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Abstract. The paper proposes a study of molecular interactions using the planetary model of the atomic structure. The description refers to transfer 
of the interactions by electrons bonded with an atom in a planetary system. In molecules we refer to analysis of electrons that remain unpaired 
during the formation of chemical compounds. The planetary electronic state of molecular interactions is defined by considering the action arm 
for interatomic forces. Then the interaction torque is defined. The problem is studied in a collection of atoms forming a nanoparticle and then 
analysis is carried on in the entire volume of the nanocomposite, which is defined as a set of the nanoparticles in a field of matrix-nanofiller 
interactions. As a result, new mechanical, magnetic, and optical properties of the nanocomposite arise and are described herein. The atomic-scale 
phenomena are described by both classical and quantum mechanics and are then transferred to the nanoparticle scale by applying statistical 
mechanics. The quantum solutions for the optically active electrons form the basis for the optical properties of the nanocomposite using forced 
gyrobirefringence and Maxwell equations. The results of the theoretical analysis are confirmed by experiment using an electron paramagnetic 
resonance spectrometer.

Key words: molecular action arm, molecular interaction torque, quantum electronic state of interaction, superparamagnetism, gyrobirefringence.

When the electron is located at some distance from the mass 
centre of the atom, we can define the action arm:

	 ρe = ρo n 2,� (1)

where ρo is the Bohr radius, and n  = 1, 2, 3, … is the principal 
quantum number.

The action arm of electron ρe generates an electronic inter-
action torque, whose temporary value reads:

Me = ρe £ Pe , (2)

where Pe is part of the molecular force action on the electron.
We write Formula (2) in the form:

Me = ρe Pe sinϕe , (3)

where ϕe is the angle between ρe and Pe (Fig. 1). The average 
torque hMei is based on the average of the sine function hsinϕei:

hMei = ρe Pe hsinϕei . (4)

For the angles ϕe of the range (0, π), we write:

hMei =  2π ρe Pe . (5)

For van der Waals bonds, when the bonding energy is 10 
meV, at a distance of 0.16 Å between the atoms, the molecular 
force is Pvan der Waals = 10–11 N, and when the action arm is of 

1. Introduction

In the analysis of intermolecular interactions [1], a method of 
molecular modelling [2] is useful where each atom is simulated 
as a single nanoparticle using classical mechanics (Newton’s 
law of motion) [3] and quantum mechanics (Schrödinger’s 
equation) [4]. Under currently used models for molecular in-
teractions, electron disturbances are not referenced or described 
in terms of a planetary system for atomic structure. However, 
it is the electronic states that are responsible for mechanical, 
magnetic and optical properties of the material [5‒14]. We an-
ticipate that the correct description of electron disturbances in 
the field of matrix-nanofiller interactions involves referencing 
the planetary model of the atom [15‒16], which will allow us 
to reveal the new properties of nanocomposites.

In the analysis involving the electron state, recent discov-
eries led to its division into a spinon (carrier of electron spin) 
and an orbiton (associated with its orbital motion) [17].

Modern experimental studies at the nanometer level, the 
structure, morphology, and identification of the nanoparticles 
are performed with several techniques: scanning electron mi-
croscopy (SEM), transmission electron microscopy (TEM), 
polarization microscopy (PLM), etc. [18‒20]. However, the 
analysis of disturbed planetary electrons states as a result of 
the intermolecular interactions is still an open question.
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the order of an ångstrom, ρe = 1 Å, we obtain the average in-
teraction torque for a single-electron atom:

	 hMe
van der Walsi ¡¡»  2π  ¢ 10–21 Nm .� (6)

In the case of ionic bonding, the bonding energy is 10 eV. 
Under the same conditions as above, the molecular force is 
Pion = 10–7 N and the interaction torque is:

	 hMe
ioni ¡¡»  2π  ¢ 10–17 Nm .� (7)

The torque Me is absorbed by the electron, which creates 
a disturbance of the electron motion in the form of the preces-
sion with an angular speed ωe

M. We distinguish the precession 
of the electron spin ωS

M (for the spinon) and orbital precession 
ωL

M (for the orbiton) and write:

	 ωJ
M = ωS

M + ωL
M,� (8)

where ωJ
M is the angular speed of precession of the total angular 

momentum of atom.
When a single electron is in the nuclear charge field Ze, 

where Z is the atomic number and e is the charge of the electron, 
we write the action arm using the formula:

	 ρZ = 
ρo n 2

Z
,� (9)

For a multi-electron atom, when Z > 1, we will distinguish 
part of the molecular force Pel acting on the electrons and we 
write: Pel = ∑Z

ξk
Pξk

, ξk = 1, … Z is the electron number in the 
atom k. Now the atomic interaction torque associate with elec-
trons is given as a sum:

	 M = 
ζk =1

Z

∑ ρζk
 £ Pζk

,� (10)

At the atomic scale, we note the disturbance of symmetry 
of the atom generated by the fact that the electron shells are not 
completely filled up. If the number of electrons on the shells 
is not equal to 2n 2, such an atom has polar properties. In the 
polar atom, the mass centre and centre of action of the Coulomb 
forces do not coincide. This disturbance of symmetry results in 
the generation of the action arm at the atomic scale. The atomic 
action arm induces the atomic interaction torque and precession 
of the whole atom can be demonstrated.

Usually, asymmetry of the atom is induced by electrons 
on the last shell, i.e. those most distant from the nucleus (va-
lence electrons). In this case, the interaction torque is related 
to the radius of the outer shell. The atomic radius can be deter-
mined from the interatomic distance with the use of diffraction 
methods. This radius depends on the crystal structure, coordi-
nation number, bond type, oxidation degree, and on the position 
of the atom in the periodic table of elements (atomic number Z). 
Therefore, the interaction torque changes periodically. An ef-
fective charge of the nucleus eZef f , with eZef f < Z, has been 
introduced for multi-electron atom [21]. Taking into account 
the interactions between electrons on the shells (shielding ef-

fect) and the effective atomic number Zeff , we will record the 
effective action arm for interatomic forces:

	 ρ = 
ρo n 2

Zeff
.� (11)

As the valence shell is filled up, the atomic number Zef f 
increases and electrons are strongly attracted to the nucleus, 
which results in a decrease in the value of ρ and a decrease in 
the interaction torque. (At the same time, the atomic ionization 
energy increases.) A further increase in the number of valence 
electrons for the elements at the end of the period results in 
a repulsion between the electrons (shielding effect), which re-
sults in the growth of ρ and of the interaction torque. If the 
outer shell is completely filled, with the number of electrons 
equal to 2n 2, the value of the resultant interaction torque drops 
to zero. (Also, the ionization energy for a fully filled outer shell 
has the greatest value.)

In the chemical compound [22], we analyse the absorption 
of the interatomic torque by unpaired electrons.

For nanoparticles in the field of mechanical interactions be-
tween the matrix and nanofiller, we carry out the analysis for the 
collection of polar atoms whose random orientation is defined 
by the set of mechanical quantum numbers mech  (introduced by 
analogy to magnetic quantum numbers):

	 mech = – J , – J  + 1, …, 0, …, J  ¡ 1, J ,� (12)

where J  is the total atomic quantum number. The result of the 
statistical calculation is the polarization of the atoms.

As a result of electron precession, atomic magnetization 
occurs. The total magnetic moment increases from zero to the 
statistical value G M according to the formula:

	 G(t) = G M 1 ¡ e
– t
τ ,� (13)

where t is the current time, and τ is the time of magnetic sat-
uration. During this process, the mechanical energy decreases 
until the angular momentum of the nanoparticle reaches a sta-
tistical value J M corresponding to the new state of equilibrium, 
G(t = τ) ¡¡» 0.63 G M.

The perturbations of optically active electrons in the field 
generated by intermolecular interaction between the matrix and 
nanofiller can modulate the passage of a light wave through the 
material. We can write the angular speed of the precession of 
the optical electrons related to the mechanical quantum numbers 
of spin of the electron:

	 mech S = +1/2,  ω+ = ωo ¡  ω
M

2
,� (14)

	 mech S = –1/2,  ω− = ωo +  ω
M

2
,� (15)

where ωo is angular speed which does not result from ma-
trix-nanofiller interaction (Appendix), and ωM is angular 
speed of the disturbance. The difference in the motions of the 
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electrons is described in the form of different directions of the 
angular velocity: ω+ for right-handed, and ω− for left-handed. 
The two directions split the light wave travelling towards the 
material into two circular polarization waves: right-handed for 
mech S = +1/2 and left-handed for mech S = –1/2. These two light 
waves travel forward with different phase velocities that are 
proportional to the mechanical state of the material; after in-
terference, the rotation of the azimuth of polarization can be 
demonstrated.

The EPR signal refers to unpaired electrons. We anticipate 
that the perturbation of the unpaired electrons by the constant 
magnetic field of the spectrometer will be modulated by the 
magnetic field BM induced by matrix–nanofiller interactions. As 
a result, we can obtain a change of the EPR spectrum relative 
to the spectrum of the free nanofiller.

Nanoparticles act as non-formed crystal structures embedded 
in an amorphous matrix lacking a crystalline structure. They are 
randomly oriented and have isotropic properties. We can discuss 
mechanical, optical and magnetic isotropy and write:

	 Px = Py = Pz = P,� (16)

	 ωx
M = ωy

M = ωz
M = ωM,� (17)

	 Bx
M = By

M = Bz
M = BM,� (18)

Conditions (16‒18) describe the mechanical-optical-mag-
netic coupling of the nanoparticle loaded in the form of hydro-
static compression in an amorphous matrix.

2.	 Atom

2.1. Classical mechanics. In the volume of the nanoparticle, we 
separate atoms k = 1, 2, 3, …, n with polar properties. We can 
write the classical parameters of disturbance of the planetary 
system of the atom k, in the field of the interatomic interactions, 
Fig. 1:

	 Mk = ωk
M £ Jk ,� (19)

	 Uk
M = –ωk

M ¢ Jk ,� (20)

	 Jk
M = Jk cosϕk

M ,� (21)

	 ϕk
M = ar cos

Jk
M

Jk
,� (22)

where: Mk is the resultant interaction torque from all electrons 
in the atom k, ωk

M is the resultant angular speed of precession, 
Jk is the angular momentum of the atom k, Uk

M is the energy 

Fig. 1. Transfer of atomic interaction by the planetary system of electron ek
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of precession, Jk
M is the angular momentum of precession, and 

ϕk
M is the angle of precession (Fig. 1).

The precession of the electron orbits ek generates a magnetic 
field with induction Bk

M for the whole of atom (Fig. 1). We can 
write the disturbance using Bk

M and the magnetic moment (pm) k 
of the atom k:

	 Mk = (pm)k
 £ Bk

M ,� (23)

	 Uk
M = – (pm)k

 ¢ Bk
M ,� (24)

	 (pm
M)k

 = (pm)k
cosϕk

M ,� (25)

	 ϕk
M = ar cos

(pk
M)k

(pm)k

,� (26)

where (pk
M)k

 is the magnetic moment of the disturbance. On 
the basis of the laws of precession and magneto–mechanical 
coupling, we write:

	 Pk ¢ ωk
M = 0 ,� (27)

	 Pk ¢ Bk
M = 0 ,� (28)

which means that vectors Pk and ωk
M are perpendicular and vec-

tors Pk and Bk
M are perpendicular.

Considering the precession of the electrons, we can describe 
the interatomic force Pk by combining Eq. (2) and Eq. (19):

	 Pk = 
ωk

M

ρk
Jk ,� (19.1)

or by combining Eq. (2) and Eq. (23):

	 Pk = 
(pm)k

ρk
Bk

M .� (23.1)

2.2. Quantum mechanics. Examining only the part of the elec-
tron state (spinon) described by the electron spin Sk, on the basis 
of the classical expression of the intermolecular torque:

	 Mk
S = ωk

S £ Sk ,� (29)

and according to Formula (17), we write the operator of the 
interaction torque in the form:

	 M ̂
k
S =  2(ω S

x, y)k
S ̂ zk ,� (30)

where z is the direction of the quantization and (ω S
x, y)k

 are the 
components of the angular speed along the x- and y-axes of the 
Cartesian coordinate system (x, y, z) as depicted in Fig. 1. We 
then write the operator equations:

	 M ̂
k
SΦ = Mk

SΦ ,� (31)

where Mk
S is the eigenvalue of the operator M ̂

k
S, and Φ is the 

wave function that describes the quantum-mechanical state of 

the electron in the field of interactions. Substituting Formula 
(30) into Formula (31), we write:

	 2(ω S
x, y)k

S ̂ zkΦ = Mk
SΦ ,� (32)

According to quantum mechanics, the eigenvalue Mk
S is the 

physical value of the interaction torque at the nanoscale.
Applying the Pauli operator:

	 S ̂ zk =  h–

2
1� 0
0� –1

,� (33)

where h–  = h/2π  and h is the Planck constant. We use the wave 
function in the form:

	 Φ = 
Φ ↑ =  1

0
  for  mech S =  1

2
,

Φ ↓ =  0
1

  for  mech S = – 1
2

.
� (34)

We write the eigenvalue equation:

	 h–

2
1� 0
0� –1

Φ = h– mech SΦ ,� (35)

which is satisfied as an identity. Given the analogy between 
Eqs. (32) and (35), the eigenvalues for both sets of equations 
are the same. The solution of the unknown quantum value of 
the interaction torque of the atom k can be written as:

	 Mk
S  = h– 2(ω S

x, y)k
mech S .� (36)

We write Formula (36) in the form:

	 (Mk
S)+ = (Mk

S)
o + 

2
2

h– (ω S
x, y)k

,  mech S =  1
2

,� (37)

	 (Mk
S)− = (Mk

S)
o + 

2
2

h– (ω S
x, y)k

,  mech S = – 1
2

,� (38)

where (M k
S)

o is the torque which does not result from ma-
trix-nanofiller interaction (Appendix). We write the difference 
in the interatomic torque on the basis of (37) and (38):

	 ∆(Mk
S) =  2 h– (ω S

x, y)k
.� (39)

The energy contribution due to the electron spin (spinon) in 
the field of matrix-nanofiller interactions is written in classical 
mechanics in the following form:

	 Uk
S = –ωk

S ¢ Sk .� (40)

In the same way as for Eq. (29), we rewrite this in the op-
erator form in the direction of quantization:

	 U ̂
k
S = – (ωz

S)k
S ̂ zk ,� (41)



81

Contribution of planetary electronic structure of atom to molecular interaction and properties of nanocomposites

Bull.  Pol.  Ac.:  Tech.  67(1)  2019

and we write the eigenvalue equation for the energy of the 
atom as follows:

	 – (ωz
S)k

S ̂ zkΦ = Uk
SΦ .� (42)

Equation (42) will now correspond to the Schrödinger equa-
tion written in the z-direction. The operators M ̂

k
S and U ̂

k
S comply 

with the commutation conditions:

	 M ̂
k
SU ̂

k
S ¡ U ̂

k
SM ̂

k
S = 0 ,� (43)

and eigenvalue Equations (32) and (42) are written for the same 
wave function Φ.

We find the quantum solution of the spinon energy of the 
precession in the same way as Eq. (36), and finally we write:

	 Uk
S  = –(ωz

S)k
h– mech S .� (44)

We write Formula (44) in the form:

	 (Uk
S)

+ = (Uk
S)

o +  1
2
(ωz

S)k
h– ,  mech S =  1

2
,� (45)

	 (Uk
S)

– = (Uk
S)

o ¡  1
2
(ωz

S)k
h– ,  mech S = – 1

2
,� (46)

where: (Uk
S)

o is energy which does not result from matrix-nano-
filler interaction (Appendix), and we present the difference be-
tween the two energy levels from Formula (45) and Formula 
(46) as:

	 ∆Uk
S  = h– (ωz

S)k
.� (47)

Adding the spinon and orbiton state, by analogy to the solutions 
to Formula (36) and Formula (44), we can write the total atomic 
interaction torque and total energy of precession in the form:

	 Mk = h– 2(ω J
x, y)k

mech ,� (48)

	 Uk = – (ωz
J)k

h– mech S ,� (49)

where (ω J
x, y, z)k

 are components of the angular speed of preces-
sion of the total moment of momentum Jk in Cartesian coordi-
nate system (x, y, z); see Fig. 1.

We can also write the total polar angle of the atomic pre-
cession:

	 ϕk
M = ar cos

Jk
M

Jk
,� (50)

where Jk  = h– J (J  + 1), and Jk
M = h– mech . Finally, we write the 

quantum formula for polar rotation of the atom as:

	 ϕk
M = ar cos mech

J (J  + 1)
.� (51)

2.3. Magnetization of atom. With regard to the magnetic prop-
erties of the atom induced by the interaction torque Mk (Fig. 1), 

we start from the classical formula for the precession energy 
of the electron spin:

	 Uk
S = – (pm

S)k
 ¢ Bk

S ,� (52)

where (pm
S)k is the magnetic moment of the spinon and Bk

S is 
the magnetic induction generated by the precession of spin. By 
application of the gyro-magnetic relations γ S for the spinon:

	
(pm

S)k

Sk
 = – γ S ,� (53)

we write the energy of precession in the form:

	 Uk
S = γ SSk ¢ Bk

S ,� (54)

We rewrite Formula (54) in the form of the operator:

	 U ̂
k
S = γ SS ̂ k ¢ Bk

S ,� (55)

and we write the operator equation as: 

	 γ SBk
SS ̂ kΦ = Uk

SΦ .� (56)

Then we write Eq. (56) on the z-axis (direction of the quan-
tization):

	 γ S(Bz
S)k(S ̂ z)k

Φ = (Uz
M)k

SΦ .� (57)

We find the solution of Eq. (57) in the same way as Eqs. (32) 
and (42) and finally we write:

	 (Uz
S)k

 = γ S h– (Bz
S)k

 mech S .� (58)

For two spinal mechanical quantum numbers, we write:

	 mech S =  1
2

   Uk
+ = Uk

o + 1
2
γ S h– (Bz

S)k
,� (59)

	 mech S = – 1
2

   Uk
− = Uk

o ¡ 1
2
γ S h– (Bz

S)k
.� (60)

We write the difference between energy levels of the spinon as:

	 ∆Uk
S = γ S h– (Bz

S)k
.� (61)

Including the formula:

	 γ J h–  = – gkµB ,� (62)

where gk is the so-called g-factor, γ J is the gyro-magnetic re-
lation for the total angular momentum Jk, and µB is the Bohr 
magneton. By analogy to Formula (61), we can write the dif-
ference in the energy level of the atom k (spinon and orbiton 
together):

	 ∆Uk = – gkµB(Bz
J)k

.� (63)
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3.	 Molecule

The description presented in Chapter 2 can be adopted in its 
entirety to the molecule k = 1, 2, 3, …, n, having n unpaired 
electrons.

4.	 Nanoparticle

4.1. Statistical mechanics. We describe probabilistic space 
as a set of the polar atoms/molecules k = 1, 2, 3, …, n in the 
volume of the nanoparticle. The set of mechanical quantum 
numbers: mech  = – J , – J  + 1, …, 0, …, J  ¡ 1, J  forms a set of 
random numbers. The elementary events are defined as Mk, 
Uk

M, ϕk
M, and Jk

M, according to Formulas (48), ..., (51). We will 
present random variables as functions of the random numbers:

	 Mk = h– 2ω J
x, y mech ,� (64)

	 Uk
M = –ωz

J h– mech ,� (65)

	 Jk
M = h– mech ,� (66)

	 ϕk
M = ar cos mech

J (J + 1)
.� (67)

On the basis of the fundamental assumption of the statistical 
mechanics, we write the canonical distribution:

	 ∏(mech) = 
exp –

U(mech )

kT

mech  = –J

mech  = J

∑ exp –
U(mech )

kT

,� (68)

where k is the Boltzmann constant and T is the temperature. In-
cluding assumptions on the hydrostatic state of the matrix-nano-
filler interactions, Eqs. (16‒18), we can write the average values 
of the parameter of disturbance in a statistical distribution:

	 hMki = 
mech  = –J

mech  = J

∑ Mk
JΠ =  2 h–ω J

x, y J BJ ,� (69)

	 hUk
M i = 

mech  = –J

mech  = J

∑ Uk
M Π = h–ωz

J J BJ ,� (70)

	 hJk
M i = 

mech  = –J

mech  = J

∑ Jk
M Π = h– J BJ ,� (71)

	 hcosk
M i = 

mech  = –J

mech  = –J

∑ mech

J (J  + 1)
Π =  J

J (J  + 1)
BJ ,� (72)

where:

	BJ = 
2J  + 1

2J
ctgh

2J  + 1
2

ωz
Jh–

kT
 ¡ 

1
2J

ctgh
ωz

Jh–

2kT
,� (73)

is the function that is analogous to the Brillouin function. We 
write the statistical parameters of the matrix-nanofiller interac-
tion in the entire volume of a nanoparticle:

	 m = n 2h– ωM
x, y J BJ ,� (74)

	 U M = nh– ωz
MJ BJ ,� (75)

	 J M = nh– J BJ ,� (76)

	 ϕ M = arccos J

J (J  + 1)
BJ .� (77)

Formulas (74), …, (77) define the nanoparticle by the ma-
trix-nanofiller interaction as a pseudo-atom characterized by the 
parameters of disturbance of the planetary electronic system: 
interaction torque m, energy of precession U M, moment of mo-
mentum of precession J M, and angle of precession ϕ M.

At a very low temperature where:

	 T < 1K ,  
ωz

M h–

kT
 À 1 ,� (78)

we obtain:

	
T < 1K, 

ωz
Mh–

kT  À 1

lim ctgh
2J  + 1

2
ωz

M h–

kT
 = 1,� (79)

	
T < 1K, 

ωz
Mh–

kT  À 1

lim ctgh
ωz

M h–

kT
 = 1,� (80)

and we write Formulas (74), …, (77) in the form:

	 m = n 2h– ωM
x, y J ,� (81)

	 U M = nh– ωz
MJ ,� (82)

	 J M = nh– J ,� (83)

	 ϕk
M =  J

J (J  + 1)
.� (84)

Now, for the spinon, when J  = S  = 1
2 , we write: 

	 m = n
h– ωM

x, y

2
,� (85)

	 U M = n
h–ωz

M

2
,� (86)

	 J M = n h–

2
,� (87)

	 ϕ M =  54,7°
125,3°

.� (88)
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4.2. Magnetization of the nanoparticle. 
Superparamagnetism by interaction torque. We write the 
magnetic moment of the atom in Fig. 1, which is generated by 
interaction torque Mk:

	 (pm
M)k

 = – gkµB mech ,� (89)

Applying the canonical distribution, we write the average values 
of this moment as:

	 h(pm
M)ki = gkµB J BBr ,� (90)

where BBr is the Brillouin function. We can describe the magne-
tization of the nanoparticle in the field of the matrix-nanofiller 
interaction:

	 GM = ngkµB J BBr ,� (91)

relative to the magnetization of the single atom (89). The change 
in the magnetization direction of the nanoparticle relative to the 
direction of magnetization of the single atom is described by 
Eqs. (51) and (77).

5.	 Nanocomposite

5.1. Formation of equilibrium state. We define the macro-
scopic vector of angular momentum in the volume dV of the 
nanocomposite:

	 JN =  1
dV

kN =1

N

∑ J M
kN

,� (92)

where: kN  = 1, …, N  is the number of the nanoparticle, J M
kN

 
is the angular momentum of the nanoparticle number kN . For 
a free nanoparticle, the vectors J M

kN
, kN  = 1, …, N , are ori-

ented in space in a completely disordered way, and the total 
macroscopic moment of momentum is equal to zero, J N = 0. 
At the time of the matrix-nanofiller interaction, the vector J N 
increases. This process lasting for time τ is described by the 
formula:

	 dJ
dt

 =  JN ¡ J
τ

,� (93)

where: J is current in time angular momentum of the nano-
composite.

We write Formula (93) in the form:

	 dJ
JN ¡ J

 =  dt
τ

,� (94)

By integrating both sides of Eq. (94), we can write the depen-
dence of the macroscopic angular momentum on the time:

	 J(t) =  J N 1 ¡ e
– t
τ .� (95)

This means that the macroscopic angular momentum of the 
nanocomposite is rotated by the angle φN  and changes in value 
from J = 0 to J N. The mechanical energy:

	 U N(t) =  – mN ¢ φN(t) ,� (96)

where: mN = ∑N
kN  = 1 mM

kN
, decreases until the set of nanoparticles 

reaches the new state of equilibrium.

5.2. Mechanical state. We will refer to the concentration of 
nanoparticles NF on the elementary surface ∆F of the nano-
composite with the number of nanoparticles ∆N :

	 NF = 
∆F → 0
lim ∆N

∆F
 =  dN

dF
,� (97)

The formula is written on the base of Eqs. (74) and (97):

	 mF =  NF m = NF n 2h– ωM
x, y J BJ ,� (98)

can be treated as a vector of polar stress. We can assume that the 
hydrostatic compression p of the nanoparticles can be described 
by the components of the force stress tensor:

	 σij = – pδij,  p > 0,  i, j = x, y, z ,� (99)

where δ ij is the Kronecker delta. We write the hydrostatic 
twisting presented by the components of polar stress tensor:

	 µ ij = – mFδij ,  mF > 0 .� (100)

According to the polar stress tensor µ ij, we write the polar strain 
tensor connected with the vector of rotation φM:

	 ϑij = ϕM
j, i .� (101)

We can write the relation between ϑij and µ ij in the form:

	 ϑkk = –
mF

R
,� (102)

where R is the material constant associated with rotation of 
the nanoparticle. Similarly to the stress tensor σ ij, we write the 
tensor of the strain:

	 εkk = –
p
K

,� (103)

where K is equivalent to the compressibility modulus of the 
nanocomposite.

Formulas (100), (101), and (102) combine the mechanical 
properties of the nanocomposite in the macroscale, which result 
from the planetary state of electrons in the atomic scale.

5.3. Magnetic induction. On the bases of Eqs. (91) and (97), 
we can write the magnetic induction generated in nanocom-
posite and related to the unit of area:
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	 BF
M = NF

κκo

χ
GM = NF n

κκo

χ
gµB J BBr ,� (104)

where κ and κo are the dielectric permeabilities of the mate-
rial and vacuum, while χ is the magnetic permeability of the 
material.

On the basis of Eq. (98) and Eq. (104), we can write the 
magneto-mechanical coupling association with disturb of the 
planetary electronic state:

	 BF
M = 

1

2

κκo

χ

gµB

h–ωM
x, y

mF .� (105)

5.4. Optical activity. The generalized tensor of the dielectric 
permittivity is defined in the form:

	 Kij = κ ij + i2ijk Γk ,� (106)

where Γk = okl sl is the vector of the optical rotation, sl is the 
unit vector perpendicular to the front of the light wave, okl is 
the tensor of the optical twisting, and 2i jk is the Levi-Civitá 
symbol.

We describe the optical state of the nanocomposite by matrix 
representation of the tensor (106) in the form corresponding to 
hydrostatic state:

	 TK = 

	 κ	 – iΓ	 iΓ

	 iΓ	 κ	 – iΓ

	– iΓ	 iΓ	 κ

.� (107)

We separate the matrix (107) into the part that depends on 
the state of the hydrostatic strain ε  and the part connected with 
the polar strain ϑ:

	 TK = 

	κ	 0	 0

	0	 κ	 0

	0	 0	 κ

  + 

	 0	 – iΓ	 iΓ

	 iΓ	 0	 – iΓ

	– iΓ	 iΓ	 0

.� (108)

We write the optical-mechanical relations:

	 κ = κo + Cε ε ,� (109)

	 o = oo + Cϑϑ ,� (110)

where oo is natural optical twisting (Aragò). The Maxwell equa-
tions:

rotE = – dB
dt

, rotH = – dD
dt

, divD = 0, divB = 0 ,�(111)

together with the first approximation of the material equation,

	 Dk = χoχkl El , Bk = κoκ kl Hl , k, l = x, y, z ,� (112)

where Dk is the vector of the electric induction, El is the vector 
of the intensity of the electric field, and Hk is the vector of the 
intensity of the magnetic field, gives the formula:

	 Dk = κo n2
£

Ek ¡ sk(E ¢ s)
¤

.� (113)

which we combine with the basic equation of the gyro-bire-
fringence:

	 Dk = κoκ kl El + iκo(Γ£E )k ,� (114)

and we write the system of equations for the optical state of 
the nanocomposite:

	
Ex

£
κ ¡ (1 ¡ sx

2)n2
¤
 + Ey(n2sx sy ¡ iΓ) +

+ Ez(n2sx sz + iΓ) = 0 ,
� (115)

	
Ey

£
κ ¡ (1 ¡ sy

2)n2
¤
 + Ez(n2sy sz ¡ iΓ) +

+ Ex(n2sy sx + iΓ) = 0 ,
� (116)

	
Ez

£
κ ¡ (1 ¡ sz

2)n2
¤
 + Ex(n2sz sx ¡ iΓ) +

+ Ey(n2sz sy + iΓ) = 0 .
� (117)

Formulas (115), (116), and (117) present the light wave in 
the gyro-birefringence medium under the action of the hydro-
static compression. We denote the direction of the light path by 
(x) and we write the unit vectors as:

	 sx
(x) = 1,  sy

(x) = sz
(x) = 0 ,� (118)

for the light path parallel to the coordinate x.
For the chosen direction (x) of the propagation of the light 

wave, we write Eqs. (123) and (124) as:

	 Ey(κ ¡ n2) ¡ Ez iΓ = 0 ,� (119)

	 Ey iΓ + Ez(κ ¡ n2) = 0 .� (120)

Then we write the non-zero condition of the solution:

	
	κ ¡ n2	 – iΓx

	 iΓx 	 κ ¡ n2
 = 0 ,� (121)

and we determine the roots of Eq. (121):

	 nr
2 = κ + Γ ,� (122)

	 nl
2 = κ ¡ Γ ,� (123)

where nr and nl are two refractive indexes of the light wave 
coming toward the x-direction. We then substitute (122) and 
(123 ) into (119) and (120) in order to obtain two independent 
solutions:
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Ez

Ey
 = ± i ,� (124)

which allow us to describe two light waves:

	 EI
(x) = 

£
0, Eo, iEo

¤
exp

£
i
³
ω t ¡ ψr

(x)
¤́

,� (125)

	 EII
(x) = 

£
0, Eo, – iEo

¤
exp

£
i
³
ω t ¡ ψl

(x)
¤́

,� (126)

where Ey = Eo, and ψr
(x) = 

B

A
∫ dψr

(x), ψl
(x) = 

B

A
∫ dψl

(x) are phases 

of the waves EI
(x) and EII

(x) from the point A at which the light 
enters the material to the output point B . We take the real part 
of Formulas (125) and (126) and add mutually perpendicular 
waves to obtain two pairs of components of the intensity of the 
electric field:

	
E (x)

2I  =  Eo cos
³
ω t ¡ ψl

(x)
´
,

E (x)
3I  =  Eo cos ω t + τ

2
 ¡ ψl

(x) ,
� (127)

	
E (x)

2II  =  Eo cos
³
ω t ¡ ψr

(x)
´
,

E (x)
3II  =  Eo cos ω t ¡ π

2
 ¡ ψr

(x) ,
� (128)

expressed as:
	 ³

E (x)
2I

2́
 + 

³
E (x)

3I
2́
 =  E 2

o ,� (129)

	 ³
E (x)

2II
2́
 + 

³
E (x)

3II
2́
 =  E 2

o .� (130)

The solutions (127), (128), (129), and (130) mean that two 
right- and left-handed circular polarization light waves travel 
forward in a circular helical path.

We write the elementary increase in the phases of the waves 
EI

(x) and EII
(x) relative to the elementary increase in the elemen-

tary optical paths ∆ r
(x) and ∆ l

(x) of the waves EI
(x) and EII

(x):

	 dψr
(x) =  2π

λ
∆ r

(x) ,� (131)

	 dψl
(x) =  2π

λ
∆ l

(x) ,� (132)

where:

	 ∆ r
(x) = 

³
nr

(x) ¡ n
´
dx ,� (133)

	 ∆ l
(x) = 

³
nl

(x) ¡ n
´
dx ,� (134)

dx is the elementary geometrical light way, and λ represents the 
length of the light wave. So the right- and left-handed circular 
polarization light waves travel forward in a circular helical path 
when the path retardations are equal:

	 ∆(x) = 
£³

n(x)
´

r ¡ 
³
n(x)

´
l

¤
dx .� (135)

The elementary phase retardation for each of the waves EI
(x) and 

EII
(x) on the way dx is written as:

	 dψr
(x) =  2π

λ

³
nr

(x) ¡ n
´

dx ,� (136)

	 dψl
(x) =  2π

λ

³
nl

(x) ¡ n
´

dx .� (137)

The elementary relative phase retardation, (136) and (137), 
creates the elementary rotation of the azimuth of polarization:

	 dθ = 
(dψr ¡ dψl)

2
.� (138)

Using Formulas (122), (123), (136), and (137), we write:

	 dθ (x) =  π
nλ

Γ (x)dx .� (139)

where n in the denominator of the Formula (139) comes from 
small optical anisotropy: nr

(x) + nl
(x) ¡¡» 2n. We introduce the defi-

nition of the vector of the optical rotation into Formula (139) 
and, together with Formula (110), the elementary rotation of 
the azimuth of polarization is expressed by the components of 
the polar strain tensor ϑij:

	 dθ (x) =  π
nλ

³
oo + Cϑϑx

´
dx ,� (140)

Substituting (101) into (140), we obtain:

	 dθ (x) =  π
nλ

oo + Cϑ
∂ϕx

M

∂x
dx ,� (141)

By integration on both sides:

	
B

A
∫ dθ (x) =  π

nλ

B

A
∫ oo + Cϑ

∂ϕx
M

∂x
dx ,� (142)

we write the expression: 

	 θ (x) = 
πCϑ

nλ
ϕx

M ,� (143)

which describes the phenomenon in nanocomposite analogues 
to the Sagnac effect [23].

6.	 Experiment

The nanocomposite sample was prepared based on a powder of 
hydrated copper sulfate CuSO4 ¢ 5H2O (nanofiller), epoxy resin 
E51, and triethylenetetramine as a hardener. The weight of the 
powder was 0.0295 g. The ratio of powder to epoxy by weight 
was 1:10 and that of epoxy to hardener was 10:1. The chem-
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ical and thermal shrinkage during polymerization of the resin 
caused hydrostatic compression of the nanoparticles. During 
the experiment, the paramagnetic ion Cu2+ with configuration 
3d9 was controlled.

The EPR spectrometer was used twice; once for the free 
powder of CuSO4 ¢ 5H2O and once for the powder mixed with 
epoxy + hardener. The matrix-nanofiller interaction changed 
the resonance condition:

∆U = h– (ω EPR + ωM) = g(EPR + M )µB(BEPR + BM),� (144)

and absorption power:

	 W = (BEPR + BM)
d(G EPR + G M)

dt
,� (145)

of the nanocomposite in relation to the free powder:

	 ∆U = h– ω EPR = gµB BEPR ,� (146)

	 W = B EPR dG EPR

dt
,� (147)

where ω EPR is the angular speed of the precession of the un-
paired electrons under the action of the magnetic field BEPR of 
the spectrometer, and G EPR is the magnetization induced by 
magnetic field BEPR.

EPR measurements were carried on an X-band (9.2 GHz) 
Bruker ELEXSYS 500 (Karlsruhe) with 100 kHz field modu-

lation. The spectra were recorded at 293 K with a modulation 
amplitude of 5 mT, microwave power of 10 mW, and a receiver 
gain of 30. The EPR parameters of the paramagnetic copper 
species were determined by a simulation procedure using the 
software program EPR Sim 32.

The results are presented in the form of the first derivative 
of the absorption curve. The spectra of the free powder and 
the nanocomposite sample are significant different Fig. 2. The 
differences can be interpreted as the influence of interaction 
between the matrix (epoxy) and the nanofiller (CuSO4 ¢ 5H2O 
powder). The spectral parameters for the CuSO4 ¢ 5H2O powder 
and the nanocomposite sample are collected in Table 1.

Table 1 
Results of EPR investigation

Parameter Free powder of 
CuSO4·5H2O

Nanocomposite

Resonance 
frequency

ω EPR = 
= 61.873592 ¢ 109 Hz

(ω EPR + ωM) =  
= 60.437608 ¢ 109 Hz

Intensity of 
spectrum I p = 75000 units I nc = 16000 units

Resonance 
magnetic 
induction

BEPR = 0,3173 T (BEPR + BM) = 
= 0,3260 T

g-factor g EPR = 2,217 g(EPR + M ) = 2,108

Number of 
ions Cu2+ NV

p = 1,392£1021 NV
nc = 1,094£1020

Fig. 2. EPR spectra of the free powder of CuSO4 ¢ 5H2O (green line) and nanocomposite sample (brown line)
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The number of Cu2+ ions in the volume of the free powder 
NV

p and nanocomposite sample NV
nc were calculate using the 

comparative method [20]. The number of Cu2+ ions in the com-
parative sample CuSO4/K2SO4 was 2.58£1018.

From these results, we can determine the spectral parameters 
of the matrix-nanofiller interaction in the form of the angular 
speed of the precession ωM and magnetic induction BM:

	 ωM = 1,435984 ¢ 109 Hz ,� (148)

	 BM = 0,0087 T,� (149)

The angular velocity of precession ωM and the magnetic 
field BM induced by the disturbance of non-paired electrons to 
be regarded as derived from the size of the entire population 
of the Cu2+ ions:

	 ωM = – kT
h–

ln
NmechJ + 1

NmechJ  V

,� (150)

	 BM = – kT
g MµB

ln
NmechJ + 1

NmechJ  V

,� (151)

A change in the number of the ions Cu2+ by a value of 
1.28(3)£1021 for the CuSO4 ¢ 5H2O powder and for the sample 
may indicate chemical reactions during the formation of a nano-
composite.

We calculate:

	
ωz

Mh–

2kT
 = 1,871726 £ 10 –5 .� (152)

Since 
ωz

Mh–

2kT
 ¿ 1, we write the hyperbolic cotangent in the BJ 

function (Formula (73)), as a power series. Leaving only the 
first two terms, we write in the place of Eqs. (69), … (72):

	 hM i =  2h– 2ωM
x, y J (J  + 1)

ωz
M

3kT
,� (153)

	 hU M i = h– 2J (J  + 1)
(ωz

M)
2

3kT
,� (154)

	 hJ M i = h– 2J (J  + 1)
ωz

M

3kT
,� (155)

	 hcosϕM i =  J (J  + 1)  
ωz

M h–

3kT
,� (156)

For the spinon, when J  = S  = 1
2
, we write:

	 hM i =  2h– 2ωM
x, y

ωz
M

4kT
,� (157)

	 hU M i = h– 2 (ωz
M)

2

4kT
,� (158)

	 hJ M i = h– 2 ωz
M

4kT
,� (159)

	 hcosϕM i =  
3
6

ωz
M h–

kT
.� (160)

The results of calculations made on the basis of the For-
mulas (153), …, (160) are summarized in Table 2.

Knowing the number of Cu2+ ions in the nanocomposite 
sample, NV

nc = 1.094£1020, we can determine the parameters 
of a disturbance of non-paired electrons in the entire volume of 
the nanocomposite (Table 3).

The g M – factor in Table 3 was calculated by the depen-
dence:

	 g M =   ω
Mh–

µB BM
.� (161)

Table 2 
Parameters of matrix-nanofiller interaction related to unpaired electrons in nanocomposite (CuSO4 ¢ 5H2O powder in epoxy matrix)

State of electron hM i  
Nm

hU M i  
J

hJ M i  
kg ¢ m2/s

hcosϕM i

J  = 5/2 2,33(8)£10–29 1,65(3)£10–29 1,15(1)£10–38 3,69(1)£10–5

J  = S  = 1/2 2,00(4)£10–30 1,41(7)£10–30 0,98(7)£10–39 1,08(1)£10–5

Table 3 
Parameters of matrix-nanofiller interaction related to the entire volume of the nanocomposite

State of electron M  
Nm

U M  
J

J M  
kg ¢ m2/s g M

J  = 5/2 2,55(8)£10–9 1,80(9)£10–9 1,25(9)£10–18

1,88
J  = S  = 1/2 2,19(3)£10–10 1,55(0)£10–10 1,07(9)£10–19
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We estimate the average of matrix-nanofiller interactions 
related to the unpaired electron hPi by taking the ionic radius 
of the Cu2+ ion according to [24] ρCu2+ = 0.73 Å (Table 4). 

Table 4 
Matrix-nanofiller interaction related to unpaired electron in the 

nanocomposite

State of 
electron

hPi =  ω
M

ρ
Cu2+

h– J (J  + 1)

N

J  = 5/2 6,13(6)£10–15

J  = S  = 1/2 1,79(7)£10–15

7.	 Conclusion

The disturbance of electrons within a planetary system model 
used in the context of intermolecular interactions can generate 
the polar mechanical properties, magnetization, and forced gy-
robirefringence of a material. In the atomic scale, intermolec-
ular interactions induce the precession of atoms what causes 
the whole nanoparticle to rotate. This rotation is the source of 
new internal stresses in nanocomposites.

The work describes superparamagnetism induced by the 
matrix-nanofiller interaction.

According to quantum solutions for the optical active elec-
trons, the phenomena analogous to the Sagnac effect can be 
demonstrated.

The interaction torque combines the mechanical and chem-
ical properties of the atom. It can be concluded that the in-
teraction torque is associated with the chemical reactivity of 
the elements and is the driving force for the formation of the 
chemical bonds. The elements are more reactive when their 
interaction torques are greater. If the interaction torque is zero, 
the element is mostly unreactive. The moment action depends 
on the position of the atom in the periodic table of elements. 
With the presented rules, we can state that the greatest interac-
tion torque in a given period is possessed by atoms in the first 
group of the periodic table; this influence is smallest for atoms 
in the middle period.

In the case of van der Waals forces, for an electron cloud 
that completely fills valance shells, the moment action describes 
the stochastic fluctuations of the electrons.

According to the description above, the hydrostatic com-
pression of the nanoparticle will produce a condition that known 
as hydrostatic twisting. When hydrostatic compression changes 
the distance between the atoms, the hydrostatic twisting mani-
fests by rotation of the nanoparticle.

In the experimental analysis based on EPR spectroscopy, the 
unpaired electrons can be treated as sensors of the interatomic 
interaction between matrix and nanofiller. We determined the 
spectral parameters of these interactions by performing two 
EPR measurements: once for the free nanoparticles (substrate) 
and once for the nanoparticles mixed with the matrix (product).

Appendix. One should distinguish the angular speed of preces-
sion ω spinon-orbiton

ζk
 which does not result from mechanical mo-

lecular interactions and is caused by the action of the moment:

	 M spinon-orbiton
ζk

 =  p spinon
ζk

 £ B orbiton
ζk

� (A1)

coming from the magnetic field Borbiton
ζk

 induced by the orbital 
motion of the electron at the angular momentum J orbiton

ζk
, p orbiton

ζk
 is 

the magnetic moment of the electron spin. The induction B orbiton
ζk

  
is obtained from the Biot-Savart law with regard to the effect 
of the relativistic transformation of the magnetic field (Thomas 
factor) [25]:

	 B orbiton
ζk

 = 
1

2

Zkeχo

4πρ 3
ζk

me

J orbiton
ζk

� (A2)

where: χo is the magnetic permeability of the vacuum, me is 
the rest mass of electron. The precession ω spinon-orbiton

ζk
 can be 

obtained taking into account the relativistic kinematic effect in 
the system when the acceleration of the electron has a compo-
nent perpendicular to the velocity vector (Thomas precession) 
from the formula:

	 ω spinon-orbiton
ζk

 =  – e
2mec2

³
vζk
£Fζk

´
� (A3)

where: vζk
 is the speed of the electron ζk, Fζk

 is the Coulomb 
force acting on the electron ζk, c is the speed of light.

The moment M spinon-orbiton
ζk

 can be called self-torque of the 
atom and is not related to the intermolecular interaction and 
therefore this is not described in this work [26].
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