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Abstract. Automatic recognition of mammographic images in breast cancer is a complex issue due to the confusing appearance of some perfectly 
normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This 
paper addresses this problem and proposes two alternative techniques of mammogram recognition: the application of a variety of methods for 
definition of numerical image descriptors in combination with an efficient SVM classifier (so-called classical approach) and application of deep 
learning in the form of convolutional neural networks, enhanced with additional transformations of input mammographic images.
The key point of the first approach is defining the proper numerical image descriptors and selecting the set which is the most class discrimina-
tive. To achieve better performance of the classifier, many image descriptors were defined by means of applying different characterization of 
the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, the maximum subregion principle, percolation theory, fractal texture 
descriptors as well as application of wavelet and wavelet packets. Thanks to them, better description of the basic image properties has been 
obtained. In the case of deep learning, the features are automatically extracted as part of convolutional neural network learning. To get better 
quality of results, additional representations of mammograms, in the form of nonnegative matrix factorization and the self-similarity principle, 
have been proposed. The methods applied were evaluated based on a large database composed of 10,168 regions of interest in mammographic 
images taken from the DDSM database. Experimental results prove the advantage of deep learning over traditional approach to image recogni-
tion. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, with sensitivity of 82.82%, 
specificity of 86.59% and AUC = 0.919. These results are among the best for this massive database.
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regions. However, accuracy of the systems developed to date 
remains unsatisfactory. Different solutions have been applied 
to computer aided mammogram recognition. They differ by the 
image preprocessing stages, which lead to different diagnostic 
features, and also by the solutions of classification systems used 
in the recognition of patterns formed by these features.

Paper [4] reviews different methods of feature definition 
and application of classification tools. The diagnostic features 
are based on characterization of the texture, edge orientation, 
statistical analysis of a map of pixels in the mammographic 
image, etc. Different mathematical tools are used to define these 
features. They include wavelet decomposition, mathematical 
morphology, thresholding methods, template matching, neural 
networks and many others. Paper [4] presents a comparison of 
actual results of different approaches to distinguishing between 
normal and abnormal mammograms, obtained for limited num-
bers of mammograms (from 128 to 280). However, the quality 
factors defined in the form of true positive rate TPR = 75.7%, 
false positive rate FPR = 73.5% and AUC (area under ROC 
curve), oscillating for different solutions between 0.76 and 
0.89, were not satisfactory. Meanwhile, paper [5] presents ap-
plication of an extreme learning machine to tumor detection in 
double-views mammography.

Most research presented in the literature used only small 
databases of mammographic images. Paper [6] presents the ap-

1. Introduction

Breast cancer belongs to the most dangerous cancers affecting 
women. More than 18% of all cancer deaths, both in males 
and females, are from breast cancer. Over 1.67 million new 
cases were in 2012 worldwide [1]. Early detection of cancer is 
crucial for treatment, since it translates into better perspectives 
for recovery.

Screening mammography programs are organized to cope 
with the problem and to reduce the mortality rates [2, 3]. How-
ever, mammography interpretation is a difficult task due to the 
subtle signs of breast abnormalities which can be observed at 
an early stage. According to statistics, 10–15% of cancer cases 
are still left undetected.

Due to the huge amount of screening mammograms, which 
should be analyzed by two independent experts, and due to the 
limited number of expert radiologists, a bottleneck forms in all 
screening programs. Therefore, computer aided detection (CAD) 
systems are urgently required. Such systems could replace the 
second reader and alert the expert radiologist as to the suspicious 
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plication of principal and independent component analyses to 
generating diagnostic features and using a radial basis function 
network as a classifier. The accuracy rate of 88.23% in detection 
of all types of abnormalities in the analyzed 119 regions of 
suspicion for mammogram images in the Mini Mammographic 
Database of MIAS has been reported. In [7], features based on 
estimation of the probability density function of the gray-level 
differences in the image were defined. After applying the ge-
netic algorithm and forward sequential selection, these features 
have been used as the input signals for the multilayer perceptron 
operating in the classification mode. The classification accuracy 
of 89%, with 88.6% sensitivity and 83.3% specificity, have been 
reported for 410 mammograms from the Digital Database for 
Screening Mammography (DDSM). The 600 cases taken from 
the DDSM were analyzed in [8] using three different methods 
of feature problem solution: genetic algorithm, greedy selec-
tion and random mutation hill climbing. Different commercial 
CAD products for mammography analysis, including AccuDe-
tect Parascript® [9], R2 ImageChecker and iCAD Second Look 
[10], have been tested in recognizing the abnormal cases. It was 
shown that all of them suffer from limited accuracy. The best 
results of AUC stood at 0.789.

In [11], the recognition results of abnormality cases in all 
mammograms from the DDSM base by using the curvelet mo-
ments was presented. Only the accuracy rate was reported. It 
changed from 81.26% to 86.46%, depending on the feature 
set applied. However, no sensitivity, specificity or AUC infor-
mation have been presented. In [12], the application of deep 
learning to the recognition of mammograms was proposed.

The aim of this work is to develop and compare two new 
approaches to mammographic image recognition, able to rec-
ognize the abnormal cases (benign + malignant) from normal 
ones with an increased accuracy. Both will be used to analyze 
the regions of interest (ROI) in the mammograms. The first 
approach consists in typical steps used in classical pattern rec-
ognition: generation of numerous numerical image descriptors, 
selection of the most discriminative ones, which will serve as 
diagnostic features for the classifier, and the final classification 
step involving the support vector machine (SVM). To get the 
most objective and independent description of the image, we 
have proposed different feature extraction methods. They in-
clude representation of the image by means of the Hilbert curve 
and definition of special descriptors based on the self-similarity 
of vectors, Kolmogorov-Smirnov statistics, maximum subre-
gion principle, percolation theory, the gray-level co-occurrence 
matrix (GLCM) analysis, fractal texture description as well as 
application of wavelet and wavelet packets in creating numer-
ical descriptors. To the best of our knowledge, most of them 
are applied for the first time in mammographic image analysis. 
In the next step, a sequential feature selection method is used 
to choose the most class-discriminative subset of features. The 
SVM has been applied in the classification step.

In the second approach, we will use the deep learning 
strategy based on the convolutional neural network (CNN) as 
the workhorse. CNN plays the role of the unsupervised feature 
selection and final classification mechanism at the same time. 
However, direct application of the set of mammograms avail-

able in the DDSM base to the CNN is not fully successful due 
to the limited number of sample images. Therefore, we pro-
pose to expand the input data by providing additional images 
created by applying non-negative matrix factorization (NMF) 
and statistical self-similarity. They fulfill the significant role in 
the classification system and allow to increase the accuracy of 
image recognition.

The numerical experiments have been performed on a large 
DDSM database containing more than 10,000 mammograms. 
The results of these investigations have confirmed good ac-
curacy of class recognition. A comparison of the classical and 
deep learning approaches has shown the advantage of the deep 
learning strategy. The main contribution of this work is thus 
as follows:
● Proposition and application of novel methods for extracting 

the numerical descriptors of mammographic images in the 
classical neural approach to image recognition. Diversity 
of descriptions allows characterizing details of the images 
from many different points of view.

● Successful application of deep learning strategy, in the 
form of the convolutional neural network, to the analysis 
of mammographic image. The important element in this rep-
resentation is the application of non-negative matrix factor-
ization and statistical self-similarity, which are capable of 
enhancing the differences between classes of mammograms 
and increasing the accuracy of class recognition this way.

● Experimental application of the proposed solution to the 
DDSM set of mammograms and proving its better perfor-
mance in comparison to other results presented in different 
papers to date. Our best average accuracy in recognizing 
abnormal cases from normal ones was 85.83%, with sensi-
tivity of 82.82%, specificity of 86.59% and AUC = 0.919. 
These results are one of the best obtained so far for this set.

The rest of the paper is organized as follows. Section 2 provides 
a brief description of the database of the mammograms used. 
Section 3 presents the classical approach to image recognition 
and the results of numerical experiments. Section 4 is devoted 
to the deep learning approach to mammogram recognition. Sec-
tion 5 compares the obtained results using both methods along 
with the others, reported in previous publications. The con-
cluding section summarizes the considerations presented herein.

2. Database of mammograms applied  
in the investigations

The numerical investigations have been carried out using the 
largest publically available database of mammographic im-
ages, i.e. the “Digital Database for Screening Mammography” 
[13]. It is composed of 2,604 cases, each containing 4 mam-
mograms (left and right breast from above, representing the 
cranial-caudal view, and an oblique image, representing the 
medio-lateral-oblique view). The dataset contains important 
information on each mammogram, including its diagnostic re-
sults (normal, benign or malignant) and the location of existing 
lesions, forming the ROI. For the abnormal cases (benign and 
malignant ones), manual cropping was done based on the in-
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formation provided in the ground truth. The ROI corresponding 
to the masses observed represents a rectangular area with the 
lesion in the center. In the normal cases the ROI was extracted 
manually by the medical expert from normal tissues. The size 
of ROI images was the same and equal to 128£128 pixels, 
irrespective of their type. The number of ROI images that has 
been used in the experiments was 10,168. The DDSM database 
contained the following number of class representations:
a. Normal tissue: 8,254,
b. Benign lesions: 862,
c. Malignant lesions: 1,052.

The above means that the abnormal tissue set, representing 
the benign and malignant cases, contains only 1,914 ROI im-
ages, distinctly less than the normal ones (8,254 samples). This 
presents some additional problems related to the unbalanced 
set of data.

3.1. Definition of numerical descriptors of mammographic 
images. The main problem in efficient numerical characteri-
zation of mammographic images is their diversity inside the 
same class of images and close similarity between normal and 
abnormal tissues. To cope with this problem, we propose ap-
plication of different mechanisms of feature definition, charac-
terizing the image from different points of view. The methods 
applied will refer to characteristics of chaotic systems using 
fractal measures, texture description using the co-occurrence 
Haralick’s matrix and Kolmogorov-Smirnov statistics, self-sim-
ilarity of images, percolation theory, different types of statistical 
description as well as description based on wavelet represen-
tation. The following methods are used to generate numerical 
image descriptors:
● description based on Hilbert’s curve representation of the 

image,
● statistical description based on the coaxial rings image rep-

resentation and their characterization by applying the Kolm-
ogorov-Smirnov distance,

● maximum subregion principle,
● description based on percolation theory,
● texture description based on the gray-level co-occurrence 

matrix,
● application of self-similarity principle of the image in con-

nection with the box-counting dimension,
● segmentation-based fractal texture analysis,
● application of wavelet and wavelet packet decomposition.

3.1.1. Kolmogorov-Smirnov descriptors. Kolmogorov-Smirnov 
(KS) descriptors belong to the statistical parameters. They are 
defined on the basis of pixel intensity in the coaxial rings of the 
increasing diameters [14]. The successive regions of the image 
are split into a number of concentric rings around the central 
point. Individual regions contain approximately equal numbers 
of pixels in each ring. The central point travels around the whole 
image. In each of its positions, the KS statistics, describing the 
difference between the pixel populations in the rings placed at 
equal distances from each other, are estimated. The KS statistics 
check if the pixels belonging to two rings belong to the same 
population. KS distance is defined on the basis of their cumu-
lative distributions, F(xi) and F(xj):

 dKS = max jF(xi) ¡ F(xj)j (1)

over all x. This distance represents the measure of difference 
between the pixel statistics in both rings.

Four coaxial rings have been constructed for each mam-
mographic image. Every coaxial ring contains approximately 
the same number of pixels. The sets of KS distances corre-
sponding to the combinations of these four levels have been 
estimated. Level 1 represents KS distance of two successive 
rings, i.e. rings 1 and 2, 2 and 3, 3 and 4, etc. Level 2 describes 
the statistics of rings distant by 2, for example 1 and 3, 2 and 
4. The cumulative mean and median values of KS distance be-
tween the intensity of pixels belonging to two different rings, 
generated over the whole image, have both been estimated. 
The functions contrasting the mean and median values of KS 

a)

b)

c)

Fig. 1 ROI examples of mammograms representing normal (a), benign 
(b) and malignant (c) cases

This problem was solved by splitting the set of normal cases 
into 4 subsets, each confronted in classification with the same 
set of abnormal cases with applying the majority voting rule.

Figure 1 presents the examples of mammograms of normal 
(Fig. 1a) and abnormal cases: benign (Fig. 1b) and malignant 
(Fig. 1c) ones. We can observe the significant differences 
among the images representing the same class of data and close 
similarity of images representing different classes. This results 
in significant problems at the stage of class recognition.

3. Classical neural approach to mammogram 
recognition

Three independent steps are usually applied in the classical 
neural approach to image recognition: extraction of the numer-
ical image descriptors, selection of the best set of the class 
discriminative diagnostic features and the classification step 
responsible for the final recognition of classes.
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distance dKS with the level l are linearly approximated in the 
following forms:

 mean_dKS = α0mean + α1meanl + ε  (2)

 med_dKS = α0med + α1med l + ε  (3)

where α0 and α1 are the regression coefficients corresponding 
to equations (2) and (3). The following KS parameters were 
used for description of the image:
dKS12 (mean and median values of KS distances between rings 
1 and 2), 
● dKS13  (mean and median values of KS distances between 

rings 1 and 3)
● dKS14  (mean and median values of KS distances between 

rings 1 and 4)
● the dKS13/dKS12 ratio in mean and median representation
● the dKS14/dKS12 ratio in mean and median representation
● coefficient α0mean and α0med of linear approximations (2) 

and (3)
● slope coefficient α1mean and α1med of linear approximations 

(2) and (3)
This way, we have obtained 14 descriptors resulting from KS 
statistics.

3.1.2. Maximum subregion descriptors. The main idea be-
hind this method is to observe the process of disaggregating the 
image into smaller consistent subgroups by using thresholding 
at different values of bias [14]. The process of splitting aims to 
find the level of thresholding which provides the largest number 
of consistent subgroups. Many thresholding processes are per-
formed on the image to achieve the goal.

In the searching procedure we apply the idea of quantile 
representation of pixel’s intensity, i.e. 0.01, 0.02, …, 0.99. We 
search for quantile q and its corresponding intensity threshold 
value thq, which splits the image into the largest number of 
compact groups of pixels (the group is understood as the com-
pact area isolated completely from the other pixels). The value 
of quantile q and its normalized threshold nthq will form the 
diagnostic features. 

The normalized threshold is defined as nthq = (thq ¡ f1)
255

f99 ¡ f1
,

where f1 is the lowest intensity level of the pixels corresponding 
to the first quantile and f99 is the intensity level corresponding to 
99th quantile. The third descriptor takes the form of the relative 
area of the largest compact subgroup of pixels in the image 
after thresholding. For two types of sub-images after thresh-
olding (the sub-image of pixel intensity higher or lower than 
the assumed threshold value), the number of these features is 
duplicated (six descriptors in total).

3.1.3. Percolation descriptors. Percolation descriptors focus 
on differences in the complexity of the borders (smoothness, 
raggedness, etc.) of the structure formed by the pixels in the 
image being analyzed. The image is first binarized into multiple 
sub-images using different threshold values and then “fire” is 
set to each segment [14, 15]. In each iteration the pixels adja-

cent to the region under fire enlarge the fired area. The number 
of iterations needed to illustrate the whole image at different bi-
narization thresholds are determined. This process is performed 
on an image resized to the dimension of 1024£1024. In the first 
phase, the image is covered by horizontal and vertical lines, 
located at every 100 pixels. The fire, initiated in each node 
created by the crossing points of horizontal and vertical lines, 
spreads simultaneously in all directions (horizontal, vertical 
and diagonal one). The process is repeated simultaneously on 
all sub-images, which are obtained by means of binarization 
generated by different threshold values. The more jagged the 
image, the longer the fire duration. The threshold values are 
changed step by step in the intensity range [0–255] of the pixels, 
according to the decile steps from q = 1 up to q = 9. The fire 
duration (measured by the number of iterations) is registered for 
each threshold value. The percolation descriptor of the image 
is assumed to take the form of the weighted average measure 
qw of quantiles, defined as follows:

 qw =  i=1

9
∑qidi

i=1

9
∑di

 (4)

where qi is the quantile changing from 0.1 to 0.9 by means 
of 0.1 steps, and di is the number of iterations of the fire at 
the threshold value corresponding to the ith decile. The seg-
mentation is repeated many times on the sub-images formed 
in the thresholding process, assuming pixel intensity higher or 
lower than the assumed threshold value. This results in two 
numerical descriptors qw, corresponding to these two percola-
tion processes.

3.1.4. GLCM texture descriptors. GLCM texture description 
is a well-known approach to characterization of images. It is 
based on the co-occurrence matrix [16], which reflects sta-
tistical relationships between the intensity of the neighboring 
pixels in the image. In this particular application, our texture 
characterization is limited to four statistical descriptors of the 
co-occurrence matrix of the image. They include: local contrast 
of the image, which characterizes the intensity difference be-
tween a pixel and its neighbors over the whole image, correla-
tion existing between different pixel pairs, energy representing 
the occurrence of repeated pairs in the image, and the homo-
geneity coefficient, the latter characterizing the distribution of 
elements in GLCM matrix.

3.1.5. Statistical image descriptors. Statistical image descrip-
tors have been created directly on the basis of the pixel inten-
sity level. They include the mean, median, standard deviation 
(std), kurtosis, minimum, maximum, cumulants of the second, 
third and fourth orders, the ratio of the difference of 0.75 and 
0.25 quantiles related to the maximum of the median (or the 
value 0.001 if the maximum is less than 0.001) and the std to 
maximum ratio (or the value 0.001 if the maximum is less 
than 0.001). This way, the total number of these descriptors 
stands at 11.
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3.1.6. Self-similarity descriptors. This family of descriptors 
is the generalization of the box counting dimension applied to 
the gray scale image. The original ROI image, resized to the 
dimension of 1024£1024, is first covered by the grid of hori-
zontal and vertical lines, separating it into s£s small regions. 
In the next step, the similarity of each region to the whole 
image is estimated. This is done by using statistics of Kolm-
ogorov-Smirnov distance dKS [17]. The higher the value of this 
distance, the lower the similarity index of the analyzed subre-
gion to the whole image. After performing such calculations for 
all regions of the original image, a new image, n£n in size, is 
created. The ij th element of this image represents the similarity 
of this particular region to the whole image and is described by 
yij = 1 ¡ dKS. All similarity values are in the range of [0, 1].

Three different grids have been applied: 64£64, 128£128 
and 256£256. Each of them generates the corresponding 
self-similarity images described by matrices of appropriate 
size. The next step is similar to the classical box-counting di-
mension of fractals [18]. The sum of elements corresponding 
to the appropriate matrices is calculated. At the three sizes of 
the grid applied, we get three pairs of points, representing the 
scale s (here s = 64, 128, 256) and the sum N(s) of the values 
of elements in the corresponding matrix. Linear regression in 
logarithmic scale is estimated for these results:

 log2(N(s)) = alog2(s) + b + ε . (5)

The slope a and intercept point b represent two image descrip-
tors. The next 6 descriptors represent the mean value and stan-
dard deviation of the self-similarity matrices corresponding to 
the following sizes: 64£64, 128£128 and 256£256. The total 
number of these descriptors is 8.

3.1.7. Segmentation-based fractal texture descriptors. This 
method generates descriptors on the basis of the multi-thresh-
olding level Otsu algorithm and is referred to shortly as SFTD 
[20]. The image is binarized using different pairs of upper and 
lower threshold values, which are selected by using the so-
called two threshold binary decomposition technique. Then the 
recursive algorithm is applied to each image region until the 
desired number of threshold values n is obtained, where n is 
the user-defined parameter. As a result, the image is decom-
posed into a set of binary images. The more jagged the edges 
of the segmented regions, the higher their fractal dimension. 
Therefore, the box-counting dimension of boundaries is a good 
candidate for being the numerical descriptor characterizing the 
image. Two additional descriptors are defined in the form of the 
size of and mean gray-level of the sub-images. For n threshold 
values, the number of descriptors equals 3n. In this application, 
we have used 12 threshold values selected in this manner. As 
a result, 36 numerical image descriptors have been defined.

3.1.8. Hilbert’s descriptors. The Hilbert space-filling method, 
known otherwise as the Hilbert curve, is a continuous fractal 
space-filling curve providing mapping between the 1D and 2D 
space that preserves local regions of the image [19‒21] fairly 
effectively. The 1-D Hilbert curve of the image represents pixel 

intensity in the points specified by the nodes as shown in Fig. 2, 
where we have limited representation for the grid that is 8£8 
in size.

In this work the Hilbert representation of the mammogram, 
containing 1,024 elements, has been used. As a result of such 
representation, each analyzed image has been substituted by its 
vector form, 1,024 in length.

The family of descriptors is defined using the KS statistics 
estimated for two Hilbert sub-vectors traveling along the Hilbert 
curve with a step that equals one. Both vectors have the length 
of 256 elements and occupy neighboring positions in space. 
KS distance dKS for each position of these two vectors is esti-
mated. On the basis of these distances and the corresponding 
significance levels p, additional statistical descriptors are de-
fined. They include the mean, median, std values of dKS and 
p and also the corresponding ratio of std-to-mean calculated 
for both parameters. The set is supplemented by the values of 
0.25 and 0.75 quantiles along with their differences and the 
ratio of their difference related to the maximum of the median 
at the assumed significance level of 0.001 estimated for both 
parameters. 16 Hilbert descriptors have been defined this way.

3.1.9. Multiscale wavelet transform descriptors. The Hilbert 
curve of the image is transformed into wavelet decomposition 
[22] and represented by means of detailed coefficients on dif-
ferent levels and the residual signal on the last level of decompo-
sition. Each detailed and residual signal has been characterized by 
4 parameters: energy, variance, standard deviation and waveform 
length. In this particular application, db4 wavelet and 10 levels 
of decomposition have been used. The wavelet function type 
and number of decomposition levels have been selected after 
a series of introductory experiments, in which Fisher discriminant 
measure was used to assess the quality of resulting descriptors. 

Fig. 2 Example of a Hilbert curve (a) and the order of 64 pixels in 
a 1-D vector representation of the image
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characterizes the intensity difference between a pixel and 
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The slope a and intercept point b represent two descriptors 
of the image. The next 6 descriptors represent the mean 
value and standard deviation of the self-similarity 
matrices corresponding to the sizes: 64×64, 128×128 and 
256×256. The total number of these descriptors is 8. 
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which are selected by using the so called two threshold 
binary decomposition technique. Then, the recursive 
algorithm is applied to each image region until the 
desired number of threshold values n is obtained, where 
n is the user defined parameter. As a result the image is 
decomposed into a set of binary images. The more 
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their fractal dimension. Therefore, the box counting 
dimension of boundaries is a good candidate for being 
the numerical descriptor characterizing the image. Two 
additional descriptors are defined in the form of the size 
and mean gray level of the subimages. For n threshold 
values the number of descriptors is equal 3n. In this 
application we have applied 12 threshold values selected 
in this way. As a result 36 numerical descriptors of the 
image have been defined. 
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continuous fractal space-filling curve providing a 
mapping between 1D and 2D space that preserves fairly 
well local regions of the image [20,21]. The 1-D Hilbert 
curve of the image represents pixel intensity in the points 
specified by the nodes as shown in Fig. 2, where we have 
limited representation for the grid of the size 8×8. 

 
a)  

 
b) 
Fig. 2 The example of Hilbert curve (a) and the order of 64 pixels 

in 1-D vector representation of the image. 
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The procedure results in 11 waveforms, representing 10 detailed 
coefficients and one residual signal. Since each waveform is 
characterized by 4 parameters, we have obtained 44 descriptors.

3.1.10. Wavelet packet descriptors. The wavelet packet de-
composition was used to form the next set of descriptors [23]. 
It was applied also to the Hilbert vector form of the image. 
The db4 wavelet family and two levels of decomposition were 
used in the numerical experiments. As a result, 16 vectors, rep-
resenting the details on four levels, and residual vectors for 
the last, fourth level, have been obtained. Each vector is char-
acterized by the energy of its elements, i.e. Ek = ∑i(xi

(k))
2 for 

k = 1, 2, …, 16, where xi
(k) represents the value of the element 

in i-th position in kth detail or the residual vector. These values 
create the set of 16 wavelet descriptors.

3.2. Feature selection. The total number of descriptors defined 
in the previous sections equals 157. However, not all of them 
represent equally good features in class discrimination. There-
fore, selection is required in order to come up with a set of the 
best diagnostic features representing the highest class recog-
nition ability. The sequential forward and backward selection 
method [17, 24] has been applied. This approach was due to 
high effectiveness and relatively quick performance. As a result 
of its application, a specific set of optimum features is gener-
ated. This is in contrast with other methods, based on different 
informative or correlation measures.

Individual descriptors are added and removed from the cur-
rent feature set in the selection process. After including or re-
moving a feature, the newly created set of features is checked 
for class prediction accuracy. If the added or removed descriptor 
has increased the accuracy of the resulting set, the operation is 
accepted, otherwise it will be discarded [17]. In the process of 
checking the class discrimination ability of the current feature 
set, the support vector machine of the radial kernel was used as 
the classifier. For every candidate feature subset, the sequential 
feature selection was applied using 10-fold cross-validation, by 
repeatedly calling the function with different training subsets of 
learning data and the changing the validation subset of data. As 
a result of such a selection process, we get the logical vector 
indicating which features are finally chosen by means of the 
selection procedure.

Only 39 diagnostic features out of the 122 descriptors gen-
erated in the initial image description have been left after this 
selection process. The composition of the selected feature set 
included representatives of all types of descriptions. Among 
the selected features there were 9 representatives of multiscale 
wavelet transformation, 8 Hilbert descriptors, 5 wavelet packet 
descriptors, 4 SFTA descriptors, 3 percolation descriptors, 3 
statistical descriptors, 3 fractal descriptors, 2 Haralick texture 
descriptors, one maximum subregion and one KS descriptor.

3.3. Results of numerical experiments. The dataset was split 
into 10 subsets, each containing the same proportion of both 
classes, related to their populations in the database. Nine parts 
of samples are used in the feature selection and learning the 
SVM classifier and the last one is used for testing the learned 

system. The same experiments have been repeated ten times, 
exchanging the testing and learning subsets. To balance the 
number of classes in each experiment, the normal class was 
split into four parts, each associated with the same abnormal 
cases and the results were averaged. The training and testing 
sets have been chosen randomly from the database.

Different classifiers, including SVM, multilayer perceptron, 
decision tree and random forest, have been tried in the introduc-
tory experiments. However, best results have been obtained for 
SVM of the radial Gaussian kernel: K(x, xi) = exp(–γkx ¡ xik2)  
of γ = 0.1 at application of the regularization constant C = 1000, 
and only these results will be presented here. These parameters 
have been selected after introductory experiments performed on 
a small set of data using a set of predefined values for C and γ. 
Parameters leading to the best results of recognition have been 
selected. Classification experiments were done for the whole 
set of features and for the reduced set of features created by 
the stepwise fit.

Table 1 summarizes the statistical classification results for 
the testing data achieved by the SVM for all descriptors and 
after their selection. The first number represents the mean value 
and the term after the ± sign stands for standard deviation. Both 
were obtained in repeated 10-fold cross validation experiments. 
We have applied this procedure since it is the approach regarded 
as the most objective one in estimation of the quality of the 
model applied. This id due to the fact that all data take part in 
learning and testing stages simultaneously.

Table 1 
Results of mammogram recognition using the classical  

neural approach

All features Selected features

Accuracy 78.73% ±1.96 81.01% ±2.36

Sensitivity 79.73% ±1.53 82.48% ±1.97

Specificity 77.73% ±1.79 79.63% ±2.02

4. Deep learning application to  
mammogram recognition

Deep learning is a novel research technique, integrating the 
process of self-organizing feature selection and final classifi-
cation of the images [25, 26]. In this research, we have applied 
the convolutional neural network (CNN) as a workhorse. An 
important drawback of this approach is the limited number of 
images representing the abnormal cases. To increase the in-
formation on class differences among the mammograms being 
analyzed, additional preprocessing of the images has been pro-
posed. This was done by applying nonnegative matrix factoriza-
tion (NMF) and statistical self-similarity of the images. Thanks 
to this additional view of the mammograms, diagnostic infor-
mation contained in the original database has been enhanced.

4.1. Image representation using NMF. Non-negative matrix 
factorization is a decomposition technique representing the 
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given matrix P by two other matrices W and H, both composed 
of non-negative elements [27, 28], i.e. P = WH. The columns of 
W represent the basis vectors and the columns of H stand for the 
encodings associated with them. Let us assume that the matrix P 
is composed of the column vectors of the length N while M is the 
number of such vectors. Matrices W and H are of the N£r and 
r£M size, respectively, where the value of r is the factorization 
rank adjusted by the user (usually (N + M )r < NM ).

The NMF will be performed here to enrich the representa-
tion of the mammographic images and to enhance the differ-
ence between mammograms representing normal and abnormal 
cases. All analyzed mammographic images are represented in 
the vector Hilbert form. They are grouped in the matrix P.

The NMF operation will be performed on the set of mam-
mograms representing only the normal cases, since these im-
ages are more similar to each other. Only half of the vectors 
belonging to the normal class has been used in this step of pro-
cessing. According to the NMF procedure, matrix P is decom-
posed into W and H of non-negative elements. Factorization 
means that ith vector pi (the ith column of P) can be expressed 
as the weighted sum of basis vectors, and it might be presented 
in a Matlab notation [17] in the following manner:

 pi = 
j =1

r

∑W(:, j)H( j, i). (6)

The whole set of original mammographic images representing 
normal and abnormal cases is converted to NMF factors and then 
reconstructed using only the limited number r of the basis vec-
tors. In these investigations, we have applied only 10 basis vec-
tors in reconstruction (r = 10). Since NMF decomposition was 
performed only on the normal cases, such reconstruction will 
represent images of this class more effectively. The abnormal 
cases reconstructed by means of basis vectors obtained as part of 
NMF decomposition of only the normal cases will show larger 
discrepancy with the original ones. This way, the differences be-
tween normal and abnormal cases have been increased. Thanks 
to it, the recognition of classes will become easier.

4.2. Statistical self-similarity for image representation. The 
next type of transformation applied to the original images is 
effected using the so-called statistical self-similarity. These 
images are defined on the basis of statistics of pixel intensity 
distribution in regions which are small in comparison with the 
whole image. In the first stage of processing, the image is re-
sized to the dimension of 1024£1024 pixels and then split into 
small 5£5 compact overlapping regions. This way, the original 
mammographic image is represented by 256£256 small sub-im-
ages. In the next step, the similarity of these sub-images to the 
whole image is measured using the Kolmogorov-Smirnov dKS 
distance [17]. As a result, the small subregions are represented 
by single values equal to 1 ¡ dKS, with the range between 0 and 
1. The lower the value of KS, the more similar the sub-image 
to the whole image. In the final stage, the set of 256£256 KS 
images is scaled back to the original dimension of 128£128. 
Such transformation of images increases the differences be-
tween representatives of various classes.

4.3. Convolutional neural network in mammogram recog-
nition. The CNN model is a very complex nonlinear structure, 
exploiting high-level abstraction by using multiple hidden 
layers [25, 26]. These layers are able to extract and identify 
different levels of detail in images. In the higher layers, more 
abstract concepts are learned on the basis of previous patterns 
extracted by the lower layers. The layer is composed of a group 
of neurons, performing the role of locally connected filters. 
Each neuron receives input signals from a set of compact units 
located in a small neighborhood of the previous layer. The 
neurons extract the elementary features, such as blobs, edges, 
crossings of edges, end points, corners, etc. The local reception 
field of each neuron is moved along all pixels of the image with 
the step (stride) defined by the user.

Eventually, the features combined by the subsequent layers 
create a fully connected layer, representing the input signals 
sent to the output classification layer. The output signals of 
this layer are generated by the softmax units and form the final 
class recognition. The softmax layer calculates the output value 
based on multinomial logistic regression [26], representing the 
probability of membership of the actual input vector in the rel-
evant class. The number of units in the softmax layer is equal 
to the number of classes. The class of the highest probability 
is taken as the final winner. A detailed description of CNN can 
be found in [25].

In this paper, the CNN containing three convolution layers 
and two fully connected layers has been found most successful 
[12]. The details of the layers that followed are presented below.
● First convolution layer structure: 32 filters of dimension 

5£5 with zero padding 2£2 and stride 1£1; Max pooling 
of the size = 3£3, zero padding = 0£0, stride = 2£2; rec-
tified linear unit layer.

● Second convolution layer structure: 32 filters of dimen-
sion 5£5, zero padding 2£2, stride 1£1; Average pooling 
of the pooling size = 3£3 with zero padding = 0£0, 
stride = 2£2; rectified linear unit layer.

● Third convolution layer structure: 64 filters of dimension 
5£5 with zero padding 2£2 and stride 1£1; Average pooling 
of size = 3£3 with zero padding = 0£0, stride = 2£2; rec-
tified linear unit layer.

● First fully connected layer: 64 neurons with rectified linear 
units.

● The second fully connected layer contains two neurons (de-
pendent on the number of recognized classes) with softmax. 
It performs the role of final classification.

The general organization of the CNN system for recognition of 
classes of mammograms is presented in Fig. 3 [12].

Fig. 3. Deep learning system used in mammogram recognition

Mammographic 
image NMF image CNN

Self-similarity 
image

Recognized 
class
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The CNN is supplied by three images representing the mammo-
grams being analyzed: the original mammographic image, the 
image reconstructed on the basis of NMF and the transformed 
image reconstructed on the basis of the self-similarity principle. 
Thanks to these additional transformations of the mammo-
grams, more information regarding the structure of the analyzed 
images is delivered to CNN. At the same time, the number of 
input data is also triplicated. The information enhanced this way 
significantly increases the probability of correct classification.

4.4. Results of numerical experiments. The numerical exper-
iments with mammogram recognition using CNN have been 
performed on the same samples of mammograms in DDSM 
database as those used in the previous section. The aim was to 
differentiate between normal cases (class 1) and the abnormal 
ones (benign and malignant together), representing class 2. The 
experiments have been performed using 10-fold cross validation 
organized in the same fashion as in the classical approach. Only 
half of the normal cases in the learning sets have been used in 
NMF decomposition to get the basis vectors of W used in the 
reconstruction of all mammographic images.

The procedure of the final class recognition was performed 
in the manner described below. The continuous output of the 
classifier in the learning mode (before binarization) was sub-
ject to dynamic thresholding at different values of threshold. 
The threshold generating the highest quality measure for the 
learning data was fixed and applied in testing the remaining 
validation data (10% of data in each run of the cross validation 
procedure). The quality measure which was taken into account 
in this step included the value of AUC of the receiver operating 
characteristic. The maximized AUC measure is a good compro-
mise between the sensitivity (ability to discover the minority 
class) and specificity (ability to discover the majority class) of 
the recognition system.

Table 2 presents the detailed results of recognition of mam-
mograms obtained in the testing mode of the 10-fold cross val-
idation [12]. The results of recognition of normal cases from 
abnormal ones are presented in the form of sensitivity, spec-
ificity and average accuracy. The sensitivity of recognizing 
the abnormal cases from normal ones equaled 82.82% and 
specificity stood at 86.59%. The obtained accuracy is found 
somewhere in the middle between the of them (85.83%). The 
area obtained under the ROC curve was AUC = 0.919. These 
results belong to the best ones reported for such a large DDSM 
database to date.

Table 2 
Results of numerical experiments of mammogram  

recognition using CNN

Sensitivity Specificity Accuracy

82.82% ±0.95 86.59% ±1.12 85.83% ±1.08

Comparison with the classical results presented in Table 1 
shows evident advantage of the deep learning approach. All 
quality measures have increased significantly. To assess the 
importance of including NMF and self-similarity images in 

the recognition process, additional experiments have been 
performed using only the original mammogram images. The 
obtained AUC value for recognition of abnormal from normal 
cases was reduced to AUC = 0.88. According to the ranskum 
test, at a 5% significance level this difference is statistically 
significant.

5. Comparative study

The problem of mammogram recognition has been studied in 
many papers. However, most of them used either different da-
tabases or very limited images selected from DDSM. Different 
quality measures have been also applied in presentation of the 
results. Therefore it is difficult to present a comparison of all 
these works in an objective manner. We will thus limit our 
comparison here to the papers which have used the same DDSM 
database that we did.

Paper [7] has considered a very small set of 410 mam-
mograms from the DDSM database and the overall accuracy 
achieved by authors was 87% with 88.6% sensitivity and 78.6% 
specificity. Due to the small number of samples, these results 
are not fully credible. The quality measure of the solution in 
the form of AUC value was presented in papers [8] and [28]. 
The AUC value of 0.789 for 600 cases was reported in [8] and 
of 0.871 for 1,000 screening mammograms in [29].

In [30], the deep CNN approach to recognition of normal 
from abnormal mammograms from a very large database 
from the Netherlands, containing over 44,000 mammographic 
views, has been presented. The results are represented by the 
ROC curve. The best AUC with the augmentation (context, 
location, patient information) and manual feature support 
was AUC = 0.941. The best result without augmentation was 
AUC = 0.929.

In [31], the results for DDSM declaring 85% of accuracy 
and AUC = 0.91 have been presented. They were obtained 
using Google Le Net system and an ensemble of 100 parallel 
networks.

The results for the DDSM base presented in [32] have cov-
ered 1,057 malignant and 1,397 benign cases. They all con-
centrated on ROC and declared the best value of AUC = 0.82.

In [33], the DDSM for more than 6,000 mammographic 
images and ZMDS (1,739 mammograms) have been considered. 
The best results for images declared AUC = 0.922, sensitivity 
of 0.901 and specificity of 0.783.

Our best average accuracy in recognizing abnormal cases 
(malignant plus benign versus healthy) for whole images from 
the DDSM database was 85.83%, with sensitivity of 82.82%, 
specificity of 86.59% and AUC = 0.919. The only recent 
results presented also for the whole DDSM database (2,003 
abnormal and 9,215 normal mammograms) are given in [11]. 
The accuracy in abnormality detection (malignant plus benign 
versus healthy) reported in this paper by using the curvelets 
for the same DDSM database was in the range from 81.3% to 
86.4%, depending on the applied feature set. However, sen-
sitivity, specificity and AUC were not given. It is difficult to 
assess the quality of their solution on the basis of only accuracy 
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value, since it is very easy for this unbalanced data set (2,003 
abnormal and 9,215 normal mammograms) to obtain high ac-
curacy at the cost of sensitivity. In our additional experiments, 
by applying accuracy as the quality measure of the ensemble, 
we have obtained average accuracy equal to 89.4%. However, 
this was done at the cost of sensitivity, which then dropped to 
only 69.5%.

6. Conclusions

The paper has presented a comparative analysis of the classical 
and deep learning approach to differentiation between abnormal 
and normal cases on the basis of mammogram images. In the 
classical approach, an extended set of numerical descriptors has 
been proposed. They were defined on the basis of different prin-
ciples of image characterization and included representations of 
image by using the Hilbert form and corresponding descriptors, 
i.e. Kolmogorov-Smirnov statistics, the maximum subregion 
principle, percolation theory, fractal texture descriptors as well 
as application of wavelet and wavelet packets. Thanks to the 
application of so many methods, different points of view were 
considered for the image in pattern recognition. However, in 
spite of such rich descriptive representation of the images and 
application of the efficient SVM classifier, the results were in-
ferior in comparison to the application of the deep learning 
approach, enhanced by non-negative matrix factorization and 
self-similarity of the images.

The most important advantage of deep learning for mam-
mogram recognition is the relatively simple way of preparation 
of input data for the convolutional neural network. The diag-
nostic features are self-defined in an unsupervised approach to 
the process of CNN learning. However, to get good results of 
recognition, a large number of learning samples should be used. 
The NMF and self-similarity transformations have not only en-
hanced the information of the image details, but also increased 
the population of samples involved in learning. Better results 
of recognition might be expected after further increasing the 
population of the original mammogram images.

Additional investigations are needed to increase accuracy to 
a level acceptable for everyday use in medical practice. Future 
investigations will explore both approaches. The classical one 
will be directed towards applying more classifiers arranged in 
an ensemble to increase the diversity of principles on the basis 
of which the final decision is made. In the case of deep learning, 
new perspectives open now with transfer learning [26]. More 
specialized ways of learning hidden neurons in CNN will be 
studied. And in both cases the accuracy of image recognition 
might certainly be increased by applying a larger database of 
abnormal cases.
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