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Exact and approximate controllability conditions for
the micro-swimmers deflection governed by electric

field on a plane: The Green’s function approach

ASATUR ZH. KHURSHUDYAN

We study the exact and approximate controllabilities of the Langevin equation describing
the Brownian motion of particles with a white noise. The Langevin equation is shown to de-
scribe also the bacterial run-and-tumble motion. Applying the Green’s function approach to the
Green’s function representation of the Langevin equation, we obtain necessary and sufficient
conditions for exact controllability in the form of a finite-dimensional problem of moments. For
the approximate controllability, we obtain only sufficient conditions. The sets of resolving con-
trols are characterized in both cases. The theoretical derivations are supported by a numerical
analysis.

Key words: run, tumble, micro-swimmers, Green’s function of nonlinear equation, discon-
tinuous control.

1. Introduction

The necessity of controlling micro-swimmers– artificial microscopic parti-
cles which exhibit a self-propelling feature in a fluid – is related with their wide
applications ranging from targeted drug delivery to design of efficient micro-
sensors and micro-actuators [1, 2]. In the mentioned applications, the controlled
motion of the micro-swimmers is investigated: given the initial state (position
and velocity) of the particles, the problem is to control the external influence
or taxis (e.g., chemical, thermal, electromagnetic [3]) to transmit the particle to
a desired state [4]. The state of the micro-swimmers in time is fully described
by the particles speed, v, and deflection, x, (change of the direction), which are
stochastic quantities:

vvv(t) = v(t)eee(t),
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eee(t) = x(t)eee0 +
√

1− x2(t) nnn0, x = cosϕ.

Here eee is the orientation vector, eee0 = eeet(0); nnn0 = nnn(0), nnn is the normal vector; ϕ
is the rotation angle of the particle (see Figure 1).

Figure 1: Schematic representation of particle orientation change

Nevertheless, a single stochastic model is recovered from experimental data
in [5, 6]: the speed is uniquely defined by the deflection. Therefore, the biggest
challenge is in controlling the direction of the particles. The mathematical model
consists of a Langevin equation with a hyperbolic potential and a white noise
with zero mean:

dx

dt
=−dU

dx
+ηx(t), t > 0. (1)

Here U is a phenomenological potential given by

U(x) =U0−ρ
[
x− γ

δ
cosh(δx)

]
,

U0 = const and the parameters ρ , γ and δ are constrained by

ρ2δ
√

1+ γ2 = c0 , (2)

where c0 is a given constant. For specific values of γ and δ , the constraint (2) de-
fines the values of ρ corresponding to either run or tumble modes of the particles
motion [6].

A feedback control problem in terms of the micro-swimmers deflection has
been recently studied in [4]. Control is carried out by means of a time-harmonic
AC electric field applied to the particles. At this, the field intensity and the fre-
quency are the control parameters. The particles state obeys a coupled system
of Langevin equations with a white noise with zero mean. The key point of the
method consists in instantaneous switches between active Brownian motion and
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rotations by changing the electric field frequency. The deflection of the particles
is measured at each instant, and depending on the accepted value, the frequency
is set to a corresponding value. An optimal feedback strategy is developed for
the particular form of the electric field considered.

Nevertheless, the controllability property of the micro-swimmers deflection
for general taxis and arbitrary terminal states remains open. Inspired by this chal-
lenge, in this paper we formulate a two-point and a multi-point control problems
for the Langevin equation with respect to the particle deflection with a known
initial value. Considering a general control field, exact and approximate control-
lability conditions are derived using the Green’s function-based explicit solution
reported earlier in [5]. Note that controllability of standard Brownian motion has
been considered in [7].

2. Control of the Langevin equation

The main aim of the present paper is the establishment of exact and approx-
imate controllability for (1). To this end, let us assume that the control field, u,
enters into (1) linearly, i.e.,

dx

dt
=−dU

dx
+ηx(t)+u(t). (3)

Let the particle deflection at the initial instant t = 0 is given:

x(0,u) = x0 . (4)

Here, u plays the role of the time-dependent intensity of an external electric field
applied to the micro-swimmers to change their deflection. At this, we formally
include the control function into the argument of the deflection to illustrate its
implicit dependence on u. This dependence will be made explicit below.

Two basic control problems can be considered for (3), (4): two- and multi-
point control problems.

2.1. Two-point control problem

The two-point problem consists in characterization of all the admissible con-
trols u ∈ U providing the desired terminal deflection

x(T,u) = xT (5)

within a given time T for a given xT .
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2.2. Multi-point control problem

The multi-point control problem requires to find all the admissible controls
u ∈ U providing the system of intermediate constraints

x(tk,u) = xtk , k = 1, . . . ,K, (6)

at the given instants tk restricted by

0 ¬ t1 < t2 · · ·< tK ¬ T,

for any given xtk . Obviously, (6) contains the initial and terminal values above if
t1 = 0 and tK = T . Apparently, the two-point control problem is a particular case
of the general multi-point control problem when K = 2, t1 = 0, and tK = T .

2.3. The set of admissible controls

In applied problems, the admissible controls need to be bounded. Moreover,
they need to stop operating at the terminal instant t = T . Besides, switches at
required instants must be allowed. Therefore, we constrain the consideration by
the admissible controls

U =
{

u ∈ L2[0,T ], |u| ¬ ǫ, supp(u)⊆ [0,T ]
}
, (7)

where ǫ is a given positive constant and supp(u) = {t ∈ R+, u(t) 6= 0} denotes
the support of u. As soon as we need to use impulsive controls, the space of
distributions must be considered as control function space.

2.4. The set of resolving controls: exact and approximate controllability

and lack of controllability

We would say that (3), (4) is exactly controllable at t = T if there exists a
u ∈ U such that (6) holds exactly for given K, tk, xtk . The set of admissible
controls providing (6), i.e.,

U
ex

res = {u ∈ U , (6)} ,

is called the set of exactly resolving controls. Thus, the system is exactly con-
trollable if and only if U ex

res 6=∅.
Similarly, if for given K, tk, xtk , (6) is satisfied with a required precision, (3),

(4) is referred to as approximately controllable (with a required precision) at
t = T . Thus, the set of approximately resolving controls is defined as follows:

U
ap

res = {u ∈ U , |x(tk,u)− xtk| ¬ ǫ, k = 1,2, . . . ,K} .

The system is approximately controllable if and only if U
ap

res 6=∅.
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Apparently, exactly controllable systems are approximately controllable with
arbitrarily small precision, whereas, in general, approximate controllability does
not imply exact controllability.

Finally, note that if U ex
res =∅ (U ap

res =∅), the system lacks to be exactly (resp.
approximately) controllable.

3. Controllability of the Langevin equation

In this section we study the cases of occurrence of the controllability property.
We consider merely the case of the multi-point control, since, as it is shown
above, the two-point control problem is its particular case.

3.1. Exact controllability

First, we begin with the analysis of exact controllability. Then, the following
theorem holds true.

Theorem 1 For the exact controllability of (3), (4), i.e., for the exact satisfaction
of (6) at a given T , it is necessary and sufficient for u to satisfy the following
system of equality type constraints1:

tk∫

0

G(tk,τ)u(τ)dτ = Mk, (8)

for all k = 1, . . . ,K.

Proof. In terms of the general controllability theory [8], the multi-point control
problem is equivalent to the following system of constraints:

Rk(u) = |x(tk,u)− xk|= 0, k = 1, . . . ,K.

Thus, if for at least one admissible control u ∈ U , the following equality holds:

Rk(u) = 0, (9)

for all k = 1, . . . ,K, then the Langevin equation is exactly controllable.
In order to reduce constraints on the control function providing (9) exactly,

we involve the explicit form of the solution of (3), (4) obtained in [5]:

x(t,u) = xs +(x0 − xs)G(t,0)+

t∫

0

G(t,τ) [ηx(τ)+u(τ)]dτ, (10)

where xs is the steady-state solution, and G is the Green’s function.
1Notations are explained in the proof
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Let (9) (or, equivalently, (6)) holds. Then, evaluating (10) for t = tk and sub-
stituted x(tk,u) by xk, we straightforwardly obtain (8) with

Mk = xk − xs − (x0 − xs)G(tk,0)−
tk∫

0

G(tk,τ)ηx(τ)dτ.

Now let us prove the sufficiency. Let (8) be satisfied. Then, we have

xs +(x0 − xs)G(tk,0)+

tk∫

0

G(tk,τ) [ηx(τ)+u(τ)]dτ − xk = 0.

This expression is nothing else but

x(t,u)
∣∣
t=tk

− xk = 0, k = 1, . . . ,K,

which implies (9).
Thus, the problem of the exact controllability is reduced to characterization

of the set of exactly resolving controls

U
ex

res = {u ∈ U , (8)} .
3.1.1. The Green’s function

The Green’s function of (3), (4) is rigorously determined in [5]. It turns out
that it has different forms for the run and tumble modes. More specifically, in the
run mode

xs = 1, G(t,τ) = exp

[
−|t − τ|

χ

]
,

where

χ =
1

ρδ
√

1+ γ2

is the characteristic time.
On the other hand, in the tumble mode

xs =
1
δ

arcsinh
1
γ
, G(t,τ) =

ln(1−β exp [−M(t,τ)])

ln(1−β exp [−m(t,τ)])
,

where

β =− 4
γ2

γ exp[−δ ]+1−
√

1+ γ2

γ exp[−δ ]+1+
√

1+ γ2
,

M(t,τ) =
1
χ

max{t,τ}, m(t,τ) =
1
χ

min{t,τ}.

See [5] for details of the derivation.
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3.1.2. Heuristic characterization of U ex
res

There exist several approaches towards the solution of (8). For example, it can
be treated as a system of finite-dimensional problems of moments. The existence
of the explicit L2-optimal solution of (8) is among its advantages. The method
of heuristic determination of control also can be applied efficiently (see [8,9] for
details and for a proof of equivalency of these two methods).

Following to [9], let us represent the solution of (8) in the following form:

u(t) =





M

∑
m=1

um sin(ωmt +σm), t ∈ [0,T ],

0, else,

where M, um, ωm and σm are free parameters chosen to satisfy (8) exactly. Ap-
parently, in this case u ∈ U as soon as |um| ¬ ǫ.

Note for comparison that [4] uses a single mode (M = 1) of the presented
solution with σm = 0. However, obviously, the case of multi-point control can
not be studied by only one mode.

In many applications including control of heating process, switching regimes
are considered [8]:

u(t) =
M

∑
m=1

umθ(t −µm), t ∈ [0,T ]. (11)

Above θ is the Heaviside function, and the free parameters are M, um and the
switching instants µm. In order to prevent overlapping of the modes, the con-
straint

0 ¬ µ1 < µ2 < · · ·< µM ¬ T (12)

is added to the system of constraints reduced from (8) for M, um, and µm. Appar-
ently, in this case as well, u ∈ U as soon as |um| ¬ ǫ.

Depending on the intermediate constraints at t = tk, it might be the case that
U ex

res = ∅. This can be overcome by extending U to contain impulsive regimes
as follows [8]:

u(t) =
M

∑
m=1

umδ (t −µm), (13)

where δ is the Dirac function. Evidently, by virtue of (12), supp(u) = [0,T ] and
in the definition of U (7), L2 must be substituted by the space of distributions.

In the above cases, the solvability strongly depends on the relation between
K and M.

It is noteworthy that with the above heuristic solutions, a cost functional of
the form κ [u] can be extremized with respect to the free parameters contained in
each form of u.
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3.2. Approximate controllability

In practice, the achieving of the approximate controllability of a dynamic
system is more probable compared with the exact controllability in the sense
that the set of resolving controls providing the approximate controllability is
much wider than that providing the exact controllability. In our case, due to the
presence of a noise, which results a slight distortion of the predicted deflection
[4] making the exact achievement of a required position unrealistic, it is more
curious and sensible to consider the approximate controllability of the particle.
The approximate controllability of the Langevin equation is equivalent to the
system of inequality type constraints

Rk(u) ¬ ǫk on U , (14)

for desired accuracies ǫk and all k. In this case, the set of approximately resolving
controls reads as follows:

U
ap

res = {u ∈ U , (14)} .

Knowing the exact solution (10), by virtue of the triangle inequality we
straightforwardly derive that system

∣∣∣∣∣∣

tk∫

0

G(tk,τ)u(τ)dτ

∣∣∣∣∣∣
¬ ǫk −|Mk|, k = 1, . . . ,K, (15)

is sufficient for the approximate controllability of the Langevin equation with
multi-point constraints. Note that since Mk depends on the system parameters,
the right hand side of the last inequality, in principle, can be made non-negative,
i.e., ǫk −|Mk|  0, k = 1, . . . ,K. Then,

Ũ
ap

res = {u ∈ U , (15)} ⊆ U
ap

res .

Furthermore, since for any u ∈ U , the following inequality holds:
∣∣∣∣∣∣

tk∫

0

G(tk,τ)u(τ)dτ

∣∣∣∣∣∣
¬ ǫ ·

tk∫

0

|G(tk,τ)|dτ

and, on the other hand,

|Mk| ¬
tk∫

0

|G(tk,τ)| · |ηx(τ)|dτ + |xs +(x0 − xs)G(tk,0)− xk| := Nk,
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then the inequality

ǫ ¬ max
k=1,...,K

Nk

Gk

, (16)

where

Gk =

tk∫

0

|G(tk,τ)|dτ,

defines the set
U

ap

res = {u ∈ U , (16)} ⊆ U
ap

res .

In other words, (16) is sufficient for approximate controllability.
It is noteworthy that, if for chosen values of the system parameters, (16) does

not hold, then (15) needs to be verified. However, (15) is also a sufficient condi-
tion meaning that, in general, it does not define the set U

ap
res entirely.

4. Numerical analysis

In this section we carry out a numerical analysis of controllability for a single
particle to verify the controllability conditions derived above. Following to [6],
we consider the values δt = 9.062, γt = 6.63 ·10−3, ρt = 1 for the tumble mode
and δr = 4.71 · 10−2, γr = 4.98, ρr = 6.21 for the run mode. For the sake of
simplicity, we assume that ηx ≡ 0.

Consider the following three-point control problem: find an admissible con-
trol u ∈ U such that the following conditions hold:

x(0.5,u) = 0.5, x(2,u) = 0, T = 2,

provided that
x(0,u) = 0.

Then, (8) takes the following form:

0.5∫

0

G(0.5,τ)u(τ)dτ = 0.5+ xs [G(0.5,0)−1] , (17)

2∫

0

G(2,τ)u(τ)dτ = xs [G(2,0)−1] . (18)

Choosing the control function in the following form (cf. (11)):

u(t) = u1θ(t −µ1)+u2θ(t −µ2), t ∈ [0,2], 0 < µ1 < µ2 < 2,
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we ensure u ∈ L2[0,2] and supp(u) = [0,2]. Here u1, u2, µ1 and µ2 are free pa-
rameters determined to satisfy (17), (18).

Assume that the particle is in a tumble mode. Substituting u into (17), (18),
we obtain u1 = 1, µ1 = 0.55, and u2 = −3.1, µ2 = 1.45. It is evident from Fig-
ure 2 that the trajectory of the particle is continuous. However, since the applied
electric field has discontinuities, the trajectory is not differentiable at isolated
points (the velocity changes instantaneously).

Figure 2: Plot of the particle trajectory (left) and the piecewise constant control (right)

Consider now the following four-point control problem:

x(0,u) = 0, x(1,u) = 2, x(2,u) = 4, x(4,u) = 2, T = 4.

The system of constraints in this case is as follows:

1∫

0

G(1,τ)u(τ)dτ = 2+ xs [G(1,0)−1] , (19)

2∫

0

G(2,τ)u(τ)dτ = 4+ xs [G(2,0)−1] , (20)

4∫

0

G(4,τ)u(τ)dτ = 2+ xs [G(4,0)−1] . (21)

Now we employ the impulsive regime (13) with M = 3. Let us consider the
trajectory of a single particle in the run mode. Then, the resolving control will
be:

u(t) =−1.5δ (t −1)+δ (t −2)−2.55δ (t −4).

It is evident from Figure 3 that, indeed, the particle passes through the required
points at the given time instants.
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Figure 3: Plot of the particle trajectory controlled by impulsive regime (13)

Note that in this case u /∈ L2 [0,4]. Nevertheless, the integrals in (19)–(21)
exist due to the translational property of the Dirac delta:

tk∫

0

G(·,τ)δ (τ −µk)dτ = G(·,µk).

In the same way, using heuristic solutions of (8), we can study the controlla-
bility of particles in a more general statement. In particular, using the advantages
of the impulsive regime (13), we can achieve a periodicity of particle motion.
Indeed, applying (13), we see from Figure 4 that the control regime

u(t) =−0.63
M

∑
m=1

δ (t −m), m ¬ [T ],

where [T ] is the integer part of T , ensure a periodic motion of the particle.

Figure 4: Periodic particle trajectory achieved with the aim of (13)
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Note that for t > T , the trajectory becomes constant, i.e., the particle moves
uniformly. This is a consequence of the fact that the external influence (electric
field) vanishes when t > T .

5. Conclusions

We derive necessary and sufficient conditions for exact controllability and
sufficient conditions for approximate controllability of the Langevin equation
describing the Brownian motion of micro-swimmers subjected to an external
electric field. We employ the Green’s function representation of the Langevin
equation solution in order to derive controllability conditions according to the re-
cently developed Green’s function approach. In the case of exact controllability,
we characterize the set of resolving controls through a finite-dimensional prob-
lem of moments. Further, parametric families of controls resolving the problem
of moments are derived. Numerical analysis supports our theoretical derivations.
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