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Abstract. We present a probabilistic model with discrete latent variables that control the computation time in deep learning models such 
as ResNets and LSTMs. A prior on the latent variables expresses the preference for faster computation. The amount of computation for an 
input is determined via amortized maximum a posteriori (MAP) inference. MAP inference is performed using a novel stochastic variational 
optimization method. The recently proposed adaptive computation time mechanism can be seen as an ad-hoc relaxation of this model. We 
demonstrate training using the general-purpose concrete relaxation of discrete variables. Evaluation on ResNet shows that our method matches 
the speed-accuracy trade-off of adaptive computation time, while allowing for evaluation with a simple deterministic procedure that has 
a lower memory footprint.
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Adaptive computation time (ACT) [16] is a recently pro-
posed mechanism that adjusts the computational depth of deep 
models: the harder the object is, the more iterations it is pro-
cessed for. This mechanism does not rely on REINFORCE 
and thus has low variance of gradients, is end-to-end trainable, 
problem-agnostic and does not require an explicit supervision 
for the number of computational iterations. It has been applied 
to recurrent networks for the problems of text modelling [16], 
reasoning [17] and early sequence classification [18]. Spatially 
adaptive computation time (SACT) [12] applies the ACT mech-
anism to the spatial positions of residual networks [8], a popular 
convolutional neural network model. This results in computa-
tional savings and interpretable computation time maps that 
highlight the regions of the image that the network considers 
relevant to the task at hand.

In this paper, we introduce probabilistic adaptive compu-
tation time (PACT), a probabilistic model with discrete latent 
variables that specify the number of iterations to execute. We 
define a prior on the latent variables that encodes the desired 
trade-off between speed and accuracy. Then, we perform amor-
tized maximum a posteriori (MAP) inference to find the proper 
amount of computation for a given object. The ACT mechanism 
can be seen as an ad-hoc relaxation of the PACT model with 
a specific prior distribution. A significant downside of the ACT 
relaxation is that it provides a discontinuous objective. Since 
reparameterization trick is only valid for continuous objectives, 
ACT cannot be incorporated into stochastic models trained with 
reparameterization, such as variational autoencoder [19].

We extend variational optimization [20, 21], a method 
for MAP inference, to handle intractable expectations using 
REINFORCE or reparameterization trick. For discrete latent 
variables, we propose to apply the concrete relaxation [22, 23] 
and then perform the reparameterization. We call the obtained 
method stochastic variational optimization and apply it to the 
PACT model. Evaluation on ResNets shows that training using 

1. Introduction

In the past years, deep learning models have become signifi-
cantly deeper and more computationally expensive. As evident 
from the ImageNet competition results [1‒4], increasing the 
depth of the models indeed leads to improved results. However, 
such expensive models are suitable not for many applications, 
including deployment on low-power devices and real-time data 
processing. Thus, acceleration of deep learning models be-
comes an important area of research. The acceleration methods 
can be broadly divided into static and dynamic methods. The 
static methods, such as factorization of weight matrices [5] and 
convolutional kernels [6], as well as sparsification [7], reduce 
the computation equally for all input objects. Some of these 
methods are now an integral part of the modern deep networks. 
For example, Residual Networks [4, 8] use factorized convolu-
tional kernels. In this paper, we focus on the dynamic methods 
that vary the amount of computation depending on the input 
object [9‒11] (or even across spatial regions of objects [12]). 
This allows to allocate less computation for easier objects and 
therefore improve the computational efficiency of the deep ar-
chitectures. The dynamic methods are naturally connected to 
discrete latent variable models [13]: the (discrete) amount of 
computation can be considered as a latent variable. The standard 
approach to training discrete latent variable models is REIN-
FORCE [14]. However, it suffers from a large variance of gra-
dients, making training of complex models problematic. Thus, 
the methods trained with REINFORCE usually have few latent 
variables, such as the number of glimpses over an image [15], 
or the number of objects in a scene [10].
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the relaxation outperforms the REINFORCE based method and 
matches the performance of the heuristic ACT. We show that 
the relaxation allows to train the model with up to 1344 discrete 
latent variables. Additionally, the models trained with the pro-
posed relaxation can be evaluated with a simple deterministic 
approach that reduces the memory consumption, compared to 
ACT. Evaluation of the ACT models in the same manner de-
creases the performance.

2. Background

Notation. Let Eq(z) f (z) be the expectation of a function f (z) 
over a probability distribution q(z), σ (z) =  1

1 + exp(–z)
 the sig-

moid function, σ –1(z) = log 1
1 ¡ z

 the logit function, [cond ] the 
step-function that is equal to 1 if cond is true and 0 otherwise. 
Also, let z<k be a shorthand notation for z1, …, zk ¡ 1.

2.1. Variational optimization [20, 21] is a method for maximi-
zation of a function f (z) of an argument z. This argument can be 
either continuous or discrete. To apply variational optimization, 
we choose an auxiliary parametric probability distribution over 
the arguments values qφ(z). The following lower bound on the 
optimal value holds for any distribution qφ(z):

 L(φ) =  E
qφ(z)

f (z) ∙  E
qφ(z)

max
z

f (z) = max
z

f (z). (1)

Suppose that the parametric family of distributions qφ(z) 
can model arbitrary delta-functions. Then the bound is tight 
and the optimum is achieved when qφ(z) = δ(z ¡ z¤), where 
f (z¤) = maxz f (z).

Let us assume that the density qφ(z) is a smooth function 
of φ. Then, L(φ) is a smooth function. Variational optimization 
further assumes that the expectation in L(φ) is tractable and 
maximizes L(φ) with a gradient-based method. However, it is 
not applicable when the expectation is intractable. We address 
this limitation in sec. 3.

2.2. Variational Optimization for Probabilistic Models. Con-
sider a discriminative probabilistic model with latent variables 
p(y, zjx) = p(yjx, z)p(z), where x is the object, y is the target 
label and z is the latent variable. The prior p(z) encodes our 
preference for the values of z. The maximum a posteriori (MAP) 
inference problem is to find z¤ that maximizes the density of 

the posterior distribution p(zjx, y) =  p(y, zjx)
p(yjx)

. During training 

time, we know both x and y, while during testing time we only 
have x and would like to find the distribution y. Therefore, we 
search for z¤ in a parametric form that only depends on x, so 
that we can use it during the test time. This can be achieved 
by performing variational optimization with an auxiliary dis-
tribution qφ(zjx):

 LMAP(φ) =  E
qφ(zjx)

(log p( yjx, z) + log p(z)). (2)

For training, we plug in the ground-truth label y and optimize 
LMAP(φ). During testing, we sample z » qφ(zjx) and obtain the 
distribution over the labels p( yjx, z).

Let us analyze a special case of this approach that has been 
extensively used in attention models literature [15, 24‒27]. 
Consider a probabilistic model pφ( y, zjx) = p( yjx, z)pφ(zjx) 
with a learnable prior. We can use the prior pφ(zjx) as the ap-
proximate posterior in variational inference. The corresponding 
evidence lower bound is

 LML(φ) =  E
pφ(zjx)

log p( yjx, z) ∙ log pφ( yjx). (3)

Renaming pφ(zjx) into qφ(zjx), we recognize the objective (2), 
where the prior distribution is uniform, p(z) ∝ 1 (for a contin-
uous latent variable on unbounded domain, this prior is im-
proper). Applying the inequality (1), we have LML(φ) ∙ max-
z log p( yjx, z). Therefore, optimization of LML(φ) corresponds 
to maximum likelihood inference of the latent variables. On the 
other hand, the bound (2) allows to incorporate an explicit prior 
distribution over the latent variables and perform MAP infer-
ence. This is a crucial requirement for the models such as the one 
proposed in the paper that have a non-uniform prior distribution.

The objective (2) can also be seen as evidence lower bound 
on the marginal likelihood without the entropy term. Indeed, 
adding the entropy of qφ(zjx) to the eqn. (2) yields

 E
qφ(zjx)

log
p( yjx, z)p(z)

qφ(zjx)
 ∙ log p( yjx). (4)

Unlike MAP inference, variational inference provides a distri-
bution over the latent variable. In our case, this is undesirable 
since we are interested in the single “best” value for the la-
tent variables at the test time. To obtain a single value of the 
variables for evaluation, we could choose a maximum of the 
approximate posterior. However, this would introduce a gap 
between the train- and test-time behavior of the model.

2.3. Concrete Distribution and Reparametrization. Suppose 
that we would like to stochastically optimize parameters φ of 
an intractable expectation Eqφ(z) f (z), where f (z) is smooth. The 
reparametrization trick [18, 28] allows for this, provided that 
the distribution qφ(z) can be reparametrized, i.e., we can sample 
z » qφ(z) as follows:

	 ε  » q(ε), z = g(ε , φ) , (5)

where g(ε , φ)  is smooth w.r.t. ε  and φ. Then, by applying the 
chain rule we have:

	 ∇φ E
qφ(z)

f (z) =  E
q(ε)

f 0(g(ε , φ))∇φ g(ε , φ). (6)

This expectation can be approximated using Monte-Carlo 
sampling. The reparameterization trick is most commonly 
used for Normal distribution. If z » Normal(µ, σ 2), then 
q(ε) = Normal(0, 1) and g(ε , φ) = µ + εσ .
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Unfortunately, the reparameterization trick cannot be di-
rectly applied to discrete random variables, since the corre-
sponding function g(ε , φ)  is a non-smooth step function. How-
ever, it is possible to relax a discrete random variable so that 
the relaxation becomes reparameterizable.

The Concrete distribution [22, 23] is a continuous repa-
rameterizable relaxation of a discrete random variable. For the 
purposes of this paper, we only consider relaxation of Bernoulli 
(binary) discrete random variables. Consider a random variable 
v » Bernoulli(γ), where p(v = 1) = γ  2 (0, 1). We introduce 
a temperature parameter λ > 0. The relaxed random variable 
v ̂  » RelaxedBernoulli(γ ; λ) is defined via the following sam-
pling procedure:

ε  » Uniform(0, 1), l = σ –1(γ) + σ –1(ε), v ̂  = σ
³

l
λ

´
 (7)

The RelaxedBernoulli distribution has several useful prop-
erties [22]. First, the probability to be greater than 0.5 is equal 
for Bernoulli and RelaxedBernoulli random variables. However, 
the mean value of RelaxedBernoulli is, in general, not equal to 
γ . For λ ! 0, the distribution of v ̂  approaches Bernoulli(γ). 
Next, for λ ∙ 1 the density p(v ̂ ) does not have modes in the 
interior of the (0, 1) range. As a result, the samples are typically 
close to either zero or one, which makes the relaxation work 
well for our purposes. Importantly for us, when γ  ! 0 or γ  ! 1, 
the distribution of RelaxedBernoulli approaches a delta-func-
tion at 0 or 1, respectively. This means that for extreme values 
of probability, the gap between the relaxed and non-relaxed 
distributions vanishes, regardless of the temperature λ.

3. Stochastic Variational Optimization

Consider the variational optimization objective L(φ) = Eqφ(z) f (z),  
where z is a latent variable. Stochastic variational optimization 
estimates the gradient ∇φ L(φ) stochastically, even when the 
expectation is intractable. First, we consider the case of a rep-
arameterizable distribution, and then cover the case of discrete 
distributions.

If the distribution qφ(z) is reparameterizable, e.g., is 
a Normal distribution, we can perform reparameterization trick 
and calculate the stochastic gradients directly. We then apply 
stochastic gradient optimization methods, resulting in stochastic 
variational optimization of the objective.

Now, we switch to the case where z is discrete. One pop-
ular method for this type of problems is the REINFORCE [14] 
training rule

	 ∇φ L(φ) =  E
qφ(z)

( f (z) ¡ c)∇φ log qφ(z), (8)

where c is a scalar baseline. The expectation can be approxi-
mated by Monte-Carlo sampling. Although this procedure pro-
vides unbiased gradients, the estimate often has an impractically 
high variance.

We propose to apply the Concrete relaxation to the distribu-
tion qφ(z) and then use the reparameterization trick. This results 
in lower-variance gradients at the cost of a bias. Assume that 

z 2 {0, 1}d. Let's decompose the proposal distribution using the 
chain rule, qφ(z) = ∏d

i=1qφ(zijz<i) (this sidesteps enumeration of 
all the 2d configurations of z during sampling). We make two 
assumptions: (1) f (z) is defined and smooth for z 2 {0, 1} d; 
(2) each factor  qφ(zijz<i), i > 1 is defined and smooth for 
z<i 2 [0, 1]i ¡ 1. Then, we can apply the Concrete relaxation with 
temperature λ > 0 to each factor (the hat denotes relaxation):

 qφ , λ(z ̂ ) = 
i=1

d
Π qφ , λ(z ̂ ijz ̂ <i). (9)

The relaxed objective has the form

 L ̂ λ(φ) =  E
qφ , λ(z ̂ )

f (z ̂ ). (10)

This objective can now be stochastically optimized using the 
reparameterization trick.

If all the probabilities in the relaxed distribution approach 
extreme values (0 or 1), the relaxed distribution approaches the 
non-relaxed one, for any temperature λ. In this case, the value of 
the relaxed objective L ̂ λ(φ) approaches the value of the original 
objective L(φ).

4. Probabilistic Adaptive Computation Time

First, we introduce the adaptive computation block. It is a com-
putation module that chooses the number of iterations depending 
on the input. Depending on the specific type of the latent vari-
ables, we obtain a discrete, thresholded or relaxed block. Im-
portantly, the blocks are compatible in the sense that one can 
train a model with one type of block and then switch to another 
during evaluation. Then, we present a probabilistic model that 
incorporates the number of iterations as a latent variable into 
a discriminative model. The prior on the latent variable favors 
using less iterations. Finally, we perform MAP inference over 
the number of iterations via stochastic variational optimization.

Discrete adaptive computation block (Algorithm 1) performs 
z 2 {1, …, L} iterations of computation, where z is a discrete 
latent variable. Let us assume that the l-th iteration outputs 
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Fig. 1: Relaxed adaptive computation block.

Algorithm 1 Discrete adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: ξ ∼ Bernoulli(h)
7: if ξ = true then
8: output = ul

9: z = l
10: return output, z
11: end if
12: end for

The advantage of this block is an extremely simple implementa-
tion: we stop as soon as the halting probability exceeds 0.5.

Relaxed adaptive computation block (alg. 3) is obtained
from the discrete adaptive computation block by replacing the
Bernoulli random variables with RelaxedBernoulli. We denote
the relaxed variables with a hat and define the temperature of
the relaxation λ > 0. Sampling the vector ẑ = (ẑ1, . . . , ẑL) from
qφ ,λ (ẑ) proceeds as follows:

ξ̂ l ∼ RelaxedBernoulli(hl ;λ ), l = 1 . . .L−1, (16)

ξ̂ L = 1, ẑl = ξ̂ l
l−1

∏
i=1

(1− ξ̂ i), l = 1 . . .L. (17)

The vector ẑ is no longer one-hot. However, since it is produced
by a stick-breaking procedure, it forms a discrete probability
distribution over the iterations that we call the halting distri-
bution. Finally, we define the output of the relaxed adaptive
computation block as an expectation of the iteration outputs
w.r.t. the halting distribution ẑ:

ôutput =
L

∑
l=1

ẑlul . (18)

The whole procedure is illustrated on fig. 1.
Probabilistic model. Consider a discriminative model with

a likelihood pθ (y|x) of the target label y given an object x (for
simplicity of notation, we consider just one object), parame-
terized by θ . This model can be a deep network for classifi-
cation or regression problem. In many cases we prefer that
the model make the prediction as quickly as possible. Assume

Algorithm 2 Thresholded adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: if h > 0.5 then
7: output = ul

8: z = l
9: return output, z

10: end if
11: end for

Algorithm 3 Relaxed adaptive computation block.
Input: maximum number of iterations L
Input: temperature of relaxation λ
Output: output of the block
Output: expected number of iterations N

1: Sξ̂ = 1 � Remaining stick length for ξ̂
2: Sh = 1 � Remaining stick length for h
3: N = 0
4: ôutput = 0
5: for l = 1 . . .L do
6: Compute ul

7: if l < L then h = Hl(ul)
8: else h = 1
9: end if

10: ξ̂ ∼ RelaxedBernoulli(h;λ )
11: ẑ = Sξ̂ · ξ̂
12: ôutput = ôutput+ ẑ ·ul

13: N = N + l ·Sh ·h
14: Sξ̂ = Sξ̂ (1− ξ̂ )
15: Sh = Sh(1−h)
16: end for
17: return output, N

that we have incorporated K adaptive computation blocks into
the likelihood with the corresponding latent variables (number
of computation iterations) z = (z1, . . . ,zK). Also, denote the
maximum number of iterations in the k-th block as Lk.

We now discuss the prior distribution p(z) that encodes the
preference for less iterations. For simplicity, we assume that
it factorizes over the blocks, p(z) = ∏K

k=1 p(zk). The prior for
each block p(zk) is a discrete distribution over Lk iterations.
To make our model directly comparable to ACT, we choose a
prior distribution that provides the same log-linear penalty as
the ACT model (up to a normalization constant), a truncated
Geometric distribution. We parameterize the Geometric distri-
bution via a log-scale number of iterations penalty τk > 0 (the
canonical Geometric distribution’s probability for success αk
can be recovered as αk = 1− exp(−τk)). The prior distribution
for a single block is

TruncatedGeometric(zk|τk,Lk)

=
exp(τk)−1

1− exp(−τkLk)
exp(−τkzk), zk ∈ {1, . . . ,Lk}.

(19)

4 Bull. Pol. Ac.: Tech. XX(Y) 2016
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a value ul (we use superscripts to index the iterations in a block), 
and that all u1, …, uL have the same dimensions. The output 
of the block is uz, the output of the z-th iteration. To perform 
optimization over the discrete latent variable z, we introduce 
a distribution qφ(z) with parameters φ. Denote z l = [z = l ] the 
\textit{halting unit} of the block: when it is equal to one, the 
computation is halted. The two desiderata for qφ(z) are: (1) 
the probability of halting at the l-th step should depend on ul; 
(2) it should be possible to sample z l after only executing the 
first l iterations.

To satisfy the first property, we introduce a halting proba-
bility for every iteration:

 hl = Hφ
l(ul), l = 1, …, (L ¡ 1), hL = 1 . (11)

For the second property, we define the following sampling pro-
cedure for the distribution qφ(z):

	 ξ l » Bernoulli(hl), l = 1, …, L ¡ 1, ξ L = 1 , (12)

 z l = ξ l

i=1

l ¡ 1
Π (1 ¡ ξ i), l = 1, …, L . (13)

The vector (z1, …, zL) is a one-hot representation of the dis-
crete L-ary latent variable z. We reparameterize z via (L ¡ 1) 
Bernoulli latent variables (ξ 1, …, ξ L ¡ 1). The distribution of z 
can be obtained by taking an expectation over the independent 
random variables ξ l:

 qφ(z l = 1) = qφ(z = l) = hl

i=1

l ¡ 1
Π (1 ¡ hi). (14)

Thresholded adaptive computation block (Algorithm 2) is 
a deterministic version of the (stochastic) discrete adaptive 
computation block. Since we perform MAP inference over the 
latent variables, we expect the halting probabilities hl to be 
sufficiently close to either zero or one. Therefore, during eval-
uation we can replace sampling (12) with thresholding of the 
halting probabilities:

	 ξ l = 
£
hl > 0.5

¤
. (15)

The advantage of this block is an extremely simple implemen-
tation: we stop as soon as the halting probability exceeds 0.5.

Relaxed adaptive computation block (Algorithm 3) is obtained 
from the discrete adaptive computation block by replacing the 
Bernoulli random variables with RelaxedBernoulli. We denote 
the relaxed variables with a hat and define the temperature of 
the relaxation λ > 0. Sampling the vector z ̂  = (z ̂ 1, …, z ̂ L) from 
qφ , λ(z ̂ ) proceeds as follows:

	 ξ ̂ l » RelaxedBernoulli(hl, λ), l = 1 … L ¡ 1 , (16)

	 ξ ̂ L = 1, z ̂ l = ξ ̂ l
i=1

l ¡ 1
Π (1 ¡ ξ ̂ i), l = 1 … L. (17)
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Fig. 1: Relaxed adaptive computation block.

Algorithm 1 Discrete adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: ξ ∼ Bernoulli(h)
7: if ξ = true then
8: output = ul

9: z = l
10: return output, z
11: end if
12: end for

The advantage of this block is an extremely simple implementa-
tion: we stop as soon as the halting probability exceeds 0.5.

Relaxed adaptive computation block (alg. 3) is obtained
from the discrete adaptive computation block by replacing the
Bernoulli random variables with RelaxedBernoulli. We denote
the relaxed variables with a hat and define the temperature of
the relaxation λ > 0. Sampling the vector ẑ = (ẑ1, . . . , ẑL) from
qφ ,λ (ẑ) proceeds as follows:

ξ̂ l ∼ RelaxedBernoulli(hl ;λ ), l = 1 . . .L−1, (16)

ξ̂ L = 1, ẑl = ξ̂ l
l−1

∏
i=1

(1− ξ̂ i), l = 1 . . .L. (17)

The vector ẑ is no longer one-hot. However, since it is produced
by a stick-breaking procedure, it forms a discrete probability
distribution over the iterations that we call the halting distri-
bution. Finally, we define the output of the relaxed adaptive
computation block as an expectation of the iteration outputs
w.r.t. the halting distribution ẑ:

ôutput =
L

∑
l=1

ẑlul . (18)

The whole procedure is illustrated on fig. 1.
Probabilistic model. Consider a discriminative model with

a likelihood pθ (y|x) of the target label y given an object x (for
simplicity of notation, we consider just one object), parame-
terized by θ . This model can be a deep network for classifi-
cation or regression problem. In many cases we prefer that
the model make the prediction as quickly as possible. Assume

Algorithm 2 Thresholded adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: if h > 0.5 then
7: output = ul

8: z = l
9: return output, z

10: end if
11: end for

Algorithm 3 Relaxed adaptive computation block.
Input: maximum number of iterations L
Input: temperature of relaxation λ
Output: output of the block
Output: expected number of iterations N

1: Sξ̂ = 1 � Remaining stick length for ξ̂
2: Sh = 1 � Remaining stick length for h
3: N = 0
4: ôutput = 0
5: for l = 1 . . .L do
6: Compute ul

7: if l < L then h = Hl(ul)
8: else h = 1
9: end if

10: ξ̂ ∼ RelaxedBernoulli(h;λ )
11: ẑ = Sξ̂ · ξ̂
12: ôutput = ôutput+ ẑ ·ul

13: N = N + l ·Sh ·h
14: Sξ̂ = Sξ̂ (1− ξ̂ )
15: Sh = Sh(1−h)
16: end for
17: return output, N

that we have incorporated K adaptive computation blocks into
the likelihood with the corresponding latent variables (number
of computation iterations) z = (z1, . . . ,zK). Also, denote the
maximum number of iterations in the k-th block as Lk.

We now discuss the prior distribution p(z) that encodes the
preference for less iterations. For simplicity, we assume that
it factorizes over the blocks, p(z) = ∏K

k=1 p(zk). The prior for
each block p(zk) is a discrete distribution over Lk iterations.
To make our model directly comparable to ACT, we choose a
prior distribution that provides the same log-linear penalty as
the ACT model (up to a normalization constant), a truncated
Geometric distribution. We parameterize the Geometric distri-
bution via a log-scale number of iterations penalty τk > 0 (the
canonical Geometric distribution’s probability for success αk
can be recovered as αk = 1− exp(−τk)). The prior distribution
for a single block is

TruncatedGeometric(zk|τk,Lk)

=
exp(τk)−1

1− exp(−τkLk)
exp(−τkzk), zk ∈ {1, . . . ,Lk}.

(19)
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Fig. 1: Relaxed adaptive computation block.

Algorithm 1 Discrete adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: ξ ∼ Bernoulli(h)
7: if ξ = true then
8: output = ul

9: z = l
10: return output, z
11: end if
12: end for

The advantage of this block is an extremely simple implementa-
tion: we stop as soon as the halting probability exceeds 0.5.

Relaxed adaptive computation block (alg. 3) is obtained
from the discrete adaptive computation block by replacing the
Bernoulli random variables with RelaxedBernoulli. We denote
the relaxed variables with a hat and define the temperature of
the relaxation λ > 0. Sampling the vector ẑ = (ẑ1, . . . , ẑL) from
qφ ,λ (ẑ) proceeds as follows:

ξ̂ l ∼ RelaxedBernoulli(hl ;λ ), l = 1 . . .L−1, (16)

ξ̂ L = 1, ẑl = ξ̂ l
l−1

∏
i=1

(1− ξ̂ i), l = 1 . . .L. (17)

The vector ẑ is no longer one-hot. However, since it is produced
by a stick-breaking procedure, it forms a discrete probability
distribution over the iterations that we call the halting distri-
bution. Finally, we define the output of the relaxed adaptive
computation block as an expectation of the iteration outputs
w.r.t. the halting distribution ẑ:

ôutput =
L

∑
l=1

ẑlul . (18)

The whole procedure is illustrated on fig. 1.
Probabilistic model. Consider a discriminative model with

a likelihood pθ (y|x) of the target label y given an object x (for
simplicity of notation, we consider just one object), parame-
terized by θ . This model can be a deep network for classifi-
cation or regression problem. In many cases we prefer that
the model make the prediction as quickly as possible. Assume

Algorithm 2 Thresholded adaptive computation block.
Input: maximum number of iterations L
Output: output of the block
Output: number of executed iterations z

1: for l = 1 . . .L do
2: Compute ul

3: if l < L then h = Hl(ul)
4: else h = 1
5: end if
6: if h > 0.5 then
7: output = ul

8: z = l
9: return output, z

10: end if
11: end for

Algorithm 3 Relaxed adaptive computation block.
Input: maximum number of iterations L
Input: temperature of relaxation λ
Output: output of the block
Output: expected number of iterations N

1: Sξ̂ = 1 � Remaining stick length for ξ̂
2: Sh = 1 � Remaining stick length for h
3: N = 0
4: ôutput = 0
5: for l = 1 . . .L do
6: Compute ul

7: if l < L then h = Hl(ul)
8: else h = 1
9: end if

10: ξ̂ ∼ RelaxedBernoulli(h;λ )
11: ẑ = Sξ̂ · ξ̂
12: ôutput = ôutput+ ẑ ·ul

13: N = N + l ·Sh ·h
14: Sξ̂ = Sξ̂ (1− ξ̂ )
15: Sh = Sh(1−h)
16: end for
17: return output, N

that we have incorporated K adaptive computation blocks into
the likelihood with the corresponding latent variables (number
of computation iterations) z = (z1, . . . ,zK). Also, denote the
maximum number of iterations in the k-th block as Lk.

We now discuss the prior distribution p(z) that encodes the
preference for less iterations. For simplicity, we assume that
it factorizes over the blocks, p(z) = ∏K

k=1 p(zk). The prior for
each block p(zk) is a discrete distribution over Lk iterations.
To make our model directly comparable to ACT, we choose a
prior distribution that provides the same log-linear penalty as
the ACT model (up to a normalization constant), a truncated
Geometric distribution. We parameterize the Geometric distri-
bution via a log-scale number of iterations penalty τk > 0 (the
canonical Geometric distribution’s probability for success αk
can be recovered as αk = 1− exp(−τk)). The prior distribution
for a single block is

TruncatedGeometric(zk|τk,Lk)

=
exp(τk)−1

1− exp(−τkLk)
exp(−τkzk), zk ∈ {1, . . . ,Lk}.

(19)

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

The vector z ̂  is no longer one-hot. However, since it is produced 
by a stick-breaking procedure, it forms a discrete probability 
distribution over the iterations that we call the halting distri-
bution. Finally, we define the output of the relaxed adaptive 
computation block as an expectation of the iteration outputs 
w.r.t. the halting distribution z ̂ :

 output  = 
l =1

L

∑ z ̂ lul. (18)

The whole procedure is illustrated on Fig. 1.

Probabilistic model. Consider a discriminative model with 
a likelihood pθ(yjx) of the target label y given an object x (for 
simplicity of notation, we consider just one object), parame-
terized by θ. This model can be a deep network for classifica-
tion or regression problem. In many cases we prefer that the 
model make the prediction as quickly as possible. Assume that 
we have incorporated K adaptive computation blocks into the 
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likelihood with the corresponding latent variables (number of 
computation iterations) z = (z1, …, zK). Also, denote the max-
imum number of iterations in the k-th block as Lk.

We now discuss the prior distribution p(z) that encodes the 
preference for less iterations. For simplicity, we assume that 
it factorizes over the blocks, p(z) = ∏K

k =1 p(zk). The prior for 
each block p(zk) is a discrete distribution over Lk iterations. 
To make our model directly comparable to ACT, we choose 
a prior distribution that provides the same log-linear penalty 
as the ACT model (up to a normalization constant), a truncated 
Geometric distribution. We parameterize the Geometric distri-
bution via a log-scale number of iterations penalty τk > 0 (the 
canonical Geometric distribution՚s probability for success αk 
can be recovered as αk = 1 ¡ exp(–τk)). The prior distribution 
for a single block is

 

TruncatedGeometric(zkjτk, Lk) = 

= 
exp(τk) ¡ 1

1 ¡ exp(–τk Lk)
exp(–τk zk), zk 2 {1, …, Lk}.

 (19)

Using the described prior, we obtain the following proba-
bilistic model:

 

pθ( y, zjx)p(z), pθ( yjx, z)p(z),

p(z) = 
k=1

K
Π TruncatedGeometric(zkjτk, Lk) =

p(z) = 
Ã

k=1

K
Π

exp(τk) ¡ 1
1 ¡ exp(–τk Lk)

!
exp

Ã
–

l =1

L

∑τk zk

!
.

 (20)

We perform MAP inference of the latent variable z via vari-
ational optimization with an auxiliary distribution

 qφ(zjx) = 
k=1

K

Πqφ(zkjz<k, x), (21)

where qφ(zkjz<k, x) is defined via eqn. (13). The dependence 
on the input and the previous latent variables is via the inputs 
of the block. We refer to this probabilistic model as discrete. 
The objective for maximization w.r.t. θ and φ is

 

L(θ, φ) =  E
qφ(zjx)

log pθ( y, zjx) = 

L(θ, φ) =  E
qφ(zjx)

Ã
log pθ( yjz, x) + 

k =1

K

∑log p(zk)

!
.
 (22)

To reduce the variance of the stochastic estimate of the ob-
jective, we analytically compute the expectation of the log-prior:

 

E
qφ(zjx)

log p(zk) = 

= –τk E
qφ(z<kjx) l =1

L

∑ l hl
k

i=1

l ¡ 1

Π(1 ¡ hi
k)

Nk

 + const . (23)

Here Nk is the expected number of iterations in the k-th 
block. Ignoring the additive constant, we have

 L(θ, φ) =  E
qφ(zjx)

Ã
log pθ( yjz, x) ¡ 

k =1

K

∑τk zk

!
. (24)

The objective in eqn. (24) is intractable for deep models 
consisting of several stacked adaptive computation blocks, as 
the complexity of direct evaluation of the expectation grows ex-
ponentially in the number of blocks. One heuristic is to replace 
the random variables zk with their expectations and optimize the 
probabilities directly. However, this simple approach fails for 
deep networks as they learn to trick the objective by increasing 
the halting probability for the first iterations and decreasing it 
for the latter iterations, while significantly boosting the magni-
tude of the outputs for the latter iterations [16]. The prior term 
value then reflects that few iterations are used, while the outputs 
of the blocks are dominated by the last iterations.

Instead, we stochastically optimize the objective (24). In sec. 3 
we proposed two approaches to do this, one using REINFORCE 
and another using relaxation.

In the first approach, we directly apply REINFORCE to the 
objective (24), obtaining the following gradients w.r.t. φ:

 
∇φ L(θ, φ) =  E

qφ(zjx)

Ã

(log pθ( yjz, x) ¡ c) £

∇φ L(θ, φ) £ ∇φ log qφ(zjx) ¡ 
k =1

K

∑τk∇φ Nk

!
,
 (25)

where c is a scalar baseline. The value qφ(zjx) is defined by eqn. 
(14). Note that we have neglected the dependency of Nk on z<k 
to reduce the variance of the gradients.

For the second approach, we replace every adaptive compu-
tation block with a relaxed counterpart, and the corresponding 
distribution qφ(z) with the relaxed distribution qφ , λ(z ̂ ). This 
relaxed model has an objective that can be optimized via the 
reparameterization trick:

 L ̂ λ(θ, φ) =  E
qφ , λ(z ̂ jx)

Ã
log pθ( yjz ̂ , x) ¡ 

k =1

K

∑τk Nk

!
. (26)

Fig. 1. Relaxed adaptive computation block
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4.1. Application: Probabilistic Spatially Adaptive Com-
putation Time for Residual Networks. Residual network 
(ResNet) [4, 8] is a deep convolutional neural network architec-
ture that has been successfully applied to many computer vi-
sion problems [29, 30]. We describe ResNet-32 and ResNet-110 
models for CIFAR image classification dataset [31]. They con-
tain three stacked blocks, each consisting of several residual 
units (5 for ResNet-32 and 18 for ResNet-110). The compu-
tational iteration of a ResNet is a residual unit of the form  
Fk

l(uk
l ¡ 1) = uk

l ¡ 1 + f k
l(uk

l ¡ 1), where f k
l is a sub-network con-

sisting of two convolutional layers. uk
0 is the output of the pre-

vious block of residual units. The outputs of the residual units in 
each block have the same size. The first units in the second and 
third blocks are applied with stride 2 to perform spatial downs-
ampling, while also increasing the number of output channels 
by a factor of two. Thus, the spatial dimensions of the first block 
are 32£32 (same as the size of CIFAR-10 images), the second 
block 16£16 and the third block 8£8. In this way, the amount 
of computation for every residual unit is roughly constant. The 
outputs of the last block are passed through a global average 
pooling and linear layers to obtain the class probabilities logits.

SACT [12] applies the ACT mechanism to every spatial 
position of every residual network block. Likewise, we apply an 
adaptive computation block to every spatial position of every re-
sidual network block. We call the obtained model PSACT, prob-
abilistic spatially adaptive computation time. The corresponding 
latent variable is zk, ij where k is the number of residual network 
block and i j is the spatial position. The halting probability map 
is computed as Hk

l(u) = σ(W̃k
l ¤ u + Wk

l pool(u) + bk
l), where 

¤ is 3£3 convolution and pool is global average pooling. The 
computation time penalty for a block is chosen to be τ/HW, 
where τ is a global computation time penalty and H and W are 
the height and width of the ResNet block.

In order to impute the non-computed intermediate values, 
we redefine the residual unit as

 Fk
l(uk

l ¡ 1) = uk
l ¡ 1 + f k

l(uk
l ¡ 1) ¢ a(ξk

<l), (27)

where a(ξk
<l) is an active positions mask. For the discrete 

model, we choose a(ξk
<l) = ∏ l ¡ 1

t = 1(1 ¡ ξk
l), with the operation 

performed element-wise. Thus, if the position is no longer eval-
uated (hence, zk < l ), the value is zero and we simply carry the 
features from the previous iteration. Otherwise, the value is one. 
For the relaxed model, we use a ̂ (ξ ̂ k<l) = r ¢ [r > δ ], r = ∏ l ¡ 1

t = 1
(1 ¡ ξk

t), where δ  > 0 is a scalar hyperparameter. By clipping 
the values of r, we obtain strict zeros and can skip computing 
the corresponding values during the training time. We have 
verified that setting δ  to zero gives similar results, although 
without a possibility of computation savings during training.

4.2. Application: Probabilistic Adaptive Computation Time 
for Recurrent Neural Networks. We can also apply the pro-
posed model to dynamically vary the amount of computation 
in Recurrent Neural Networks, such as Long Short-Term 
Memory networks (LSTMs) [32]. Let us denote the input se-
quence x = (x1, …, xT), where T is the number of timesteps. An 
adaptive computation block is associated with each timestep. 

Therefore, each timestep is processed for an adaptive number of 
iterations. We can use the same computation time penalty τ for 
all iterations. The computation iteration consists of applying the 
RNN՚s transition function to obtain the new state of the RNN:  
uk

l = Fθ(xk, [l = 1], uk
l ¡ 1). Here uk

0 is the output state from the 
previous block/timestep. The binary input feature [l = 1] allows 
the network to detect the beginning of a new timestep. The halting  
probability is computed as hk

l = Hφ(uk
l) = σ(Wuk

l + b). The 
output state of a block is used as an input state for the next block  
and as features for predicting the emission values for the timestep.

5. Related work

Adaptive Computation Time (ACT) mechanism [16] can be seen 
as a heuristic deterministic relaxation of our PACT model. Spe-
cifically, ACT transforms the halting probabilities (h1, …, hL) 
into the halting distribution (z ̂ 1, …, z ̂ L) as follows:

 N = min
n

n 2 
©
1 … L

ª
 : 

l =1

n

∑ hl ¸ 0.99
o

, (28)

 R = 1 ¡ 
l =1

N ¡ 1

∑ hl, z ̂ l = 

hl if l < N,

R if l = N,

0 if l > N.

 (29)

Since the halting distribution is not one-hot, additional memory 
is required to maintain the output ∑L

l =1 z ̂ lul during evaluation. 
For completeness, we include the pseudocode in Algorithm 4. In M. Figurnov, A. Sobolev, D. Vetrov

Algorithm 4 Adaptive computation block with Adaptive Com-
putation Time relaxation.
Input: maximum number of iterations L
Input: 0 < ε < 1 � Recommended value: 0.01
Output: output of the block
Output: ponder cost ρ � Upper bound on the number of executed

iterations
1: c = 0 � Cumulative halting probability
2: R = 1 � Remainder
3: output = 0
4: ρ = 0
5: for l = 1 . . .L do
6: Compute ul

7: if l < L then h = Hl(ul)
8: else h = 1
9: end if

10: c = c+h
11: ρ = ρ +1
12: if c < 1− ε then
13: output = output+h ·ul

14: R = R−h
15: else
16: output = output+R ·ul

17: ρ = ρ +R
18: break
19: end if
20: end for
21: return output,ρ

performed element-wise. Thus, if the position is no longer
evaluated (hence, zk < l), the value is zero and we simply carry
the features from the previous iteration. Otherwise, the value
is one. For the relaxed model, we use â(ξ̂<l

k ) = r · [r > δ ], r =
∏l−1

t=1(1− ξ̂ t
k), where δ > 0 is a scalar hyperparameter. By

clipping the values of r, we obtain strict zeros and can skip
computing the corresponding values during the training time.
We have verified that setting δ to zero gives similar results,
although without a possibility of computation savings during
training.

4.2. Application: Probabilistic Adaptive Computation
Time for Recurrent Neural Networks We can also apply the
proposed model to dynamically vary the amount of computa-
tion in Recurrent Neural Networks, such as Long Short-Term
Memory networks (LSTMs) [17]. Let us denote the input se-
quence x = (x1, . . . ,xT ), where T is the number of timesteps.
An adaptive computation block is associated with each timestep.
Therefore, each timestep is processed for an adaptive number of
iterations. We can use the same computation time penalty τ for
all iterations. The computation iteration consists of applying the
RNN’s transition function to obtain the new state of the RNN:
ul

k = Fθ (xk, [l = 1],ul−1
k ). Here u0

k is the output state from the
previous block/timestep. The binary input feature [l = 1] allows
the network to detect the beginning of a new timestep. The
halting probability is computed as hl

k = Hφ (ul
k) = σ(Wul

k +b).
The output state of a block is used as an input state for the next
block and as features for predicting the emission values for the
timestep.

Fig. 2: Ponder cost ρ is a discontinuous function of the halting
probability h1. Here h2 = h3 = h4 = 1/3.

5. Related work
Adaptive Computation Time (ACT) mechanism [14] can be
seen as a heuristic deterministic relaxation of our PACT
model. Specifically, ACT transforms the halting probabilities
(h1, . . . ,hL) into the halting distribution (ẑ1, . . . , ẑL) as follows:

N = min
{

n ∈ {1 . . .L} :
n

∑
l=1

hl ≥ 0.99
}
, (28)

R = 1−
N−1

∑
l=1

hl , ẑl =




hl if l < N,

R if l = N,

0 if l > N.

(29)

Since the halting distribution is not one-hot, additional memory
is required to maintain the output ∑L

l=1 ẑlul during evaluation.
For completeness, we include the pseudocode in alg. 4. In
discrete and thresholded PACT models, the halting distribution
is one-hot and this memory can be saved.

The stopping time N has zero gradients almost everywhere.
In order to optimize the stopping time, a differentiable upper
bound, ponder cost, ρ = N + R is introduced. Ponder cost
is linear almost everywhere, but is a discontinuous function
of the halting probabilities, with discontinuities arising in the
configurations where N changes the value, see fig. 2. For
instance, this means that ACT cannot be used with reparame-
terization trick that is only valid for continuous objectives. The
objective of ACT, for several adaptive computation blocks, is
log p(y|ẑ,x)−∑K

k=1 τkρk.
Let us summarize why the proposed PACT model is more

principled than ACT. First, the discrete PACT model straight-
forwardly defines the halting time as the iteration where the
halting unit is fired. On the other hand, ACT that uses an ad-hoc
definition (28). Second, PACT allows to directly minimize the
expected halting time, while ACT minimizes the discontinuous
ponder cost.

Several recent papers propose models that are related to ACT.
[20] updates a dynamically chosen subset of the hidden state of
a recurrent network. [48] develops a model that “jumps” over
regions of text, therefore allowing to skip the less informative
pieces. [6] considers a recurrent model that can adaptively skip
state updates. For training of the corresponding discrete latent
variables, these models either use REINFORCE, or heuristic
training methods such as straight-through [4]. [26] develops a
hybrid of a recurrent and residual network: a single residual
unit which is applied a dynamic number of iterations deter-
mined by ACT, thus obtaining a compact model with adaptive

6 Bull. Pol. Ac.: Tech. XX(Y) 2016
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discrete and thresholded PACT models, the halting distribution 
is one-hot and this memory can be saved.

The stopping time N has zero gradients almost everywhere. 
In order to optimize the stopping time, a differentiable upper 
bound, ponder cost, ρ = N + R is introduced. Ponder cost is 
linear almost everywhere, but is a discontinuous function of the 
halting probabilities, with discontinuities arising in the config-
urations where N changes the value, see Fig. 2. For instance, 
this means that ACT cannot be used with reparameterization 
trick that is only valid for continuous objectives. The objec-
tive of ACT, for several adaptive computation blocks, is log -
p(yjz ̂ , x) ¡ ∑K

k =1τkρk.

each block now contains 2L configurations instead of just L. To 
solve this problem, [38] employs Actor-Critic training method 
from the reinforcement learning literature and combines it with 
curriculum learning. However, the large variance of the gradi-
ents makes the training an order of magnitude slower than for 
the original ResNet. The other two works use biased gradient 
estimators with unclear theoretical properties: [39] employs 
the “hard” Gumbel-Softmax estimator [23] (which rounds the 
samples), while [40] pretrains using the straight-through esti-
mator [36] and then fine-tunes using REINFORCE. Thus, these 
methods either suffer from large variance, or use unprincipled 
biased gradient estimators. In this paper, we propose a proba-
bilistic view of ACT and SACT mechanisms and a principled 
training method for it. The resulting method is generally ap-
plicable to sequential models, including ResNets and RNNs. 
Furthermore, while the abovementioned models only consider 
dropping the whole residual units, we demonstrate training of 
the spatially adaptive ResNet. We hypothesize that the pro-
posed ideas can be combined with the concurrently developed 
models.

Our work follows a trend in machine learning of interpreting 
methods as approximate Bayesian procedures. For example, in 
the field of topic modelling, Latent Dirichlet Allocation [41] is 
a probabilistic counterpart of Latent Semantic Indexing [42]. 
Recently, Dropout [43] has been interpreted as variational in-
ference in a probabilistic model [44, 45]. This spurred the de-
velopment of more innovative ways of using Dropout, e.g., in 
RNNs [46] and for sparsifying neural networks [47]. We hope 
that our paper will similarly open the way for various extensions 
of adaptive computation time.

6. Experiments

We focus on the PSACT model for ResNets, since it allows to 
adjust the number of latent variables by grouping the spatial 
positions. First, we demonstrate that the relaxed model՚s param-
eters are compatible with the discrete and thresholded models. 
Then, we compare training of the relaxed model to training 
of the discrete model with with REINFORCE, for varying 
number of latent variables. Finally, we demonstrate that the 
relaxed PSACT model achieves close results to ACT. We also 
verify that the parameters obtained by the relaxed model can 
be used in a thresholded model with extremely simple test-time 
behavior, and that it is not the case for SACT.

We consider pre-activation ResNets [8] with 32 and 110 
convolutional layers. We use CIFAR-10 image classification 
dataset [31]. Unless otherwise noted, PSACT is trained using 
the relaxed model and evaluated using the discrete model. As 
a proxy to the potential time savings, we compute the number 
of floating point operations (FLOPs) required to evaluate the 
positions with non-zero values in the active positions mask, as 
done in [12].

In the first experiment, we train a relaxed PSACT model. 
The obtained parameters are continuously evaluated on the test 
set in three models: relaxed (Concrete relaxation of the Bernoulli 
variables), discrete (discrete latent variables), and thresholded 

Fig. 2. Ponder cost ρ is a discontinuous function of the halting prob-
ability h1. Here h2 = h3 = h4 = 1/3

Let us summarize why the proposed PACT model is more 
principled than ACT. First, the discrete PACT model straight-
forwardly defines the halting time as the iteration where the 
halting unit is fired. On the other hand, ACT that uses an ad-hoc 
definition (28). Second, PACT allows to directly minimize the 
expected halting time, while ACT minimizes the discontinuous 
ponder cost.

Several recent papers propose models that are related to 
ACT. [33] updates a dynamically chosen subset of the hidden 
state of a recurrent network. [34] develops a model that “jumps” 
over regions of text, therefore allowing to skip the less informa-
tive pieces. [35] considers a recurrent model that can adaptively 
skip state updates. For training of the corresponding discrete 
latent variables, these models either use REINFORCE, or heu-
ristic training methods such as straight-through [36]. [37] de-
velops a hybrid of a recurrent and residual network: a single 
residual unit which is applied a dynamic number of iterations 
determined by ACT, thus obtaining a compact model with adap-
tive computation cost.

Concurrent works [38‒40] propose to adaptively drop re-
sidual units in ResNet models. Each residual unit is equipped 
with a binary latent variable indicating whether to compute 
this particular unit. In this way, they drop any combination of 
residual units, while ACT can only drop the last units in each 
block. This can be thought of as an alternative probabilistic 
model to ACT that has greater flexibility. However, this model 
is ResNet-specific and, importantly, leads to a much more chal-
lenging discrete optimization problem: the solution space for 
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(deterministic latent variables). The results on Fig. 3 show that 
the loss function and accuracy stay close for the three models. 
However, since the computation in relaxed model is stopped 
when ∏ l

i = 1(1 ¡ ξk
i) < δ , and ξ ̂ ki might take non-extreme values, 

the relaxed model requires more computation.
Next, we compare training of the relaxed model to training 

of the discrete model using REINFORCE. We use an exponen-
tial moving average reward baseline with a decay factor of 0.99. 
We do not employ an input-dependent baseline to simplify the 
model, since the paper [13] finds small improvement from using 
it. Additionally, for REINFORCE, we use Adam optimizer [48] 
with initial learning rate of 10–3 (the decay schedule is kept the 
same), since SGD with momentum used in other experiments 
results in unstable training.

PSACT model for ResNet-32 has M = 1344 5-ary categor-
ical latent variables: one variable per (32 ¢ 32 + 16 ¢ 16 + 8 ¢ 8) 
spatial positions. To study the effect of the number of the latent 
variables on the training, we group the latent variables spatially. 
Namely, in every ResNet block, we group the spatial positions 
into non-overlapping n£n patches, n 2 {2, 4, 8}. Within each 
patch, we average the logits of the halting probabilities and 
sample a single latent variable per patch. The results presented 
on Fig. 4 show that REINFORCE has a much higher gradient 
variance. For M = 1344 latent variables, the difference is about 
two orders of magnitude. REINFORCE achieves comparable 
results for M = 21 and M = 84 latent variables, but the accu-
racy quickly deteriorates when the number of latent units is 
increased.

Finally, we compare SACT and PSACT models for ResNet-32 
and ResNet-110 on Fig. 5. The PSACT model is trained using 

Fig. 3. The parameters from a relaxed PSACT model (ResNet-32, τ = 0.01) for different training iterations are evaluated on the test set in 
Relaxed, Discrete and Thresholded models. The gap between the models is small throughout the training

A)
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Fig. 4. Training of relaxed PSACT model (ResNet-32, τ = 0.1) and 
training of discrete PACT model using REINFORCE, for varying 
number of the latent variables M. REINFORCE exhibits much higher 
variance of gradients and fails to reach a competitive accuracy for 
M > 84. A) log10 of the parameters gradient variance as a function 
of the training iteration. B) test FLOPs and accuracy at convergence 

(evaluation is performed in the discrete mode)

A)

B)

Fig. 5. Comparison of PSACT (proposed method) and SACT [12] for 
various values of the computation time penalty τ . PSACT is trained 
using the relaxed model. The results are averaged over five runs, with 
error bars denoting one standard deviation. A) ResNet-32, B) ResNet-110
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the relaxation and then evaluated in the discrete and thresh-
olded regimes. PSACT and SACT perform similarly. We find 
that PSACT requires using somewhat lower computation time 
penalty τ to achieve the same number of FLOPs, perhaps be-
cause the expected number of iterations penalty in PSACT is 
easier to optimize than the surrogate ponder cost of SACT. 
Relaxed PSACT successfully trains on ResNet-110, where we 
have M = 1344 18-ary discrete latent variables. PSACT can be 
evaluated in deterministic Thresholded mode with very close 
results, indicating that the latent variables probabilities have sat-
urated. This is not the case for SACT: evaluation in Thresholded 
mode reduces the accuracy by at least 5%. We also present the 
comparison of the learned computation time maps on Fig. 6.

7. Conclusion

We have presented probabilistic adaptive computation time, 
a latent variable model for varying the amount of computation in 
deep models. The proposed stochastic variational optimization 
allows to perform approximate MAP inference in this model. 
Experimentally, we find that training using concrete relaxation 
of discrete latent variables outperforms REINFORCE-based 
training. The model achieves similar results to the heuristic 
method adaptive computation time, while enjoying a princi-
pled formulation. It can also be used in tresholded mode with 
a very simple test-time behavior and lower memory footprint. 
In future, we plan to explore different training techniques and 
modifications of the proposed latent variable model. Addition-
ally, we expect that the proposed techniques could be useful for 
replacing REINFORCE in hard attention models.
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