny, if m > n, then E, (4, m) > E (2, n)
and Ea,a+1(}“s m) > Ea,a+l(j’> I’l) U

Theorem 1. Assume that there exists a function V(n, y(a + n))
: N, x R" = R, = [0, o) and several constants A, > 0, ¢; > 0,
¢y >0, gy > 0and A, € (-1, 1) such that

(i) for all (n, y) : Np,x R”,

)
ally(a+n)* < V(n, y(a+n) < el y(a+ m)||*;

(ii) for all k € Ny and y € R”,

(10)
V(nk,y(nk + a)) < ,ukV(nk — Ly —1+ a));

(iii) for all k € Ny, n € Q¢ 2 [ng_1, ny), and y € R”,

11
APV (1, y(n) < -4 V(n, y(a+ n) + Ay (h

(iV)0<Nk:nk—nk,1<00,k€N1,

12
MEg(=A4, Ng) < 1; (2

where € (0, 1),a = — 1, 1= supyen{p} and Ny = supy c  {Ni}-
Then system (6) is globally convergent to the ball

S = {y ER": [yl < \/E”’ﬁ“(_l" No= D } (13)

ci(1 — pEg(=2, Ng))

Proof. It follows from (12) that there exists a nonnegative func-
tion .#(n) such that

AV (n, y(n) + 4V(n, y(a+ n) + 4 (n) = 2,
neQ, keN,

(14)

Taking the Z-transform of equation (15) yields

(Zf 1>1—ﬂ[(z — DV(2)— V(s 1, y(np 1 + a))]

+ A]V(Z) + %(Z) = 121—%,

(15)

where V(z) = Z{V(n, y(a + n))} and A (z) = Z{4(n)}.

Writing V(z) in the form

- 1 n np_1+a
V= z—1 <1+11%(z%1>ﬁ> V(g 1,y 1 + a))

M (2)

(16)

- Z(zj 1) (1+ 2 (%))

1/ z \P*! 1
i Z(z— 1) 1+ (=) fa:

z—1
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Taking inverse Z-transform of (17) yields

V(n, y(a+ n)) =

= V(ng_1, y(ng—1 + @) Eg(=A, n — ny_,)
= [Ep.p(-2sn = mey = D]l (n)

+ AaEppii(-An—m = 1),

tey, keNy,

amn

where * denotes the convolution operator. Using (18) and noting
that Eg g(~A, n — ny_y — 1)%.#(n) is nonnegative function, we
obtain

V(n, y(a+ n)) <

< V(g1 y(mg 1+ a) Eg(=A1, n — ny_1)

+ MEp g~ n—np_y — 1),

ne€Qy, keN,

Taking k = 1 in (19), we get

(18)

V(n, y(a+n)) < V(no, y(no + @) Eg(=21, n — no)

(19)
+ 12E55ﬂ+1(—].1, n—nyg— 1), n e Q.

By (11) and (20),

V(ny, y(m+a)) < mV(ng — 1L yla+n — 1))
< ylV(no,y(no—i— a))Eﬁ(—ll, ny —ng— 1)
+ thAEp g 1(=A1, np — ng — 2).

(20)

Using (19) and (21),
V(nla-+ 1) < Vi -+ @)Eg( Ao n — m)
+ aEp pii(—Ai,n —np — 1)
< V(no, y(no+ a)) Eg(~2y, n — my)
Eg(=Ay, ny —ng — 1)
+ A Eg(=A1, n — ny)Eg g1 (=i, ny — ng — 2)
+ AaEg giri(=Ai,n—nyp—1),n € Q.

@n

Further, we can get the following inequality

k—1
V(n, y(a+n) < l_l}ﬂiEﬁ(*/lb n;—n;_1))Eg(-=A1,

n —ng_1)xV(no, y(no + a))

k=1

k—1
+2 {{H,uiEﬁ(_ll, n — nil))} Hi-1Ep.p (=2,
~\|

Jj=2

nj_y—nj_— 2))}12Eﬁ(—1b n—ng_)

+ wk—1Eg p1(=A1, mg—y — ng_o — 1) A Eg(—Ay,
n—ng_1)+ AEp g oa(~A,n—m 1 — 1)),
neQ k>3.

(22)
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Using (13, 23) and Lemma 3, we get

V(n,y(a+n))

<(MEg(—M,Ns))* ' Eg(—A1,Ns)V (no,y(no +a))
k-1

+ Y (MEg(—A1,Ns))* T uEg g1y (—2A1,Ns —2))
=2

X M Eg(—A1,Ns)
+MEg gy1(—A1,Ns—1))A2Ep(—A1,Ns)
+12Eﬁ7[3+1(—11,N5— 1))
<(uEg(—M,Ns)) ' Eg(—21,N5)V (no,y(no +a)) (23)
(LEp(—A1,Ns))?
1 —puEg(—21,Ns)
+MEg g 1(—A1,Ns— 1)) A2Eg(—A1,Ns)
+)~2Eﬁ7ﬂ+1(—kl,N5— 1))
<(UEB(—A1,Ns))* " Eg(—A1,Ns)V (no, y(no +a))

Eg p1(—A1,Ns—1)) A2
1- uEﬁ(_klaNS)

Eg g1(—A1,Ns—2))A

€ Q k>3

From (20) and (22), we derive that

V(n, y(a+ n)) < V(no, y(no+ a)) Eg(~A1, Ns)+

(24)
+ AMEg g ii(—A, Ng— 1), n€Qy,
and
V(n, y(ia+ n)) <
< w\V(no, y(ng + a)) Eg(= A1, Ns)Eg(—Ar, Ns — 1) + 25)

+ 11 A2Eg(=A1, Ns)Ep g1 1(=A1, Ns—2) +
+ AzEﬁ,ﬂJ’,l(_A«l, NS_ 1), ne Qz,

respectively. Combining with (24-26) yields

V(n,y(a+n) <
< (uEg(=A1, Ns))*'Eg(=A1, Ns) V(no, y(no + @) + (26)
Ep p1(=A1, Ns— 1) 42
I — uEs(=21, Ny)

5 I’lEQk, kzl

This, together with Condition (i), implies that

[v(a-+m)l <7/ O(uEs(-21, N9 +E,n € Qp k=1, 27)

, _ E (=21, Ny — 1)12
where ® = -2 ||y(ng + a)|* and & = 2L . The
ue ||y( 0 )” Cl(l — ,UEﬂ(—}bl, Ng))

proof is completed. [
Corollary 1. Suppose that Conditions (i)-(iv) of Theorem 1

with 4, = 0 hold. Then system (6) is globally exponentially
stable with the exponential convergence rate

602

A=—n(—1 ) (28)
2Ny uEpg(=A1, Ns)

Proof. If 1, = 0, then from (28) we have

%)
(@t mll < ey [0+ @ (Ep(-2a. N )
ne Qk: k > 1.

Forn € Q4, k> 1, we have

n—ny < np—ng < kNs. (30)
Using (30) and (31)
€2 n—n
ly(a+n)|| <Al e 1y + a)| (/JE/S(—}H, NS)) Ny —
He
(31)
¢ AN U
e Iylno + e 2w GETmm)[ =0, 1y >

which ends the proof of Corollary 1. O

Theorem 2. Assume that there exists a function V(n, y(a + n)) :
: N, x R"—= R, = [0, o) and several constants A, > 0, ¢; > 0,

noy

c;>0,p>0,¢g>0, 4, >0and 0 < A3 < | such that
(i) for all (n, y) € Np,x R”,

clly(at mlP < Vi yla-+ m) < eolllat ml
(ii) for all k € Ny and y € R”, 53
V(ng, y(ni+ @) < V(g — 1, y(ng — 1 + a));
(iii) for all k € Ny, n € Q2 [ny_1, ny), and y € R”,
AV, (1) < 2]yl + )7+ 2o o
(iv) 0 < Ny=ny — nj_ < oo, k €Ny,
(35)

A

where € (0,1), a=p — 1, p=supsen{u and Ny =
= supye {1} Then system (6) is globally convergent to the ball

Eﬁ,ﬁﬂ(f%, Ny — 1),12 »

(e

S =Ky eR":|yn)] < . (36)

Proof. From inequalities (33) and (35) the following inequality
holds

A
B < 3
A V(n, y(n)) < V(n, y(a+ n)) + A, o7
ne Qké [I’lk_l, }’lk), ke N].

Bull. Pol. Ac.: Tech. 66(5) 2018



W\-\'\‘\’.CZL{SU].)ihl'l'li{.IBilll.L)l P

N www.journals.pan.pl

Global convergence analysis of impulsive fractional order difference systems

Similar to the proof of Theorem 1, we have

V(n, y(a+ n))
< (om0 el

EMH(—% Ny — 1)/12

1 - puEp(~2, Ns)

Ns) V(no, y(no+a))  (38)

,nGQk,kZI.

This, together with Condition (i), implies that

I+l < {22+ P (uEp (2, )
1 (39)
Eﬁ,ﬁ+1<_?:NS_ 1)12 P
n ,n e ka k 2 1.
er(1 - ks -5 %)

The proof is completed. [

Corollary 2. Suppose that Conditions (i)-(iv) of Theorem 2
with 4, = 0 hold. Then system (6) is globally exponentially
stable with the exponential convergence rate

1 1
A= In (40)
A
pNs  \ uE (—7} NS>
Proof. If 1, = 0, then from (40) we have

A k/
Iota+ i< (2 ) oo+ @l (s (-2 m5) ",
neQy, k>1.

Using (42) and (31)

IIy(a+n)H

< (Y I+ e (a2 )™

1

- L1n<7>}(n — np)
e P Cnm

(42)
1

= (2 (g +a

which ends the proof of Corollary 2. O

4. Illustrative example

Example 1. Consider the impulsive fractional order difference
system

~0sAL [yl = ~blly(n = 05)l|+ d, n 7 ny, n > no,

y(ng—0.5)=hy(ng—1-05)), ke Ny
»(=0.5) = (03, 02)",

(43)

Bull. Pol. Ac.: Tech. 66(5) 2018

where yeR% b >0,d>0, np=nt_+ 2, ke Ny, hy=
= [2Eos5(-b,2)] *

LetV(n,y)=|y|- ThenbyTheorem2forc1 =0
,uk:,u:[ZEos(b2)] NS_2 13—bandlz—d
system (44) is globally convergent to the ball &' = {y e R?
:|ly(n)]| <2Eps, 15(=b, 1)d}. Furthermore, if d = 0, then by
Corollary 2, system (6) is globally exponentially stable with the
exponential convergence rate A = %an.

=p=q=1

5. Conclusions

We have investigated the convergence and stability problem
for a class of impulsive Caputo fractional order difference
systems. Sufficient conditions for the global convergence and
the exponential stability of the addressed systems have been
presented based on the Lyapunov functions, the Z-transforms
of Caputo difference operators, and the properties of discrete
Mittag-Leffler functions. The obtained results can be used to
discuss the convergence of more complicated systems such as
neural networks, multi-agent systems, and switching systems.
We will do some further research in this direction.
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