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Abstract

The main goal of this paper is to propose the probabilistic description of
cyclical (business) fluctuations. We generalize a fixed deterministic cycle model
by incorporating the time-varying amplitude. More specifically, we assume
that the mean function of cyclical fluctuations depends on unknown frequencies
(related to the lengths of the cyclical fluctuations) in a similar way to the almost
periodic mean function in a fixed deterministic cycle, while the assumption
concerning constant amplitude is relaxed. We assume that the amplitude
associated with a given frequency is time-varying and is a spline function.
Finally, using a Bayesian approach and under standard prior assumptions, we
obtain the explicit marginal posterior distribution for the vector of frequency
parameters. In our empirical analysis, we consider the monthly industrial
production in most European countries. Based on the highest marginal data
density value, we choose the best model to describe the considered growth
cycle. In most cases, data support the model with a time-varying amplitude.
In addition, the expectation of the posterior distribution of the deterministic
cycle for the considered growth cycles has similar dynamics to cycles extracted
by standard bandpass filtration methods.
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1 Introduction
The concept of stochastic cycle is very well known (see Harvey and Jaeger (1993),
Harvey and Trimbur (2003), Harvey (2004), Azevedo, Koopman, and Rua (2006),
Trimbur (2006), Harvey, Trimbur, and Dijk (2007), Koopman and Shephard (2015),
Pelagatti (2016) and many others). This concept assumes the stationarity of cyclical
fluctuations with a zero mean function. In the univariate case, the aforementioned
construct assumes the following for observed process Yt:

Yt = µt + ψn,t + εt
µt = µt−1 + βt−1
βt = βt−1 + ζt,

(1)

where εt and ζt are white noise and the stochastic component ∆µt is a random
walk. The component ψn,t is a generalization of the cycle presented in Harvey and
Jaeger (1993). This generalization is called the nth-order cycle and is characterized
by the concentration of the spectral density function around the frequency λc (see
illustrative example in Trimbur (2006)). The multivariate case was considered in
Azevedo, Koopman, and Rua (2006) and Harvey, Trimbur, and Dijk (2007) where the
trivariate example was considered. In Koopman and Azevedo (2008) the multivariate
case was also considered. It was shown that the phase shifts incorporated in this
stationary model are flexible and allow for increasing or diminishing.
So far, no other concept has been developed to compete with the stochastic cycle
ψn,t. Recently, some preliminary results concerning a new concept of a stationary
nonlinear stochastic cycle model were presented in Lenart and Wróblewska (2018).
They combine the idea of the linear innovations state space model with the properties
of the sine function in the following way:

Yt = (A+At−1) sin[λ(t+ T + Tt−1)] + µ+ εt
At =ψAAt−1 + αAεt deviations from amplitude A
Tt = ψTTt−1 + αT εt deviations from phase shift T

(2)

where A, T, µ, λ, αA, αT , ψA, ψT ∈ R, |ψA| ≤ 1, |ψT | ≤ 1, λ ∈ (0, π) and εt is Gaussian
white noise.
The models with a deterministic cycle are not as popular as models with a stochastic
cycle. Following Harvey (2004), the concept of a fixed deterministic cycle is based on
an almost periodic function at time t ∈ Z with one frequency λ ∈ (0, π) of the form

f(t) = a sin(λt) + b cos(λt),

where a, b ∈ R. It is widely known that the above function is not flexible enough
to describe the variable in time dynamics of the business cycle. Therefore the
more flexible concepts of the deterministic cycle were recently considered. In
Lenart and Pipień (2013), the nonparametric inference was considered under the
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assumption that the conditional expectation of observed process contains an almost
periodic component with more than one frequency. In Lenart, Mazur, and Pipień
(2016), the parametric and nonparametric inference were considered under the
assumption that the mean function of a cyclical process is an almost periodic
function with few frequencies. Finally, in Lenart and Pipień (2017), the authors
consider the nonparametric test based on a subsampling approach to test the common
deterministic cycles in industrial production in selected European countries. The
concept of the deterministic cycle has been used many times for macroeconomic
data using parametric inference and a Bayesian approach (see Mazur (2016), Mazur
(2017a), Mazur (2017b), Mazur (2018)). Some preliminary results concerning the
modelling of cyclical fluctuations using both deterministic and stochastic cycle
concepts were considered in Lenart and Mazur (2017).
In all of the above approaches the amplitude of the considered deterministic cycle
is assumed to be constant in time. This assumption seems to be too strong, taking
into consideration the variable nature of the business cycle. In Lenart (2018), the
preliminary results concerning time-varying amplitude in a deterministic cycle was
developed. The illustrative example was considered using a growth rate cycle for
industrial production in Poland (for monthly data).
In this paper, we significantly develop an approach introduced in Lenart (2018).
Concurrently, we investigate the time-varying amplitude by considering the following
function

g(λ, t) = a(t) sin(λt) + b(t) cos(λt) (3)
of integer t ∈ Z, where a(·) and b(·) are functions of integers. Note that g(λ, t) is an
alternative for the stochastic cycle component ψn,t in (1). If a(·), b(·) are constant
functions, then we obtain the usual almost periodic function. For the functions a(·),
b(·) we make the following natural assumptions.

Assumption 1. The functions a(t) and b(t) are bounded, which means that there
exists K ∈ R such that |a(t)| < K and |b(t)| < K, uniformly for t ∈ Z.

Assumption 2. The functions a(t) and b(t) can be represented as a(t) = a0 + ã(t)
and b(t) = b0 + b̃(t), where a0, b0 ∈ R and the functions ã(t) and b̃(t) are the functions
with empty spectrum, that is for any κ ∈ [0, 2π) we have

lim
n→∞

1
n

n∑
t=1

ã(t)e−itκ = 0, lim
n→∞

1
n

n∑
t=1

b̃(t)e−itκ = 0. (4)

Assumption 1 means that the time varying pseudo-amplitude of the function (3)

amp(t) =
√
a2(t) + b2(t) (5)

is bounded, amp(t) <
√

2K uniformly at t ∈ Z. Condition (4) guarantees that there
is only one source of the cyclical fluctuation in function (3). This source is related
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only to frequency λ (see Napolitano (2012) for more details).
Assume that we have a sample path {X1, X2, . . . , Xn} from time series {Xt : t ∈ Z}
with mean function g(λ, t), i.e.,

E(Xt) = a(t) sin(λt) + b(t) cos(λt).

In such a case, from the purely nonparametric point of view, under Assumption 2 we
have

E

(
1
n

n∑
t=1

Xt sin(ωt)
)
→
{

a
2 if ω = λ

0 if ω 6= λ
, (6)

E

(
1
n

n∑
t=1

Xt cos(ωt)
)
→
{

b
2 if ω = λ

0 if ω 6= λ
. (7)

Hence, from the nonparametric point of view, the statistical inference concerning
constants a and b seems possible. However, from the practical point of view, we
are interested in approximating functions a(t) and b(t) rather than just constants
a and b. Therefore, we propose using a parametric approach rather than the
nonparametric approach. Moreover, in using the parametric approach we can propose
some parametric forms for a(t) and b(t). In this paper, we assume that functions a(t)
and b(t) are linear splines or are related to the Bézier curve. As will be shown later
in this work, such a parametric approach based on a Bayesian approach allows the
formation of a fully probabilistic inference concerning cyclical fluctuations.
The paper is organized as follows. In Section 2 we present the monthly data concerning
industrial production in European economies from 2001 to 2017 and we formulate the
main problems related to the cyclical behavior of such data. This type of behavior
creates a real challenge for modelling. In Section 3 we introduce the model with time-
varying amplitude of the deterministic cycle. In Section 4 we present the Bayesian
inference for such model. In particular we show the closed form for the marginal
posterior distribution for the frequency vector related to the length of the cycle for
cyclical fluctuations. In the last section we analyze the empirical results.

2 Data presentation and the main hypothesis
We consider the growth cycle for industrial production (mining and quarrying;
manufacturing; electricity, gas, steam and air conditioning supply) with a monthly
frequency (calendar adjusted data, not seasonally adjusted; percentage change
compared to the same period in the previous year, source: Eurostat). The data
cover the period January 2001 to December 2017. We consider aggregate production
for the European Union (28 countries) and for the Euro area (19 countries) and
individual industrial production for 32 countries (Belgium; Bulgaria; Czech Republic;
Denmark; Germany; Estonia; Ireland; Greece; Spain; France; Croatia; Italy; Cyprus;
Latvia; Lithuania; Luxembourg; Hungary; Malta; the Netherlands; Austria; Poland;
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Portugal; Romania; Slovenia; Slovakia; Finland; Sweden; the United Kingdom;
Norway; the Former Yugoslav Republic of Macedonia or Macedonia; Serbia and
Turkey).
Figures 2-7 present (among others) the growth cycles (gray line) for considered data
sets. To formulate the model correctly, in the next section we will try to discuss the
basic dynamic properties of the data analyzed below.
First, the recent world crisis in 2009 is clearly visible in the considered data as a period
with extremely low values for the production index for most European economies.
This is an important feature of the analyzed data, because without proper modelling,
the final conclusions concerning the business cycle may be strongly influenced by
the recent world crisis. Let us emphasize that the last crisis occurred after the
dynamic economic growth in period of 2006-2007. It can therefore be concluded
that during the period 2006-2007, the economic slowdown was expected to occur in
near future. However, the scale of this slowdown was a surprise for most economies.
In most European economies the intensification of the economic slowdown during
the recent global crisis was manifested, among others, by a very low value of the
industrial production index. This intensification of the economic slowdown in most
European economies took place in a very similar period of time. For the growth cycle
in production, the lowest values were recorded in the months of the first, second and
third quarter of 2009 (most often in April 2009 for the considered economies or groups
of countries). From a purely econometric point of view, the problem is not only with
the decline in the production during the recent world crisis but also with the dynamic
increase of the amplitude of these fluctuations for most of the considered economies.
The purpose of this article is not, however, to analyse the scale of the recent crisis
related to this amplitude. However, such a dynamic increase of the amplitude in
industrial production may influence the results of statistical inference if this problem
is ignored. Therefore, it will be considered during the construction of the model.
Second, for some countries the growth rate cycle is not smooth enough to visually
identify the phase of the cycle (see, for example, Norway), while for other countries
the phase of the cycle is much easier to identify (see, for example, Hungary, Poland,
Finland and many others). For some countries, cyclical fluctuations in industrial
production are of high amplitude, while for some the amplitude is much lower.
However, in most cases the amplitude of cyclical fluctuations is not stable over time.
It seems obvious that, despite some differences in the dynamics of analysed growth
cycles, a common cyclical pattern should exist for most economies. Based on visual
observation of the growth rate cycle over the period from 2001 to 2017, one can
conclude that the Kitchen cycle (approximately 3-5 years) is observable in many
European economies (see, for example, Belgium, Bulgaria, Czech Republic, Hungary,
Malta, Poland, Romania, Slovakia). Hence, the hypothesis that will be subject to
verification in the empirical section is that (in the considered period - the beginning
of the XXI century) one common Kitchen inventory cycle dominates in European
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economies. To verify this hypothesis, we construct a model in the next section, which
takes into account the above described features of the analysed data.

3 Model proposition
For the time series Yt we propose the following model:

Yt = g(λ, t) + µ(t) + εt, (8)

with a time-varying mean function g(λ, t) +µ(t), where g(λ, t) is of the form (3), µ(t)
is a polynomial of order f

µ(t) = p0 + p1t+ p2t
2 + . . .+ pf t

f

and εt is a white noise. The function g(λ, t) is used to model cyclical fluctuations (with
period 2π/λ) with time-varying amplitude, while µ(t) is responsible for long-term
fluctuations (longer then 3-5 years). Note that no known stochastic cycle component
is included in the model. All cyclical fluctuations during the considered period are
assumed to be modelled by the time-varying function g(λ, t).
Let us clearly note that in the above model we face a problem with the interpretation of
parameters related to the length of cyclical fluctuations and time-varying amplitude.
The problem is that it is difficult to assess the impact of the trend function µ(t) on
cyclical fluctuations. Polynomials of the second, third or higher degree can have a
significant impact on the estimation of not only long-term fluctuations but also cyclical
fluctuations that we assign to the g(λ, t) function. On the other hand, polynomials of
low degree f may be supported by data, although it seems that such polynomials are
not sufficient to describe the dynamics of the trend, understood (commonly) as all
fluctuations longer than 10-12 years. Therefore, the obtained empirical results should
be interpreted with caution.
The above model can be generalized in a natural way to multi-frequency case:

Yt =
m∑
j=1

gj(λj , t) + µ(t) + εt, (9)

where gj(λj , t) = aj(t) sin(λjt) + bj(t) cos(λjt), for j = 1, 2, . . . ,m and the functions
aj(t) and bj(t) meet Assumptions 1 and 2.

3.1 The case of linear splines
For a given time interval [1, n] we assume that a(t) and b(t) are linear splines (in (3))
with r + 1 knots {(ti, ai) ∈ Z × R, i = 0, 1, . . . , r} for a(t) and {(ti, bi) ∈ Z× R,
i = 0, 1, 2, . . . , r} for b(t). We assume 1 = t0 < t1 < t2 < . . . < tr = n. Hence,

a(t) =
r∑
i=1

I{ti−1≤t<ti}

[
ai−1

(ti − t)
ti − ti−1

+ ai
(t− ti−1)
ti − ti−1

]
, t ∈ [t0, tr), a(tr) = ar,
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b(t) =
r∑
i=1

I{ti−1≤t<ti}

[
bi−1

(ti − t)
ti − ti−1

+ bi
(t− ti−1)
ti − ti−1

]
, t ∈ [t0, tr), b(tr) = br.

Let us consider a linear function s(t) : Z → R passing through the points
(x, zs) ∈ Z× R and (y, ws) ∈ Z× R. In such case we have

s(t) sin(λt) = ws
(x− t) sin(λt)

x− y
+ zs

(t− y) sin(λt)
x− y

.

In the same way we can decompose c(t) cos(λt), where c(t) : Z → R is a linear
function, passing through the points (x, zc) ∈ Z×R and (y, wc) ∈ Z×R. Hence, (after
elementary algebra), there exists functions αi(λ, t) and γi(λ, t), for i = 0, 1, 2, . . . , r
such that

a(t) sin(λt) + b(t) cos(λt) =
r∑
i=0

aiαi(λ, t) +
r∑
i=0

biγi(λ, t), (10)

for t ∈ {1, 2, . . . , n}.
Below we show an example where the function a(t) sin(λt) + b(t) cos(λt) will be
illustrated.

Example 1. We consider n = 157, one frequency λ = 0.15, r ∈ {2, 3, 4, 6} and
equally spaced knots, i.e., 1 = t0 < t1 < t2 < . . . < tr = n, ti = bi(n − 1)/r + 1c,
i = 1, 2, . . . , r − 1, where bxc is the greatest integer less than or equal to x ∈ R. For
fixed r we draw each a0, a1, a2, . . . , ar from uniform distribution on the interval (2, 15)
and b0, b1, b2, . . . , br from uniform distribution on the interval (−5, 0) (see Table 1).
The main finding from the presented example (see Figure 1) is that the cycle based on
(3) with time-varying amplitude and with one frequency is much more flexible than the
deterministic cycle with one frequency and a constant amplitude. Hence, the proposed
deterministic cycle model with a time-varying amplitude may be more useful from a
practical point of view in statistical inference concerning cyclical fluctuations.

Table 1: Parameters used in example

r {a0, a1, a2, . . . , ar} {b0, b1, b2, . . . , br}

r = 2 {8.9, 2.2, 5.8} {−0.4,−2.,−4.5}
r = 3 {14.7, 8.3, 3.2, 14.} {−0.8,−3.9,−2.4,−0.7}
r = 4 {4.7, 10., 8.9, 2.6, 2.9} {−4.5, 0.,−1.4,−2.2,−4.1}
r = 6 {10.2, 8.8, 8., 4.7, 3.4, 8.5, 6.8} {−1.,−1.4,−3.4,−2.3,−2.1,−3.6,−4.2}
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Figure 1: Paths for g(λ, t) for different r and {a0, a1, a2, . . . , ar}, {b0, b1, b2, . . . , br}
form Table 1

12 24 36 48 60 72 84 96 108 120 132 144 156

(a) r = 2

12 24 36 48 60 72 84 96 108 120 132 144 156

(b) r = 3

12 24 36 48 60 72 84 96 108 120 132 144 156

(c) r = 4

12 24 36 48 60 72 84 96 108 120 132 144 156

(d) r = 6

3.2 The case of Bézier curves
We assume that a(t) and b(t) are first coordinates of Bézier curves with r+ 1 control
points {Pi = (ti, ai), i = 0, 1, . . . , r} for a(t) and {Qi = (ti, bi), i = 0, 1, 2, . . . , r} for
b(t). We fix t0 = 1 and tr = n. For equally spaced knots 1 = t0 < t1 < t2 < . . . <
< tr = n, ti = 1 + i(n− 1)/r we have

a(t) =
r∑
i=0

(
r

i

)(
1− t− 1

n− 1

)r−i(
t− 1
n− 1

)i
ai =

=
(

1− t− 1
n− 1

)r
a0 +

(
r

1

)(
1− t− 1

n− 1

)r−1(
t− 1
n− 1

)
a1+

+ · · ·+
(

r

r − 1

)(
1− t− 1

n− 1

)
tr−1ar−1 +

(
t− 1
n− 1

)r
ar.

(11)

where t ∈ [1, n]. This is analogical for b(t). Note that a(t) reduces to a constant if
r = 0 and to a linear function if r = 1. The representation

a(t) sin(λt) + b(t) cos(λt) =
r∑
i=0

aiζi(λ, t) +
r∑
i=0

biηi(λ, t) (12)

is straightforward for t ∈ [1, n], where the functions ζi(λ, t) and ηi(λ, t) can be
evaluated using (11).

4 Bayesian inference
In this section, we shed light on the problem of the posterior distribution of parameters
from model (9). First, we assume that the functions aj(t) and bj(t) in (9) are spline
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functions with rj + 1 knots such that Assumptions 1 and 2 hold for j = 1, 2, . . . ,m.
Let us assume that the equality rj = 0 for some j = 1, 2, . . . ,m means that the
functions aj(t) and bj(t) are constant. We use the following notation for knots:
{(ti,j , ai,j), i = 0, 1, . . . , rj} for aj(t) and {(ti,j , bi,j), i = 0, 1, 2, . . . , rj} for bj(t),
where j corresponds to frequency λj and j = 1, 2, . . . ,m. Let us denote the
following: aj = [a0,j a1,j . . . arj ,j ], bj = [b0,j b1,j . . . brj ,j ], for j = 1, 2, . . . ,m and
Λ = [λ1 λ2 . . . λm]. The vector of polynomial coefficients for trend function µ(t) we
denote by p = [p0 p1 . . . pf ]. We formulate the following additional assumptions.

Assumption 3. Assume that εt is Gaussian white noise.

Assumption 4. Assume that for any j = 1, 2, . . . ,m the functions aj(t) and
bj(t) are linear splines with equally spaced knots {(ti,j , ai,j), i = 0, 1, . . . , rj} and
{(ti,j , bi,j),i = 0, 1, . . . , rj} on the interval [1, n] (if rj ≥ 2), i.e., 1 = t0 < t1 <
< t2 < . . . < trj

= n, ti,j = bi(n− 1)/rj + 1c, for i = 1, 2, . . . , rj−1 (see Section 3.1)
or for any j = 1, 2, . . . ,m the functions aj(t) and bj(t) are first coordinates of Bézier
curves (see formula (11) in Section 3.2) with equally spaced knots.

The above assumptions are quite strong and require weakening. On the other
hand, under the above assumptions, we obtain below the closed form of the marginal
posterior distribution of the frequency vector Λ = [λ1 λ2 . . . λm]. Let us assume
that we have a sample path y = [y1 y2 . . . yn]′ from the considered time series.
Note that by (10) and (12) model (9) can be equivalently written as partially linear
regression model (see Osiewalski (1988))

y = X(Λ)β + ε, (13)

where the n× k matrix X(Λ) depends on Λ = [λ1 λ2 . . . λm] and first coordinates
of knots and k = f + 1 + 2

∑m
j=1(rj + 1). The vector

β = [p a1 a2 . . . am b1 b2 . . . bm]′

is k × 1 vector of parameters and ε = [ε1 ε2 . . . εn]′, where εt ∼ N(0, τ−1), for
t = 1, 2, . . . , n. Note that Osiewalski (1988) considered a more general functional
form for g(λ, t) then in model (9). It should be emphasized that, in Lenart and Mazur
(2016), a similar problem was considered, where the marginal posterior distribution
for frequency was obtained under constant amplitude, without a polynomial trend
and with the additional autoregressive part. We use similar steps to those presented
in Osiewalski (1988) and then repeated in Lenart and Mazur (2016).
Under the notation θ = [β′ τ Λ], the likelihood function has the form

p(y|θ) = (2π)
−n

2 τ
n
2 exp

[
−τ
2 (y−X(Λ)β)′(y−X(Λ)β)

]
.

To obtain the marginal posterior distribution of Λ, we use the analogical prior
structure as in Lenart and Mazur (2016), i.e., we assume the following structure
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of prior distribution (see also the related distribution in Osiewalski (1988))

p(θ) = p(β, τ)p(Λ) = p(β|τ)p(τ)p(Λ),

with
p(β|τ) = (2π)−k/2(det(B))1/2τk/2 exp

{
−τ2β

′Bβ
}
,

p(τ) = fG(τ |n0

2 ,
s0

2 ) = (s0/2)n0/2

Γ(n0/2) τ
n0
2 −1 exp(−s0τ

2 ),

p(Λ) =
m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

,

where B, n0, s0, (λj,L, λj,U ) ⊂ (0, π), j = 1, 2, . . . ,m are prior hyperparameters.
That is, given Λ, we assume the natural conjugate, normal-gamma prior for (β, τ).
For Λ, we assume uniform prior distribution on SΛ = (λ1,L, λ1,U ) × (λ2,L, λ2,U )×
× . . .× (λm,L, λm,U ). Under this assumption we get

p(θ|y) = p(y|θ)p(θ)
p(y) =

= 1
p(y) (det(B))1/2 (s0/2)n0/2

Γ(n0/2) (2π)
−(n+k)

2 τ
n+k+n0

2 −1
m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

· exp
{
−τ2

[
(β − β̂)′X′X(β − β̂) + β′Bβ + (y−X(Λ)β̂)′(y−X(Λ)β̂)+s0

]}
=

= 1
p(y) (det(B))1/2 (s0/2)n0/2

Γ(n0/2) (2π)
−(n+k)

2 τ
n+k+n0

2 −1
m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

· exp
{
−τ2 [(β − d)′D(β − d)]

}
exp

{
−τ2 [−d′Dd + y′y + s0]

}
,

where β̂ = (X(Λ)′X(Λ))−1X(Λ)′y, D = X(Λ)′X(Λ) + B and d = D−1X(Λ)′y.
Note that the conditional posterior of (β, τ) given Λ is obviously the normal-gamma
distribution. Integrating over β and τ we get the marginal posterior distribution for
Λ

p(Λ|y) =
∞∫

0

∫
Rk

p(θ|y)dβdτ =

= 1
p(y) (det(B))1/2 (s0/2)n0/2

Γ(n0/2) (2π)
−(n+k)

2

m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L
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·
∞∫

0

τ
n+k+n0

2 −1exp
{
−τ2 [−d′Dd + y′y + s0]

}∫
Rk

exp
{
−τ2 [(β−d)′D(β−d)]

}
dβdτ =

= 1
p(y) (det(B))1/2 (s0/2)n0/2

Γ(n0/2) (2π)
−(n+k)

2

m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

·
∞∫

0

τ
n+k+n0

2 −1 exp
{
−τ2 [−d′Dd + y′y + s0]

}
(2π) k

2 τ−
k
2 det(D)− 1

2 dτ =

= 1
p(y) (det(B))1/2 (s0/2)n0/2

Γ(n0/2) (2π)−n
2

m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

·
[
−d′Dd + y′y + s0

2

]−n+n0
2

Γ
(
n+ n0

2

)
det(D)− 1

2 =

= 1
p(y) (det(B))1/2 s

n0/2
0 π−

n
2

Γ(n0/2) Γ
(
n+ n0

2

) m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

· (det(X(Λ)′X(Λ) + B))− 1
2 ·
(
y′
[
I−X(Λ)(X(Λ)′X(Λ) + B)−1X(Λ)′

]
y+s0

)−n+n0
2 .

(14)

Hence,

p(y) = s
n0/2
0 π−

n
2

Γ(n0/2) Γ
(
n+ n0

2

)
(det(B))1/2

∫
SΛ

m∏
j=1

1{λj ∈ (λj,L, λj,U )}
λj,U − λj,L

·(det(X(Λ)′X(Λ)+B))− 1
2
(
y′
[
I−X(Λ)(X(Λ)′X(Λ)+B)−1X(Λ)′

]
y+s0

)−n+n0
2 dΛ.

(15)

In this paper, we are not interested in the construction of the MCMC sampler for
posterior inference. This is because the assumptions are too strong and should
first be weakened. The most restrictive assumption which can have a significant
impact on the results obtained is Assumption 4. It is obvious that this assumption
should be weakened. It is widely known that fitting splines to data can be improved
significantly if the knots can be adjusted. The Bayesian estimation of free-knot splines
was considered many times in the literature (see Dimatteo, Genovese, and Kass
(2001), Lindstrom (2002), Wang (2008)). However, in our approach the problem
is more difficult since g(λ, t) is a mix of two spline functions and trigonometric
functions. Hence, the fully Bayesian approach to estimating the function g(λ, t) is not
trivial, especially when we use few components g(λ, t) in one model. Therefore, the
construction of the MCMC sampler should be considered in the future as a separate
problem.
From the practical point of view, the posterior distribution for X(Λ)β|y can be
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interpreted as cyclical fluctuations in probabilistic terms. Since we are not interested
in the construction of the MCMC sampler, we show only the possibility to numerically
evaluate the first and second moment of the posterior distribution of X(Λ)β|y.
Note that the conditional posterior pdf for β given Λ,y is a multivariate Student
t distribution with location vector µ = d, shape matrix Σ = (−d′Dd + y′y+
+s0)D−1/(n0 +n) and ν = n0 +n degrees of freedom (see for example Zellner (1971),
page 75-76). Hence,

E(X(Λ)β|y) = E[E(X(Λ)β|Λ,y)|y] = E[X(Λ)E(β|Λ,y)|y] =
= E[X(Λ)(X(Λ)′X(Λ) + B)−1X(Λ)′y|y]

(16)

and the above expectation can be calculated using numerical integration based on
posterior distribution (14). Similarly, the second order moments of X(Λ)β|y can be
calculated using numerical integration based on relation

E(X(Λ)ββ′X(Λ)′|y) = E[X(Λ)E(ββ′|Λ,y)X(Λ)′|y] =

= E

[
X(Λ)

(
dd′ + ν

ν − 2Σ
)

X(Λ)′|y
] (17)

and posterior distribution (14).

5 Real data example
In this section, we show some results based on the marginal posterior distribution
(14) and the expectation (16) for k = 1 (i.e., we consider only one frequency). We
consider the following hyperparameters B = I, s0 = 1.05, n0 = 2.1, λ1,L = 2π

1.5×12

and λ1,U = 2π
10×12 . We choose such λ1,L and λ1,U because, for the analysis of Kitchin

cycles (i.e., from 3 to 5 years), the range of fluctuations from 1.5 to 10 years seems to
be sufficient, assuming k = 1. Note that a wider window for fluctuations (for example,
up to 11 or 12 years or longer) would probably require an additional analysis taking
into account more frequencies (i.e., k > 1). It is possible, but such analysis devoid of
the weakening of Assumption 4 is not the primary aim of this article. We consider
constant amplitude together with r ∈ {1, 2, . . . , 9}. We use both linear splines and
Bézier curve. We consider the order of polynomial: f = 0, 1, 2.

5.1 Bayesian model comparision
We calculate the marginal data density p(y) using (15) and numerical integration.
In Table 2 we present the marginal data density comparison for different values of
polynomial order, f = 0, 1, 2 in the case of linear splines. In Table 3 we present
the same marginal data density comparison in the case of Bézier curves. Note that
the case of Bézier curves reduce to constant amplitude for r = 0, and to a linear spline

Ł. Lenart
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with two knots for r = 1. Therefore the results for r = 0 and r = 1 are the same for
linear splines and for the Bézier curve.
The zero degree polynomial (constant value) is most often supported by the data
for both linear splines and Bézier curves. The first degree polynomial is supported
in only a few cases, while the second degree polynomial is not supported for linear
splines and only three times in the case of Bézier curves (for Ireland, Lithuania and
Luxembourg).
In Table 4 we present selected characteristics of the model with the maximum value
of log10 p(y) from the models considered in Tables 2 and 3. Linear spline is supported
by all data, i.e., for the European Union, the Euro area and all considered countries.
It should be emphasized that in most cases, the data does not support any trend.
The data support a linear trend in only seven cases. Moreover, most of the data
support models in which the number of knots is odd. An odd number of knots equal
to seven or nine is mostly supported by the data (22 times). The odd number of
knots is probably related to a strong change in the amplitude of cyclic fluctuations
for most data during the crisis in 2009. In the case of an odd number of knots, the
middle knot falls in mid-2009, which is supported by the data. Only in the case of the
United Kingdom, Norway and Macedonia does the data support a constant amplitude
of fluctuations (r = 0). In the next two subsections, we will interpret the posterior
expectation E(X(Λ)β|y) and the posterior distributions for frequencies Λ for models
with a maximum p(y) value from Table 4.

5.2 The posterior expectation of cyclical fluctuations
In Figures 2-7 we present the industrial production together with the posterior
expectation E(X(Λ)β|y). We present the results for the models with the higher
marginal data density from Table 4. Additionally, in order to compare obtained
results we presents the cycle extracted by the standard bandpass filtration procedure.
We use the Christiano-Fitzgerald (CF) filter with a range of 1.5 year to 10 years (see
Christiano and Fitzgerald (1999))).
It seems likely that the proposed approach based on a time-varying amplitude is
dynamic enough to describe the dynamics of the business cycle. In most cases, the
posterior expected value E(X(Λ)β|y) and the cycle extracted by the CF filter have
very similar dynamics. Moreover, in most cases, the results indicate similar turning
points of the cycle and amplitude. Let us emphasize that, in three cases (the United
Kingdom, Norway and Macedonia), the model with the maximum p(y) value assumes
a constant amplitude of fluctuations (see Table 4). This is clearly visible in the
dynamics of the expected value E(X(Λ)β|y) for these countries in Figures 6-7.
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Table 4: Optimal model with the maximum log10 p(y) (last column), r+ 1 = 1 means
constant amplitude

Country or Linear Bézier Optimal polynomial order Optimal knots number r + 1 max

region splines curves 0 ≤ f ≤ 2 (where 1 ≤ r + 1 ≤ 10) log10 p(y)

European Union + - 0 7 97.18

Euro area + - 0 7 96.63
Belgium + - 1 7 92.46

Bulgaria + - 0 9 89.51

Czech Republic + - 0 9 91.54

Denmark + - 0 7 91.34
Germany + - 0 7 94.97

Estonia + - 0 9 84.73
Ireland + - 0 7 56.78
Greece + - 0 3 94.03
Spain + - 0 7 95.13

France + - 0 7 96.91
Croatia + - 0 5 93.68
Italy + - 0 7 93.39

Cyprus + - 0 9 90.78

Latvia + - 0 9 87.72
Lithuania + - 1 7 71.43
Luxembourg + - 1 9 82.76

Hungary + - 1 9 87.57

Malta + - 0 7 82.36
Netherlands + - 0 3 91.76
Austria + - 0 7 95.36
Poland + - 1 7 92.6
Portugal + - 0 7 90.86

Romania + - 0 5 90.86
Slovenia + - 0 9 90.43
Slovakia + - 0 10 78.94
Finland + - 1 7 89.25
Sweden + - 0 9 90.95
United Kingdom + + 0 1 99.56

Norway + + 0 1 90.74

Macedonia + + 0 1 64.21
Serbia + - 0 7 82.61
Turkey + - 1 7 84.74
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Figure 2: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line
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Figure 3: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line
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Figure 4: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line
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Figure 5: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line
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Figure 6: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20
2001 2003 2005 2007 2009 2011 2013 2015 2017

Romania

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.2

-0.1

0.0

0.1

2001 2003 2005 2007 2009 2011 2013 2015 2017
Slovenia

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

2001 2003 2005 2007 2009 2011 2013 2015 2017
Slovakia

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.2

-0.1

0.0

0.1

0.2

2001 2003 2005 2007 2009 2011 2013 2015 2017
Finland

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.2

-0.1

0.0

0.1

2001 2003 2005 2007 2009 2011 2013 2015 2017
Sweden

2001 2003 2005 2007 2009 2011 2013 2015 2017

-0.10

-0.05

0.00

0.05

2001 2003 2005 2007 2009 2011 2013 2015 2017
United Kingdom

253 Ł. Lenart
CEJEME 10: 233-262 (2018)



Łukasz Lenart

Figure 7: Growth cycle for industrial production from January 2001 to December
2017 - gray line; posterior expectation of cyclical fluctuations with trend - black line;
cycle extracted by CF filter - dashed line
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5.3 The posterior for frequency and the Kitchin cycle analysis
In Figures 9-10 we present the marginal posterior distribution for frequency for
the best model from Table 4. The gray field indicates the standard periodogram
for the data used. Note that in many cases the concentration of the mass for
posterior distribution for frequency is quite different from the mass concentration
on the periodogram. This is probably due to two completely different approaches.
The parametric approach proposed in this paper assumes a time-varying amplitude,
whereas on the periodogram, we can only identify a constant amplitude.
In a later part of this section we will measure the share of identified fluctuations
yE = E(X(Λ)β|y) in relation to noise εt variance. For this purpose, we will use the
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very well known in applications idea of signal-to-noise ratio (see for example Loizou
(2013)). In the considered model the signal-to-noise ratio (SNR for short) for the
observed process on set t ∈ {1, 2, . . . , n} can be defined as

SNR =

1
n

n∑
t=1

(g(λ, t) + µ(t))2

var(εt)
.

Higher SNR values indicate a higher signal share with respect to the noise share.
To obtain an empirical SNR, we propose replacing g(λ, t) + µ(t) with the posterior
expectation E(g(λ, t) + µ(t)|y). In place of var(εt), we propose basing the empirical
variance on y − yE . More precisely, we propose using an empirical measure of the
form

ˆSNR = y′EyE
(y− yE)′(y− yE) .

Some portion of the posterior frequency distributions data supports typical frequencies
for the Kitchin cycle, i.e., from 3 to 5 years. To better analyze this statement, we
present the probability mass related to the Kitchin cycle (in the range of 3 to 5 years)
together with the ˆSNR statistics in Figure 8. Estonia, Germany, the European Union
and the Euro area have the highest ˆSNR statistics, which means that the share of
noise in fluctuations is the lowest. In analyzing the map of ˆSNR values (see Figure
11), one can see that a large portion of Balkan countries are characterized by a
high share of noise in fluctuations in industrial production. In turn, a low share of
noise is observed in the majority of Central European countries and Southern Europe
(excluding Portugal), among others. This is probably the result of the structure of
industrial production in these countries. The probability mass related to the Kitchen
cycle is higher than 0.9 for 4 countries (Lithuania, Estonia, Turkey and Hungary). For
7 countries (Cyprus, Spain, Bulgaria, Macedonia, the Netherlands, Croatia, Greece),
this probability is less then 0.2. However, for almost all of these 7 countries (except
the Netherlands), the probability mass for frequency is focused on values greater than
5 years, which may suggest the occurrence of longer (than 5 year) cycles.
Let us note that Estonia and Germany have the highest ˆSNR statistics with
simultaneous high concentrations of posterior probability mass related to Kitchen
cycles. The European Union and Euro area are in a similar situation. This means that
the Kitchen cycle is predominant and the share of identified cyclical fluctuations in
relation to noise variance is low for total industrial production for the European Union
and the Euro area. This is especially evident for Estonia and Germany. However,
in many countries the share of noise is much larger and the identified cycle lengths
are not concentrated in the range of 3-5 years. This indicates the diversity of results
between considered European countries.
It should be emphasized that the above empirical results should be interpreted with
special caution. Note that long-term fluctuations are modelled in a very simple way
in the proposed model (i.e., using a polynomial).
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Figure 9: The shape of empirical periodograms (gray field) and the shape of marginal
posterior distributions (14) from Table 4 with maximum marginal data density value
(black line). Instead of frequency, the cycle length (in years) is indicated on the
horizontal axis
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Figure 10: The shape of empirical periodograms (gray field) and the shape of marginal
posterior distributions (14) from Table 4 with maximum marginal data density value
(black line). Instead of frequency, the cycle length (in years) is indicated on the
horizontal axis
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Figure 11: ˆSNR map

6 Conclusions
This paper proposes a probabilistic approach to business cycle analysis. This approach
combines the new concept of the deterministic cycle with time-varying amplitude and
the Bayesian approach. The closed form of the marginal posterior distribution for
frequencies (related to cycle length) in the case of time-varying amplitude is shown.
This gives an opportunity to expand the statistical inference proposed in Lenart
and Mazur (2016). The method is illustrated by the example of a growth cycle of
industrial production in European countries. Some initial results were obtained under
strong assumptions. These results are promising and point to sufficient dynamics for
the proposed deterministic cycle (with time-varying amplitude) to describe a growth
cycle that is variable in time. The most important assumption requiring weakening is
the assumption of equally spaced knots of spline functions determining the amplitude
of fluctuations.
The proposed model is very simple. Therefore, the empirical results are more
illustrative than comprehensive. Let us note that long-term fluctuations are modelled
only through polynomials in the proposed model. This assumption should be
weakened and more advanced methods of eliminating the trend from the data should

259 Ł. Lenart
CEJEME 10: 233-262 (2018)



Łukasz Lenart

definitely be considered. One proposal is to consider classical non-parametric methods
for trend and cycle filtration (for example, using bandpass filters) and then detrended
data analysis. This is the object of the author’s interest.

Acknowledgements
This research was financed from the funds granted to the Faculty of Finance and
Law at Cracow University of Economics, within the framework of the subsidy for the
maintenance of research potential.

References
[1] Azevedo J.V., Koopman S.J. and Rua A. (2006) Tracking the business cycle of

the euro area: a multivariate model-based band-pass filter. Journal of Business
& Economic Statistics 24(3), 278–290

[2] Christiano L.J. and Fitzgerald T.J. (1999) The band pass filter. NBER Working
Paper Series No. 7257, httpf/www.nber.orglpapers/w7257

[3] Dimatteo I., Genovese CH.R. and Kass R.E. (2001) Bayesian curve-fitting with
free-knot splines. Biometrika 88(4), 1055–1071

[4] Harvey A.C. (2004) State space and unobserved component models, chapter Tests
for cycles, p. 102–119. Cambridge University Press

[5] Harvey A.C. and Jaeger A. (1993) Detrending, stylized facts and the business
cycle. Journal of Applied Econometrics 8, 231–247

[6] Harvey A.C. and Trimbur T.M. (2003) General model-based filters for extracting
cycles and trends in economic time series. Review of Economics and Statistics
85(2), 244–255

[7] Harvey A.C., Trimbur T.M. and Van Dijk H.K. (2007) Trends and cycles in
economic time series: A bayesian approach. Journal of Econometrics 140, 618–
649

[8] Koopman S.J. and Azevedo J.V. (2008) Measuring synchronization and
convergence of business cycles for the euro area, UK and US. Oxford Bulletin
of Economics and Statistics 70(1), 23–51

[9] Koopman S.J. and Shephard N. (2015) Unobserved Components and Time Series
Economeetrics. Oxford university Press, Oxford

Ł. Lenart
CEJEME 10: 233-262 (2018)

260

httpf/www.nber.orglpapers/w7257


Bayesian Inference for Deterministic Cycle . . .

[10] Lenart Ł. (2018) Bayesian inference for deterministic cycle with time-varying
amplitude. [in:] Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander
Zelias International Conference on Modelling and Forecasting of Socio-Economic
Phenomena. Conference Proceedings, p. 239–247

[11] Lenart Ł. and Mazur B. (2016) On Bayesian estimation of almost periodic in
mean autoregressive models. Przegla̧d Statystyczny (Statistical Review) 63(3),
255–271

[12] Lenart Ł. and Mazur B. (2017) Business cycle analysis with short time series: a
stochastic versus a non-stochastic approach. [in:] Papież M. and Śmiech S. (eds.),
The 11-th Professor Aleksander Zelias International Conference on Modelling
and Forecasting of Socio-Economic Phenomena. Conference Proceedings, p. 212–
221

[13] Lenart Ł. and Pipień M. (2013) Almost Periodically Correlated Time Series in
Business Fluctuations Analysis. Acta Physica Polonica A 123(3), 567–583

[14] Lenart Ł. and Pipień M. (2017) Non-Parametric Test for the Existence of the
Common Deterministic Cycle: The Case of the Selected European Countries.
Central European Journal of Economic Modelling and Econometrics 9(3), 201–
241

[15] Lenart Ł. and Wróblewska J. (2018) Nonlinear stochastic cycle model. [in:]
Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander Zelias
International Conference on Modelling and Forecasting of Socio-Economic
Phenomena. Conference Proceedings, p. 248–255

[16] Lenart Ł., Mazur B. and Pipień M. (2016) Statistical analysis of business cycle
fluctuations in poland before and after the crisis. Equilibrium. Quarterly Journal
of Economics and Economic Policy 11(4), 769–783

[17] Lindstrom M.J. (2002) Bayesian estimation of free-knot splines using reversible
jumps. Computational Statistics & Data Analysis 41, 255–269

[18] Loizou P.C. (2013) Speech Enhancement: Theory and Practice, Second Edition.
CRC Press, Boca Raton.

[19] Mazur B. (2016) Growth cycle analysis: the case of polish monthly
macroeconomic indicators. Folia Oeconomica Cracoviensia 57, 37–54

[20] Mazur B. (2017a) Probabilistic predictive analysis of business cycle fluctuations
in polish economy. Equilibrium. Quarterly Journal of Economics and Economic
Policy 12(3), 435–452

[21] Mazur B. (2017b) Probabilistic prediction using disaggregate data: the case of
gross value added in poland. Folia Oeconomica Cracoviensia 58, 85–103

261 Ł. Lenart
CEJEME 10: 233-262 (2018)



Łukasz Lenart

[22] Mazur B. (2018) Cyclical fluctuations of global food prices: a predictive
analys. [in:] Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander
Zelias International Conference on Modelling and Forecasting of Socio-Economic
Phenomena. Conference Proceedings, p. 286–295

[23] Napolitano A. (2012) Generalizations of Cyclostationary Signal Processing:
Spectral Analysis and Applications. Wiley-IEEE Press

[24] Osiewalski J. (1988) Posterior and predictive densities for nonlinear regression. A
partly linear model case. Department of Economic Research Memorandum 535,
Tilburg University

[25] Pelagatti M.M. (2016) Time Series Modelling with Unobserved Components.
Taylor & Francis Group, Boca Raton

[26] Trimbur T.M. (2006) Properties of higher order stochastic cycles. Journal of
Time Series Analysis 27, 1–17

[27] Wang X. (2008) Bayesian free-knot monotone cubic spline regression. Journal of
Computational and Graphical Statistics 17(2), 373–387

[28] Zellner A. (1971) An Introduction to Bayesian Inference in Econometrics. Wiley
& Sons, New York

Ł. Lenart
CEJEME 10: 233-262 (2018)

262


	Introduction
	Data presentation and the main hypothesis
	Model proposition
	The case of linear splines
	The case of Bézier curves

	Bayesian inference
	Real data example
	Bayesian model comparision
	The posterior expectation of cyclical fluctuations
	The posterior for frequency and the Kitchin cycle analysis

	Conclusions

