
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 56, No. 1, 2008

Heuristic methods to test frequencies optimization for analogue

circuit diagnosis

P. JANTOS∗, D. GRZECHCA, T. GOLONEK, and J. RUTKOWSKI

Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology,

16 Akademicka St., 44-100 Gliwice, Poland

Abstract. This paper presents methods for optimal test frequencies search with the use of heuristic approaches. It includes a short summary

of the analogue circuits fault diagnosis and brief introductions to the soft computing techniques like evolutionary computation and the fuzzy

set theory. The reduction of both, test time and signal complexity are the main goals of developed methods. At the before test stage, a

heuristic engine is applied for the principal frequency search. The methods produce a frequency set which can be used in the SBT diagnosis

procedure. At the after test stage, only a few frequencies can be assembled instead of full amplitude response characteristic. There are

ambiguity sets provided to avoid a fault tolerance masking effect.
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1. Introduction

An ongoing miniaturization and an increasing complexity of

analog electronic circuits (AEC) or integrated circuit (IC)

cause a necessity of developing reliable and efficient diag-

nostic and testing methods. There are well known testing pro-

cedures of digital circuits and devices. However, methods of

testing analog and mixed circuits have not been developed,

yet. There are several problems to solve in the aim of devel-

oping standardized AEC diagnosis methods. The most impor-

tant of them are a variety of analog signals and elements, a

larger set of possible faults in comparison to digital circuits,

a limited accessibility to the measurement points, and a fault

tolerance masking effect [1].

A material of fault diagnosis is very complex. Generally,

there are three aims of diagnosis: a fault detection, a fault

localization, and a fault identification. A fault detection is

the most basic diagnosis test. The purpose is to determine

whether the circuit under test (CUT) is damaged or healthy,

the “GO/NO GO” test. The other question is to find a source of

a fault. Answer to this problem is obtained with a fault isola-

tion procedure. Once the fault is localized it may be important

to identify the fault (determining a type and a value of the

fault). Taking under consideration used diagnosing tools, three

groups of diagnosis procedures can be distinguished: simula-

tion before test (SBT) methods, simulation after test (SAT)

methods, and a built-in self-test (BIST). The SBT methods

are based on simulations of a certain and previously chosen

set of a CUT faults before the explicit test phase. It allows

for shortening the diagnosis total time. The goal of the SAT

methods is, in most cases, an identification of faults. These

methods are efficient in soft faults identification. A disad-

vantage of these routines is high computing cost and long

analyses’ time. The BIST requires designing a whole circuit

in the way that allows for independent diagnosis of chosen

test blocks (often test blocks are chosen in the way they are

equal to functional blocks).

An integrated circuit (IC) testing may be performed in a

time domain, a frequency domain (AC testing) and a direct

currents domain (DC testing). The DC testing makes it pos-

sible to obtain results with high reliability level. The AC or

time domain testing, though, allows for gathering more infor-

mation about the CUT state than DC testing without a need

of measurements in more than one test point. The present-

ed procedures of finding optimal frequency set for purpose

of AEC testing are a dictionary (signature) method based on

ambiguity sets (AS) concept. The proposed methods may be

implemented as a preparation for signature dictionary con-

structing in SBT routines. A very important asset of methods

is a self-adapting size of AS [2–4].

In the Section 2 diagnostic procedure and idea of AS is

explained. The Sections 3, 4 and 5 contain descriptions of the

three proposed frequency optimization approaches based on

heuristic computations. Next, in Section 6 exemplary results

of test frequencies searching are presented and in Section 7

some final conclusions are placed.

2. Diagnostic procedure

For the practical IC design tolerances, limited accuracy of test

measurements and simulation models inaccuracies have to be

considered. That is why the IC measurements (e.g. RMS volt-

age, RMS current) can not be predicted precisely, and only

the boundary values for the measurements can be designated.

Predicted ranges of the test measurements define AS [3–4].

Figure 1 illustrates an example of a RMS voltage decom-
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position for a CUT states from S0 up to S5, test node N1

(e.g. output node of a CUT) and test frequencies f1 and f2.

The sensitivity of the measure for tolerance dispersions of

a circuit parameters (e.g. resistances, capacitances) depends

on frequency, so the minimal widths ∆N1(fk) of AS should

be calculated individually (k = 1, ..,K) for each sinusoidal

stimulus. To make the method robust to the other practical

inaccuracies, the AS sizes should be maximally extended.

Fig. 1. Exemplary RMS voltage decomposition to for following CUT states

(S0, ..., S5)

2.1. Before test stage. At this stage a new diagnostic system

is created. The system should allow for obtaining maximum

information about the CUT with the use of a minimal set of

frequencies. It has been assumed that a CUT has N observed

test nodes:

N = {N1, N2, .., NN} . (1)

Amplitude responses have been calculated at all accessi-

ble nodes N for M test frequencies. So, the set of test points

(test measurements) is represented by a vector M:

M={M1,M2, . . . ,MN ,MN+1, . . . M2N , . . . ,MN ·M} . (2)

The CUT states set is given by a vector:

S = {S0, S1, .., SL} , (3)

where S0 represents a healthy circuit state. The following

states (S1, . . . , SL) represent hard faults. L is a number of

hard faults taken into account. The amplitude characteristics

have been measured in the chosen test nodes N. The most

common strategy is measuring a characteristic on the CUT

output (N = 1). Taking fmin and fmax as:

fmin = 10X ∧ fmax = 10Y ∧ X,Y ∈ C ∧ X < Y. (4)

Total points number of amplitude characteristics:

M = 1000 · log

(

fmax

fmin

)

. (5)

Hence, the total frequencies set may be given with a vec-

tor:

Fall =
{

fmin, .., fmax, fi+1 = 10
1

1000 fi

}

∧ ‖Fall‖ = M.

(6)

All presented methods produce a frequency vector:

F = {f1, f2, .., fK} ∧ F ∈ Fall (7)

that a fault separability and detectability remains at the same

levels as with the use of full set Fall (i.e. minimization set

F power with simultaneous detection and localization levels

maximization).

To determine an influence of elements tolerance on a CUT

amplitude characteristic a number of Monte Carlo analyses

(MCa) has been computed. Tolerance value of resistive el-

ements is tolR and reactive elements (capacitors and coils)

tolX . For the circuit considered in Section 6 tolR = 2% and

tolX = 5%. A result of the MCa simulations are upper and

lower envelopes of amplitude responses of the CUT with re-

spect to parameters’ values changes. This leads to ambiguity

region calculation. A difference between envelopes determines

an ambiguity set for each of M frequencies:

∆M = {∆M1,∆M2, ..,∆MM} . (8)

Two states are separable if the distance (amplitude re-

sponse) between them is greater than ∆Mk for frequency fk.

Frequencies selection routines are described in sections III,

IV and V.

2.2. Test stage. During the test stage each measure from the

CUT is classified to the adequate AS that allows to determine

the fault signature. For the example voltage decomposition

from Fig.1, all faults are separated from fault-free circuit (test

go/no go), CUT is intact (state S0) for:

M1 = 2V ± 410mV ∧ M2 = 8V ± 220mV.

However, AS for states S4 and S5 overlaps for frequencies

f1 and f2, so additional measurements are necessary for their

isolation (fault location and identification are limited).

3. Gene Expression Programming System Based

Approach

The Gene Expression Programming (GEP) is an evolutionary

algorithm (EA). GEP integrates features of genetic algorithm

(GA) and genetic programming (GP). In following parts of

this chapter a brief introduction to GEP has been presented,

implementation issues and a fitness function described [5–6].

3.1. Individuals coding. Gene Expression Programming in-

dividuals have been built with chromosomes (genes strings)

of fixed length. The chromosomes have been decoded to phe-

notypes of tree structure, i.e. expression trees (ET). There

is no requirement of using all genes of chromosomes in the

process of expressing individuals. Therefore, chromosomes of

the same length code ET of different structure and complexity

level. There is a multiploid implementation of individuals pos-

sible. In such a case, construction of a proper joining function

is required.

Genes that chromosomes are coded with, may be divided

into two groups functions set H, and a terminals set T.

30 Bull. Pol. Ac.: Tech. 56(1) 2008



Heuristic methods to test frequencies optimization for analogue circuit diagnosis

The functions set may contain any functions possible to

describe over the elements that belong to the terminals set. It

may be arithmetic operations, set operations, logic operations,

etc. Both, variables and constants may be elements of T.

There has been a set of frequencies coded with each in-

dividual of a population in the presented method. It has been

decided that set H will contain only one element (parameter),

that is a sum of sets, which allows for adding a new frequency

to the set F:

H = {′∪′} . (9)

where ∪ is a sum of two sets. Terminals set has been de-

scribed as a sum of set Fall and an “empty” element which

did not add any frequency to F.

T = Fall ∪ {′∅′} . (10)

where ∅ is an empty terminal that does not code any frequen-

cy.

There is a head and tail of a chromosome distinguishable

in the body of chromosomes. There are no limits that would

determine the length of the head. It is important, though, that

the head is started with an element of the set H. The rest of

the head elements may belong to either H or T sets. The tail

of chromosome may be built only with elements of the set of

terminals. Their length is given by equation:

‖tail‖ = ‖head‖ · (J − 1) + 1 (11)

where: ||tail|| is a length of the tail; ||head|| is a length of

the head; J – is the maximum number of arguments of im-

plemented functions from H set.

Such dependency is required to ensure the consistency of

an ET (i.e. all branches of ET ending with a T set element).

In the presented works the J = 2 (a sum of two sets). In

the Fig. 2 there is an exemplary GEP chromosome presented.

Fig. 2. An exemplary GEP chromosome

Fig. 3. A phenotype – Expression Tree – of the exemplary chromosome from

the Fig. 2

Encoded expression tree in Fig. 3 presents the chromo-

somes from the Fig. 2 The set F described with the chromo-

some has 3 elements (frequencies): {11, 34, and 56} [7].

In our research all individuals have been built with 4 chro-

mosomes. The length of the chromosomes head has been fixed

to 7. Therefore, one individual allows for coding up to 32 dif-

ferent frequencies. The population size equals 40 individuals.

3.2. Genetic operations. There is no significant difference

between different selection methods. It is strongly advised to

use a simple elitism in any GEP implementation [5, 6]. The

elitism means copying the best (or few best) individual to

the offspring population without modifying them. There are

a few genetic operators used in GEP a mutation, crossovers,

transpositions.

There is a uniform mutation implemented usually. It is

important, though, to keep functions set element on the first

chromosome position. Types of mutation implemented in our

approach:

– function to frequency (and vice versa);

– function to empty terminal (as above);

– frequency to empty terminal (as above).

A crossover in GEP is not different from a crossover op-

erator in a regular genetic algorithm. The crossover does not

add new genetic material to the gene pool of the population.

There are implemented 3 different types of the crossover a

single point crossover, a two point crossover, and a chromo-

somes crossover.

A transposition operator causes copying a part of a chro-

mosome of the certain length to the other position of the same

chromosome. The transposition operators with mutation add

a new genetic quality to the population’s genetic pool. Trans-

positions that are used in GEP are an insertion sequence (IS)

transposition, a root insertion sequence (RIS) transposition,

and a chromosomes transposition.

It is important to stress a great ease of implementation of

above operators [5–6].

3.3. Fitness function. A fitness function (FF) is the most

important part of any EA application. As it was previous-

ly mentioned a FF choice determines a proper AE work. In

the presented approach the task for FF was to find such a F

set that the healthy circuit is separated (obligatory condition),

find such a F set that the most hard faults are localized and

a distance between each two of them is maximized, and find

an F of the least possible power (additional condition) [7].

To cover above points the FF has been designed:

Q = 20 (U + 1) + 10P. (12)

where: U – a number of correctly localized CUT states; P –

a penalty modifier.

P = A
(

1 − e−∆min

)

(13)

∆min = min
i

(∆Mi ∧ fi ∈ F) (14)
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∆avg =

M
∑

i=1

(∆Mi ∧ fi ∈ F)

‖F‖
(15)

A =

{

ZifS0localized

−0.5ifS0notlocalized
(16)

Z =







































1.00 if K ≤ 2

0.70 if K = 3

0.65 if K = 4

0.50 if 5 ≤ K ≤ 7

0.30 if 8 ≤ K ≤ 12

0.10 if 13 ≤ K

(17)

where K is a number of used frequencies.

The A and Z values have been chosen heuristically based

on the number of frequencies.

Fitness function given by Eq. (12) allows for fulfilling all

of the set conditions. If the fault-free CUT is localized prop-

erly the number of F is decreasing and the distances between

localized faults are maximized. If the intact CUT is not local-

ized the number of F is increasing and the distances between

localized faults minimized. Therefore, the more frequencies is

used, the more likely to be separated state S0 correctly [18].

4. Genetic Algorithm with Fuzzy Fitness

Function System Based Approach

The GA was proposed by Holland in 1975 and in classical

version it codes phenotypes binary. The GA imitates the nat-

ural processes of selection, recombination and succession in

the population of individuals. It techniques is very useful to

solve difficult problems of optimization in many fields and

plenty of genotype structures has been used in modified GA

systems [7–10].

Contrary to the classical set theory, for fuzzy sets (FS) an

element may belong to the set with a partial value [11–13].

The fuzzy logic is modeled on the human reasoning that is

not precise in many cases. This property of FS is very suitable

to solve many problems for which classical discrete sets can

not be used.

The GA has great optimization ability. However, the goal

function is the weakest point of the optimization process. A

great advantage of the weighted goal function is its monotonic

character. On the other hand, the genetic algorithm simulates

a real population behaviour. Moreover, the evaluation of an

individual in the real world is much more complex than lin-

ear. Therefore, the hybrid system based on fuzzy and weighted

fitness function has been proposed.

4.1. Evolutionary process diagram. The process diagram

for evolutionary system can be sorted into two blocks and is

presented in Fig. 4 The primary population for fuzzy initial-

ization stage is created randomly with uniform probability and

consists of I genotypes:

G
n = {E0, ..,EI−1} . (18)

Next, fuzzy fitness function evaluates the quality of all

phenotypes and its fitness value is compared to the best fit-

ness found recently. If better solution has been found, the

stagnations counter variable t is cleared and the new best

genotype is stored (cycle with the best fitness progress, cy-

cle with success). The variable t is incremented in case of

fitness progress absence. In the next step genetic operations:

reproduction, crossover, mutation and reduction are executed

for parents randomly paired from a mating pool [7–8]. Dur-

ing succession a new population replaces the last one and the

generation number n is incremented. Next, the fuzzy fitness is

used to evaluate the new population and the cycle is repeated

until maximum allowed values Tmx or Nmx are reached.

After the fuzzy optimization process is finished, random

individuals from current population are replaced by all pro-

gressive ones (found and stored in all previous and successful

cycles) and initial population Gn for the weighted system is

created. Next, the evolution is continued for the weighted fit-

ness function until Nmx is reached. The best phenotype found

during evolution represents the solution.

Fig. 4. The evolutionary process diagram
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4.2. Phenotype coding. Each genotype E is a vector which

contains K genes (integer numbers) and control value 0 at

the end. Fig. 4 illustrates its structure. Control char is always

equal 0 and designates the place of string termination. On the

contrary to the classical version of GA, in the proposed algo-

rithm the lengths of genotypes are adjusted during evolution.

The number of genes is proportional to test frequencies set

quantity and it can reach values from 2 (genes ∆
���

ex and f
���

1)

up to Kmx. The allowed integer range for all genes is from 1

up to M , where M is the number of frequency steps of AC

analyses assumed on the initial stage (see and compare 4, 5).

The integer value of genes f
���

1 maps the real value of frequen-

cy fk for adequate step of AC analysis (three dots above a

variable denote a discrete value of the variable).

Fig. 5. Genotype structure

In the proposed system, gene ∆
���

ex is maximized and codes

the value of relative extension coefficient ∆ex for AS that can

be calculated from:

∆ex =
∆
���

ex

1000
(19)

4.3. Genetic operations. For every cycle of evolution, sys-

tem executes reproduction by means of rang method [7–8].

The rang is a integer number that designates the place of

genotype in a quality ordered population. An individual with

a rang r from population with the worst rang rlast is included

to the mating pool with probability Pre:

Pre = 0.2 + 0.8 ·

(

1 −
r

rlast

)

(20)

During crossover, recombination for randomly selected

genotypes is realized. Two kinds of crossover have been ap-

plied: discrete and averaging. The first one is fulfilled with

probability Pcr1 and is illustrated in the Fig. 6.

Fig. 6. The idea of discrete crossover: a) before, b) after recombination

At first, circles created by parent genotypes strings are

randomly divided into four arcs. Then, substrings with exten-

sion coefficient ∆
���

ex genes are exchanged. Thanks to this kind

of recombination, the probability of exchanging for each gene

is the same and the size of genotype is regulated. During the

second method of crossover that is executed with probability

Pcr2, randomly selected parent genes are averaged:

∨
i=1,...,Kmin

E
(i)
offspring =

1

2

(

E
(i)
1parent + E

(i)
2parent

)

where Kmin = inf (‖E1parent‖ , ‖E2parent‖)
(21)

This recombination allows adjusting values of crossed

genes. Next, genotypes can be modified during mutation pro-

cess. The first kind of mutation is fulfilled for each gene with

probability Pmu1 and it replaces genes with the random ones.

The second modification replaces full genotype string with

the new one randomly generated with probability Pmu2. The

last genetic modification of genotypes used in the system is

called reduction and is executed with probability Prd. During

this process, randomly selected genes are deleted from the

string. This operation impacts to the size of genotypes, so it

reduces the power of test excitation set.

The new population is collected during succession from

the offspring strings created after genetic modifications to in-

termediate mating pool. The elitary method [7–8] of succes-

sion has been applied, the best found genotype replaces the

worst one.

4.4. Fuzzy fitness function. The fuzzy system is initially

used to phenotypes evaluation. According to fuzzy set theory

[11–12], the rule expert system has been designed. To evaluate

fitness of the chromosome (an individual) IF – THEN rules

have to be introduced. Typical Mamdani’s IF-THEN rules [15]

can be composed as follows:

if x1 is Am
1 and x2 is Am

2 ...

then ymisBm,m = 1, 2, ...,M
(22)

x1, x2 – input linguistic variables (LV); Am
1 , Am

2 – fuzzy sets

of input LV; ym – output LV; Bm – output fuzzy set.

The general structure of fuzzy rule base system is present-

ed in the Fig. 7.

Fig. 7. The structure of fuzzy rule system

Each rule takes into account some premises and then pro-

duces a conclusion.

The fuzzyfication process considers the following prop-

erties of a phenotype: number U of states isolated in 100%
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(maximized value), number of frequencies K (minimized val-

ue), and extension coefficient ∆
���

ex (maximized value).

Fig. 8. The membership functions: a) of an input LV,b) of output LV

Based on the above data, LV have been chosen: detection

(separation of S0 state), location (other states separation), fre-

quencies and extension. These LV are described by fuzzy sets:

high, medium, low and determine z, π and s membership

functions [12] illustrated in the Fig. 8a.

z (x; az, cz) =



































1 for x ≤ az

1 − 2

(

x − az

cz − az

)2

for az ≤ x ≤ bz

2

(

x − cz

cz − az

)2

for bz ≤ x ≤ cz

0 for x ≥ cz

s (x; as, cs) =



































1 for x ≤ as

2

(

x − as

cs − as

)2

for as ≤ x ≤ bs

1 − 2

(

x − cs

cs − as

)2

for bs ≤ x ≤ cs

0 for x ≥ cs

π(x; aπ, cπ, eπ) =

{

s(x; aπ, bπ, cπ) for x ≤ cπ

1 − s(x; cπ, dπ, eπ) for x ≥ cπ

(23)

where: bz/s =
az/s + cz/s

2
, bπ =

aπ + cπ

2
and dπ =

cπ + eπ

2
.

Universe of Discourse (UD) depends on linguistic vari-

able (characteristic points of fuzzy sets limits for the example

problem from section VI in brackets):

1. Detection (UD: 0 – 33):

a. High s(x; 29, 33)

b. Medium π(x; 12, 16, 32)

c. Low z(x; 1, 15)

2. Location (UD: 0 – 33):

a. High s(x; 12, 32)

b. Medium π(x; 6, 12, 16)

c. Low z(x; 18)

3. Frequencies (UD: 1 – 25):

a. High s(x; 1, 8)

b. Medium π(x; 7, 12, 14)

c. Low z(x; 10, 25)

4. Extension (UD: 1 – 4000):

a. High s(x; 900, 1200)

b. Medium π(x; 400, 700, 1000

c. Low z(x; 1, 900)

There is only one output LV – fitness function and 5 fuzzy

sets, illustrated in the Fig. 8b:

1. very low (reverse gamma) Γ−1 (x; 0.1, 0.25)

2. low (triangle) t(x; 0.1, 0.25, 0.4);

3. medium (trapezoidal) tr(x; 0.2, 0.45, 0.55, 0.7);

4. high (triangle) t(x; 0.6, 0.75, 0.85);

5. very high (gamma) Γ(x; 0.75, 1).
The proposed approach uses Mamdani’s inference engine

and COG (Center Of Gravity) method [13, 15] to obtain final

output result Q. The centre of gravity is the average location

of the weight of an object. An example of COG method is

presented in the Fig. 9.

Fig. 9. Defuzzyfication method

The fuzzy inference system contains a number of rules and

all of them are printed in the Tab. I. One can notice that not

all possible combinations of rules have been created. It comes

from the fact that other (not listed) rules do not influence on

the best chromosome fitness value.

Table 1

The Fuzzy System Rules

IF (Premises)

1

c

1

b

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

a

1

c
X

2

c

2

b

2

a

2

c

2

b

2

a

2

c

2

b

2

a

2

a

X X
3

c

3

c

3

c

3

b

3

b

3

b

3

a

3

a

3

a

3

a

X X X X X X X X X X
4

b

4

a

THEN

(Conclusion)
1 1 1 1 2 1 1 4 2 3 4 5

4.5. Weighted fitness function. The weighted method of fit-

ness calculating has been finally used. The used function Q

(4.7) consists of three parameters for optimization: the num-

ber of fully separated states U , the number of excitations K

and the extension coefficient ∆
���

ex:

Q = w1 · (L − U) + w2 · K + w3 ·
(

∆
���

ex

)

(24)

L – the power of states set S; D *- the maximum possible

integer value for gene α
���

(M = D has been assumed).
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The weights w1, w2, w3 allow to control the evolution pro-

cess and can be calculated to achieve assumed hierarchy of

optimization. The proposed method for weights calculating is

based on discrete character of UD. For each optimized param-

eter (U , K, ∆
���

ex) the minimal possible step (quant) and the

maximum possible value can be designated. The weight w1

controls full separation level and it should assure the highest:

quant and the maximum possible value for section 1 (the high-

est priority of optimization). The weights w2 and w3 control

the number of excitations and the size of extension coefficient

adequately and they should assure that the maximum possi-

ble values of section 2 and 3 are smaller than the quant of

the previous section (the medium and the lowest priority). To

achieve described hierarchy for the proposed system, weights

are calculated from equations given below:

w1 =
1

L
; w2 =

1

w1 · Kmx
; w3 =

1

w2 · M
(25)

Contrary to fuzzy fitness, the weighted fitness describes

the phenotype unequivocally and precisely and it allows to

create the best final solution from initial population of well

fuzzy evaluated individuals [19].

5. Simulated Annealing with Fuzzy Fitness

Function System Based Approach

Simulated Annealing (SA) optimization algorithm is applied

to search minimum number of excitations in the third ap-

proach. The name comes from annealing in metallurgy, a

technique of controlled cooling of a material to reduce their

defects [15]. It is well known method for the global optimiza-

tion problem in a large space search. SA algorithm belongs

to the heuristic methods.

5.1. Simulated Annealing Algorithm. Simulated annealing

is a random-search technique which exploits an analogy be-

tween the way in which a metal cools and freezes into a min-

imum energy crystalline structure (the annealing process) and

the search for a minimum in a more general system; it forms

the basis of an optimization technique for combinatorial and

other problems [16]. The method is developed by Kirkpatrick,

Gelatt and Vecchi in 1983. Procedure of the SA algorithm is

presented in Fig. 10. Each step of the SA considers a neigh-

bour (move) of the current state F̄ . If new state energy is less

than previous one, the previous state F̄ is replaced by current

one (with move) F̄ ′.

Otherwise, a worse state can be accepted with probability

pc.

pC

(

F
)

=b
[

f
(

F
′
)

−f
(

F
)

, T
]

=exp
−

[

f
(

F
′
)

− f
(

F
)

]

kT
(26)

Three elementary moves have been introduced [17]:

adding, removing, and swapping a single frequency from the

assumed range of frequency fmin and fmax.

Obviously, the set F cannot contain chosen frequency

more than once.

Fig. 10. Simulated Annealing workflow

Quality of heuristic optimization algorithms are linked

with energy (fitness, goal) function which evaluates current

solution. Originally, the weighted evaluating function is in-

troduced, and weighted coefficients are related to significance

of optimized parameters. As a new approach to the analog cir-

cuit diagnosis we have applied the fuzzy fitness system and

compared to the weighted goal one.

5.2. Initialization of the process. The algorithm is initial-

ized by a random frequencies vector which consists of 15

data. Obviously, a frequency on the list cannot be repeated

(F init).

5.3. Fuzzy Fitness Function. The fuzzy fitness function used

in simulated annealing system is identical as previously de-

scribed in Section 4.4.

5.4. Weighted fitness function. Typical SA strategy operates

with weighted energy function. Therefore, we decide to intro-

duce one for the diagnosis problem. The optimization process

considers the following input data:

1. Number of states separated from S0 (detection rate – Ud)

– parameter is maximized. If at least one frequency in the

vector separates a state from S0, then the state is isolated.

2. Number of other states isolated in 100% (location rate –

Ul) – maximized parameter. Regardless S0 state, if a single

frequency separate two different states.
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3. Number of frequencies K (minimized parameter) is being

used to get the highest detection and location rate.

A fitness value Q is calculated from the formula:

Q = w1 · Ud + w2 · Ul + w3 ·
1

K
(27)

where w1, w2, and w3 are coefficients chosen empirically. For

the example circuit w1 =
1

32
, w2 =

1

320
, w3 = 0.01; So,

1

w1
is number of detected faults – the most important subpart of

the formula. The second component is 10 times less, and the

number of frequencies is the least important part.

As can be seen the fitness function is maximized. The

maximum value Q = 1.11, and it is produced if all states are

isolated (32), and detected (32) by a single frequency.

5.5. Stop criterion. The algorithm is stopped if the optimal

solution is achieved and one of the following criterions is

satisfy:

1. Maximum number of iterations is reached.

2. There is no improvement in the next 10000 iteration.

During the test stage, all frequencies from the predefined

range are applied, and the global solution is determined. It

gives the greatest information about the CUT by answering

on the following questions: how many states can be isolated

(detection of a fault) from non faulty circuit and how many

other states are separated from another faulty state (location

of a fault) [20].

6. Exemplary circuit diagnosis

The presented methods have been tested with the use of an

exemplary circuit (Fig. 11). The source reference of the cir-

cuit is Ref. [1]. There were 33 states of CUT assumed (intact

circuit and 32 hard faults). The number of set F was 4000

frequencies (fmin = 100 [Hz], fmax = 1 [MHz]). There are

amplitude characteristics of all CUT states presented in Fig.

12. In Fig. 13 there is a computed ambiguity region presented

(see Eq. 8).

Fig. 11. The diagnosed exemplary circuit

Fig. 12. The intact and damaged CUT amplitude characteristics
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Fig. 13. The computed ambiguity region

Short elements have been simulated by the parallel con-

ductance of 10 [S] and open elements with serial resistance

of 1 [TΩ].

The global solution (with the use of all possible frequen-

cies) allowed for location of 15 hard faults. The rest of faults

were grouped into 6 ambiguity set (look Table 3).

Table 2

The results obtained for heuristic systems

Parameter
System

GEP GA SA

U 15 15 15

K 2 2 2

f1, ∆min

592.9 Hz,

160 mV

998.0 Hz,

298 mV

628.1 Hz,

149 mV

f2, ∆min

2.951 KHz,

171 mV

3.936 KHz,

156 mV

6.370 KHz,

160 mV

The results obtained with each of the presented systems

are gathered in the Table 2. All of the algorithms allowed

for finding solutions with the same level of detectability as

with the use of all possible frequencies (Table 3). Moreover,

the number of frequencies in each case was 2. The set of

fully separated states contains state S0 of healthy circuit, so

100% level of fault detection is possible (test go/no go). Fault

location and identification are precise for 44% states.

7. Conclusions

Heuristic methods for sinusoidal stimuli test selection have

been proposed. The algorithms allow for diagnosing a CUT

with a single accessible node. The implementation of ambi-

guity sets has made the methods robust to a CUT tolerances

and practical inaccuracies (e.g. test measure errors, simula-

tion models imprecise). If diagnosis rate is not satisfactory

it allows introduce either other node(s) or additional frequen-

cies. All methods reduce analogue fault dictionary significant-

ly where only a few signatures (amplitude responses) have to

be stored. The nearest neighbour measure has been tested but

in case of other artificial dictionary construction, diagnostic

results may be even higher.

Table 3

Diagnostic results for stimuli found by hybrid system

CUT state Recognized state(s) No. of isolated states

S0 (healthy) S0 32

S1 (R1 short) S1 32

S2 (R2 short) S2 32

S3 (R3 short) S3 32

S4 (R4 short) S4S8S16S19S21S23 27

S5 (R5 short) S5S6S13S14S17S18S31S32 25

S6 (R6 short) S5S6S13S14S17S18S31S32 25

S7 (R7 short) S7 32

S8 (R8 short) S4S8S16S19S21S23 27

S9 (R9 short) S9 32

S10 (R10 short) S10 32

S11 (R11 short) S11S28 31

S12 (R12 short) S12S27 31

S13 (C1 short) S5S6S13S14S17S18S31S32 25

S14 (C2 short) S5S6S13S14S17S18S31S32 25

S15 (C3 short) S15 32

S16 (C4 short) S4S8S16S19S21S23 27

S17 (R1 open) S5S6S13S14S17S18S31S32 25

S18 (R2 open) S5S6S13S14S17S18S31S32 25

S19 (R3 open) S4S8S16S19S21S23 27

S20 (R4 open) S20 32

S21 (R5 open) S4S8S16S19S21S23 27

S22 (R6 open) S22 32

S23 (R7 open) S4S8S16S19S21S23 27

S24 (R8 open) S24 32

S25 (R9 open) S25 32

S26 (R10 open) S26 32

S27 (R11 open) S12S27 31

S28 (R12 open) S11S28 31

S29 (C1 open) S29 32

S30 (C2 open) S30 32

S31 (C3 open) S5S6S13S14S17S18S31S32 25

S32 (C4 open) S5S6S13S14S17S18S31S32 25

The proposed methods have been tested with the use of

the exemplary circuit (Fig. 11) with good results (equal for

each of the systems). The algorithms’ assets are: an ease of
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implementation, a short proceeding time and a self-adapting

optimal frequencies’ set. It may suggest that there is a sense of

developing industrial applications based on presented heuris-

tic algorithms.
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