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Re ection at the free surface of magneto-thermo-microstretch
elastic solid
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Abstract. The present investigation is concerned with the re ection in thermo-microstretch elastic solid in the presence of a transverse
magnetic eld, at the boundary surface. The generalized theories of thermoelasticity developed by Lord and Shulman [1](L-S) and Green
and Lindsay [2](G-L) theories have been used to investigate the problem. The variations of amplitude ratios with angle of incidence have
been shown graphically. It is noticed that the amplitude ratios of the re ected waves are a ected by magnetic eld, stretch and thermal

properties of the medium.
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1. Introduction

The theory of thermoelasticity deals with the e ect of me-
chanical and thermal disturbances on an elastic body. The
theory of uncoupled thermoelasticity consists of the heat equa-
tion, which is independent of mechanical e ects, and the equa-
tion of motion, which contains the temperature as a known
function. There are two defects in this theory. First is that the
mechanical state of the body has no e ect on the tempera-
ture. Second, the heat equation, which is parabolic, implies
that the speed of propagation of the temperature is in nite,
which contradicts physical experiments.

Biot [3] introduced the theory of coupled thermoelasticity
to overcome the rst shortcoming. The governing equations
for this theory are coupled, eliminating the rst paradox of
the classical theory. However, both theories share the second
shortcoming since the heat equation for the coupled theory
is also parabolic. To overcome this drawback, two generaliza-
tions to the coupled theory were introduced.

The rst is due to Lord and Shulman [1], who obtained
a wave-type heat equation by postulating a new law of heat
conduction to replace the classical Fourier’s law. This new
law contains the heat ux vector as well as its time deriva-
tive. It contains also a new constant that act as a relaxation
time. Since the heat equation of this theory is of the wave-
type, it automatically ensures nite speeds of propagation for
heat and elastic waves. The remaining governing equations
for this theory, namely, the equations of motion and constitu-
tive relations, remain the same as those for the coupled and
uncoupled theories.

The second generalization to the coupled theory of elastic-
ity is what is known as the theory of thermoelasticity with two
relaxation times or the theory of temperature-rate-dependent
thermoelasticity. Mullar [4], in a review of the thermodynam-
ics of thermoelastic solids, proposed an entropy production
inequality, with the help of which he considered restrictions
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on a class of constitutive equations. A generalization of this
inequality was proposed by Green and Laws [5]. Green and
Lindsay obtained another version of the constitutive equa-
tions in [2]. These equations were also obtained independent-
ly and more explicitly by Suhubi [6]. This theory contains
two constants that act as relaxation times and modify all the
equations of the coupled theory, not only the heat equation.
The classical Fourier’s law of heat conduction is not violated
if the medium under consideration has a center of symme-

try.

Eringen [7] developed the theory of micropolar elastic
solids with stretch by include the e ect of axial stretch during
the rotation of molecules. The mechanical model underlying
this theory can be envisioned as an elastic medium composed
of a large number of short springs. These springs possess av-
erage inertia moments and can deform in axial directions. The
material points in this continuum possess not only classical
translational degree of freedom represented by the deforma-
tion vector eld but also intrinsic rotations and an intrinsic ax-
ial stretch. The di erence between these solids and micropolar
elastic solids stems from the presence of a scalar microstretch
and a vector rst moment. These solids can undergo intrinsic
volume change independent of the macro-volume change. This
is accompanied by a non-deviatoric stress moment vector.

Eringen [8] developed a theory of thermo-microstretch
elastic solid in which he included microstructural expansions
and contractions. Eringen [9] also derived the equations of
motions, constitutive equations and boundary conditions for
thermo-microstretch uids and obtain the solution of the prob-
lem for acoustical waves in bubbly liquids. Microstretch con-
tinuum is a model for Bravias lattice with a basis on the atomic
level and a two phase dipolar solid with a core on the macro-
scopic level. The material points of microstretch bodies can
stretch and contract independently of their translations and
rotations. For example, composite materials reinforced with
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chopped elastic bers, porous media whose pores are lled
with gas or inviscid liquid, asphalt or other elastic inclusions
and ’solid-liquid” crystals, etc. should be characterizable by
microstretch solids.

The linear theory of micropolar thermoelasticity was de-
veloped by extending the theory of micropolar continua to
include thermal e ects by Eringen [10] and Nowacki [11].
Chandrasekhariah [12] formulated a theory of micropolar
thermoelasticity which includes heat ux, among the consti-
tutive variables.

Kalaski and Nowacki [13] investigated the wave type of
equations of thermo-magneto-microelasticity. Nowacki [14]
studied some problems of micropolar magnetoelasticity.

Kumar and Singh [15, 16] discussed the problems of wave
propagation in a micropolar generalized thermoelastic body
with stretch and in a generalized thermo-microstretch elastic
solid. Kumar and Singh [17] studied the re ection of plane
waves from the at boundary of a micropolar generalized
thermoelastic half space with stretch. Tomar and Garg [18]
discussed re ection and transmission of waves from a plane
interface between two microstretch solid half-space. Kumar
and Pratap [19] studied re ection of plane waves in a heat

ux dependent microstretch thermoelastic solid half space.
Kumar, Pathania and Sharma [20] investigated the propaga-
tion of Rayleigh-Lamb waves in thermo-microstretch elastic
plates. In spite of these studies, magnetic e ect on the prop-
agation of waves in generalized thermo-microstretch elastic
solid has not been studied.

In this paper, we study the problem of re ection of
plane waves at the free surface of the generalized thermo-
microstretch elastic solid permeated by transverse magnetic

eld. Magnetic e ect on the amplitude ratios of various re-

ected waves for the generalized theories of thermoelasticity,
with the angle of incidence are computed numerically and
presented graphically, for a speci ¢ model.

2. Basic equations

The simpli ed linear equations of electrodynamics of slowly
moving medium for a homogenous and perfectly conducting
elastic solid are the following:

ijkhk;j i+ oEi) =0;  jkEj;i + obk =0; 1)
Ei + o(ijkujHok) =0; hi.i =0;
Maxwell stress components are given by

Tij = o(Hihj + Hjhi  Hghy 5); (2)

where Ho;  the external applied magnetic eld intensity vec-

tor, hj the induced magnetic eld vector, E; the induced

electric eld vector, J; the current density vector, u; the
displacement vector, o and o the magnetic and electric
permeabilities respectively, T;j; the components of Maxwell
stress tensor and j;  the Kroneker delta.

The above Eq. (1) are supplemented by the eld of equa-
tions of motion and constitutive relations in the theory of gen-
eralized thermo-microstretch elastic solid, taking into account
the Lorentz force are
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C + Jujij + ( +K)uigjj + Kjk kj

- (3)

(T:i"' 1T—;i)+ 0 ;i+Fi uj =0;
(+ )j;ij"‘ i;jj"'K imnUn:m 2K | i=0; 4

1

0 et 2T+ 1T) 1 oliii 3 lo =0; (5
C(C+ oT)+ 1To(- +nNgo ) (6)

+ TO(Uj:j + Ng Ouj;j) K T;rr =0;
ij = Unrij + (Uijj + Uji) @

+K(uji i ) (T + 1T) 55,

Mij= rwrij* i3+ ji+tbomii .m: (8)
k= 0 :k+Dbokm 1m; ©)
where , K, , , , 1, 0, o, bo { the material con-

stants, T { temperature change, To { uniform temperature, K
{ thermal conductivity, ¢ { speci c heat at constant temper-
aure, =@ +2 +K) ¢, 1=0@ +2 +K) g, 1,
t, { linear thermal expansions, o and 1 are thermal relax-
ation times.  { the density, | { the microinertia, ; { the
microrotation vector, { the scalar microstretch and 5 {
the components of force stress tensor, m;; { the components
of couple stress tensor, k { the microstretch parameter, jj
{ the alternate tensor. Comma notation denotes partial deriva-
tives with respect to spatial co-ordinate and the superposed
dots denote the derivatives with respect to time. The Lorentz

force is given by
Fi = (10)

1 =0, ng = 1; for G-L theory, ; > 0,
1 satisfy the in-

0 ijkJjHok:

For L-S theory,
ng = 0. The thermal relaxations o and
equality 1 o = 0 for G-L theory only.

3. Formulation of the problem

We consider a homogenous, isotropic, perfectly conduct-
ing thermo-microstretch elastic medium adjoining with free
surface, permeated by an initial magnetic eld Hg; acting
along the z-axis. The rectangular Cartesian co-ordinate sys-
tem (X;y;z) having origin on the surface y = 0 with y-axis
pointing vertically into the medium is introduced.

For two dimensional problem, we assume the displace-

ment vector u; and microrotation vector  as
ui = (u;v;0) and §=(0;0; 3): (11)
We de ne the non-dimensional quantities as
T T T
X'==x Y=y U= %O u;
o_ Gt 0 _ i qo _ Tij.
To U To© 9 T
h = h. __ T 0 & .
Hoo 07 ¢ To 1 k7 71k
=Tt =71, =1,
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E E
El=—1t . El=——2_
oHoC1 oHoC1
) _ o . o_ 6§
3= T+ 3 - T = 1
To To (12)
T0= l
To'
where
b ccs , _ +2 +K , +K.
- K y Cl_ ) 2 = )
1 HZ
2= a3=-%2%
00

Expressing the displacement components u(x; y; t), v(Xx;y;t)

by the scalar potential functions 1(X;y;t), 2(x;y;t) in di-
mensionless form
@ 1,0 > @1 @2
= -+_% y=—= = 13
@x @y @y  0x (13)

and using the Egs. (1), (3){(6), and (10){(13), we obtain two
coupled system of equations

2
02 e
2p2 25 1+ 51—
1 2@t2 1@t
e 02 s @ 02
a —+ ohp— r? r — + —
1 ogt T Mg it ae
a3r2 as 1+ 1%
3 (14)
0
= 2 3
0 ! 02 1 h i
as T onoW 2 T g: 0
@2
r? a
and
2 3
2 ¢, 0% K R
§ 3 20t 3 é 2 _
2
3
azr? r? agw 2az
(15)
where r? is the Laplacian operator and
’To 1To oK 2
A= 55— a= ;oaz= :
T 2 27 T2z T Ty 2c 2
ag = 1K 2 _ o, 1K 2
0 c 21 5 2 0 ’ 6 0 ZC 2C21
a; = KK ag = Ic2
7 ZC 2C21 8 1
2 2
2 _ a. 2_ ap.
1= 1"'%: 2= 1+C_2'
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4. Re ection and boundary conditions

We consider a plane wave (thermal(T) wave/longitudinal
microstretch(LM)  wave/  coupled  transverse  and
microtational(CD-1) wave) propagating through the gener-
alized magneto-thermo-microstretch elastic solid half space
(y > 0) and making an angle of incidence o with the y-axis,
at the free surface (y = 0). Corresponding to each incident
wave, we get re ected longitudinal displacement(LD)wave,
thermal(T) wave, longitudinal microstretch(LM) wave, cou-
pled transverse and microtational(CD-I and CD-II) waves as
shown in Fig. 1.

Free surface

y=0 X -axis

Magneto-thermo-
microstretch elastic

solid half-space CD-II( By)

LD(A,)

y -axis

Fig. 1. Geometry of the problem

We assume the solutions of the system of equations (14){
(15) in the form

f T, 5 25 30

— f_ll T . _2. :ge{fk(x sin (16)

ycos ) Itg.
1

where k is the wave number and ! is the complex circular
frequency.

Making use of (11){(13) and (16) in Eq. (14){(15), we
obtain two equations, one is cubic and second is quadratic in
V 2 given by

VE+AV4+BV2+C =0; (17)

V*+DV?2+E =0; (18)
where V. = 1=k is the velocity of the coupled waves; Vi,
V,, V3 are the velocities the coupled waves namely longitu-
dinal displacement(LD) wave, thermal(T) wave, longitudinal
microstretch(LM) wave respectively given by equation (17)
and V4, Vs are the velocities of coupled transverse and mi-
crorotational (CD-1 and CD-II) waves respectively given by
equation (18) and
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_ 2 2
A_W 201+ 7d2  {! 10 30
2U2
1
aas + 5 (8283 2136)
i #
o | :
—CE Ta1a4 10 30 ﬁaa ;
1 o 1
B=—— 2d;+ 2 {la +— Saz ;
5 1di+ 5 110 30 5 7783
2d2 C1 1
2
C= 1 .
5d2
1 1 K c?
D=— = 2a;+— 1248
2 2 2 2 8
ds 1! c5 c5
1
E=—
ds
as
dy =as vz T 20
d2=a5 20 7@ 20+ 7@284 10 30;
2
_0 az
dg—gz ag 2?

Since the boundary y=0 is free from surface tractions. The
boundary conditions are

2+Tn=0  2=0;
T (19)
My =0; 2 =0; @@_Y:O:
In view of equation (16), we assume the values of 1, T,
, 2 and g3 satisfying the boundary conditions as
f T, g= f1 i 49
=1 (20)
[AOie{fki(xsin 0i ycos oi) Ulitg +Pi];
X
f 2 9= fl jg
j=4 (21)

i (xsin o D1t .
[Boje{ j(xsin oj ycos oj) 19+Pj],

where
Pi =Aie{fki(XSin i+ycos ) UIitg.

Pj — Bje{fkj(xsin jtycos j) !jtg;

v2
a1!2 30 1+a5Vi2 3.6!—'2 +a2a3Vi2 30

= 2 2 Vi { 2 ;
( 1+V{$ 20)  1+asVy asyr +1a2asVi® 10 20

{atas'VZ 10 30 as( 1+V? )

= 5 :
( 1+VZ 20)  1+asVy? aﬁ\;_'z +tarasVi? 10 30
a . .
ji= ! > (=123 & J=45):
1+ agvjz 28.7!—'2
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and Ao; are the amplitudes of the incident LD-wave, T-wave,
LM-wave, and Bo; are the amplitudes of the incident CD-I,
CD-I1 waves respectively. A; are the amplitudes of the re ect-
ed LD-wave, T-wave, LM-wave, and Bj are the amplitudes
of the re ected CD-I, CD-Il waves respectively (Fig. 1).

In order to satisfy the boundary conditions, the extension
of the Snell’s law will be

sin o _sin 1 _sin o _sin 3 _sin 4 _sin s, 22)
Vo Vi Vo Vs V4 Vs '
where

kiVi =koVy = k3V3 =ky4V4 = k5V5 =1 at y= 0: (23)

Making use of potentials given by Egs. (20){(21) in
boundary conditions (19) and using Egs. (22) and (23), we
get a system of ve non-homogeneous equations which can
be written as

X
aijZi =VYi;  ( =1;2;::5); (24)
i=1
where
a;i = rik? rpk?cos? 4+ {li 10 i+r3 i
azj = rzkfsin jcos j;
azi = (2+rg)kZsin jcos j;
ag = kisin® j  (L+rakfcos® j+ry j;
azi = {rs ikisin i; azj ={ jkjcos j;
asi = { ikicos i; asj ={re jkjsin j;
asi ={kicos j; as;=0; (i=1,2,3 & j=45)
and
2 +K 0
rnh=—+ 2 1, rr, = ; N =—>,
1 C% 1 2 C% s C%
K b b
ra=—; rs=- rg=—
0
A A; Az Ba Bs
1= —:2Zo=—"—:1Z3= "1 Z4= —: g = —:
1 A 1 2 A ) 3 A 1 4 A ' 5

(i) For Incident LD-wave;
A =Ao1, Aoz = Agz = Bos =Bgs =0

Yi= an; Yz=axn; Ys= as;
Y4 =as1;, Ys=asy,
(ii) For Incident T-wave;
A =Ao2, Aor = Aoz = Bos = Bps =0
Y1 = aiz; Yz=az;, Y3= as;
Ya=as2; Ys=asy;

(iii) For Incident LM-wave;

A =Ag3, Ao =Ag2 =Bos =Bos =0
Yi= a3, Yz2=aps;, Yz= ass;
Y4 =a43;, Y5 = as3;

Bull. Pol. Ac.: Tech. 56(3) 2008
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(iv) For Incident CD(l)-wave;

A =Bos, Ao1 = A2 =Ag3 =Bgs =0
Yi=aw;, Y2= ax;, Yz=az,;
Ya= au Ys5=0

(v) For Incident CD(I)-wave;

A =Bos, Ao1 =Ag2 = Aoz =Bos =0

Y1 =ais; Y2= aps; Yz =ass;
Ya= ass, Ys=0;
and s
V, for incident LD wave;
% V,  for incident T wave;
Vo= _ V3 forincident LM wave; (26)

% V4  for incident (CD-I) wave;
- Vs for incident (CD-Il) wave

In the absence of magnetic eld and stretch e ect, our
results tally with the results of Singh and Kumar [21], by
changing the dimensionless quantities into the physical quan-
tities.

5. Numerical results and discussion

Following Gauthier [22], the values of micropolar constants
are

=759 10°Nm 2, =189 10°Nm 2
K =:0149 10°Nm 2; =238 10°Kgm 3;
=2:63 10°N; |=0:196 10 °m?:
and other parameters are taken
¢ =0:9614 103Jkg Kelvin %

K =2:502Jm !sec 'Kelvin 1;

y, =05 10 3Kelvin %

t, =05 10 Kelvin %
0=05 10°Nm ?;
1=05 10°Nm 2

o =0:185 10 °m?;
0=:9 10°N; bp=:91 10°N;
0=:2; 1=:4
2=13, 3=12
1-T =10; To=298Kelvin:

The solid line and small dashes line represent magneto-
thermo-microstretch elastic medium for LS-theory- MMT1
and for GL-theory- MMT?2 respectively. The solid line and
small dashes line with centre symbols represent thermo-
microstretch elastic medium for LS-theory- MT1 and for GL-
theory- MT2 respectively. Variations of amplitude ratios Z;,
with the angle of incidence ¢, for di erent waves are shown
in Figs. 2{16.

Bull. Pol. Ac.: Tech. 56(3) 2008
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Fig. 2. Variation of the amplitude ratio Z(1) with angle of incidence
of thermal wave propagating with velocity V>

T-wave. Figure 2 depicts that behavior of variations of am-
plitude ratio Z (1) is similar for MMT1 and MT1 in the whole
range. Also due to magnetic e ect, the values of Z(1) remain
larger for MT2 in comparison to the values for MMT2, for
all values of ¢ (angle of incidence). It is noticed from Fig. 3
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Fig. 3. Variation of the amplitude ratio Z(2) with angle of incidence
of thermal wave propagating with velocity V>

that the behavior of variation of Z(2) is similar for MMT1
and MT1 and oscillatory for MMT2 and MT2 respectively, in
the whole range. The behavior of variations of Z(3) (Fig. 4)
is similar for MMT1 and MT1, in the whole range except
when50 ¢ 60, where the values of Z(3) are vary large
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for MT1 in comparison to the values for MMT1. The values of
Z(3) are more for MT2 as compared to the values for MMT2
in the whole range except the di erence between the values
for MT2 and MMT2 is small in the range 10 < o < 30.
The values of Z(3) for MMT1 and MT1 have been shown in
Fig. 4 by multiplying its original value by 10 * respective-
ly.

Fig. 4. Variation of the amplitude ratio Z(3) with angle of incidence
of thermal wave propagating with velocity V»

0.9 —

0.8

0.7 —

0.6 —

0.5 —

0.4 —

AMPLITUDE RATIO Z(4)
o

0.2 —

0.1 —

e / e
i —— o G
B Sy

30 40 50 60 70 80 90
ANGLE OF INCIDENCE (8,)

Fig. 5. Variation of the amplitude ratio Z(4) with angle of incidence
of thermal wave propagating with velocity V>
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ANGLE OF INCIDENCE (8,)

Fig. 6. Variation of the amplitude ratio Z(5) with angle of incidence
of thermal wave propagating with velocity V>

Figures 5 and 6 depict that the behavior of variations of
Z(4) (Fig. 5) and Z(5) (Fig. 6) is similar for MMT1, MT1
and also for MMT2, MT2 respectively, in the whole range,
but the values of Z(5) remain slightly more for MT2 in com-
parison to the values for MMT?2, for all values of .

LM-wave. Figure 7 depicts that due to magnetic e ect, the
values of Z (1) are larger in the whole range for MT2 in com-
parison with the values for MMT2. Also the values for Z(1)
are smaller for LS theory(MMT1 and MT1) as compared to
the values for GL theory(MMT2 and MT2), in the whole
range. From Fig. 8 it is noticed that the trend of variations of

54 —
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Fig. 7. Variation of the amplitude ratio Z(1) angle of incidence of
longitudinal microstretch wave propagating with velocity Vs
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the values of Z(2) for GL theory(MMT2 and MT2) is similar
to the variations of Z(1) (Fig. 7), in the range 0 o < 40.
The di erence between the values of Z(2) for MMT2 and
MT2 decreases with further increase in angle of incidence.
Also the behavior of variation of Z(2) is similar for MMT1
and MT1, in the whole range. The values of Z(2) for MMT2
and MT2 have been shown in Fig. 8 by multiplying its origi-
nal value by 10 2 respectively. From Fig. 9 it is observed that
the behavior of variations of Z(3) is similar for MMT1 and
MT1; MMT2 and MT2, but the values remain more for LS
theory(MMT1 and MT1) as compared to GL theory(MMT2
and MT?2), in the whole range.

Fig. 8. Variation of the amplitude ratio Z(2) angle of incidence of
longitudinal microstretch wave propagating with velocity Vs

Fig. 9. Variation of the amplitude ratio Z(3) angle of incidence of
longitudinal microstretch wave propagating with velocity V3

Bull. Pol. Ac.: Tech. 56(3) 2008

Figure 10 depicts that the values of Z(4) are more for
MT1 and MT2 as compared with the values for MMT1 and
MMT2, in the whole range. The values of Z(4) for MT2
have been shown in Fig. 10 by multiplying its original value
by 10 1. Figure 11 depicts the values of Z(5) remain larger
for MMT2 in comparison to the values for MT2, in the whole
range, but for MMT1 and MT1 the behavior of variation is
similar in the range 0 o 20 and as angle ¢ increases,
the values of MT1 become larger as compared with the values
for MMT1.

Fig. 10. Variation of the amplitude ratio Z(4) angle of incidence of
longitudinal microstretch wave propagating with velocity V3

Fig. 11. Variation of the amplitude ratio Z(5) angle of incidence of
longitudinal microstretch wave propagating with velocity V3
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(CD-I)-wave. From Figs. 12{14 it is noticed that the behavior
of variations of Z(1), Z(2) and Z(3) respectively, is similar
for MMT1 and MT1; MMT2 and MT2, with di erence in
the magnitude, in the whole range, but the values of Z(1) for
MT?2, are slightly more in comparison to the values for MMT?2
when 5 < o < 25, the values of Z(3) for MT2 are more in
comparison to the values for MMT2 in the range 5 < ¢ <50
and the values of Z(2) (in Fig. 13) are more for MMT2 in
comparison to the values for MT2 when 5 < ¢ < 35. The
values of Z(3) for MT2 have been shown in Fig. 14 by mul-
tiplying its original value by 10.

Fig. 12. Variation of the amplitude ratio Z(1) angle of incidence
of coupled transverse and microrotational (CD-1) wave propagating
with velocity V4

Fig. 13. Variation of the amplitude ratio Z(2) angle of incidence
of coupled transverse and microrotational (CD-1) wave propagating
with velocity V4

270

Fig. 14. Variation of the amplitude ratio Z(3) angle of incidence
of coupled transverse and microrotational (CD-1) wave propagating
with velocity V4

Figure 15 depicts that the values of Z(5) are lowered to
minimum for MT1 as compared with the values for MMT1,
in the range 5 o < 40, as the angle of incidence ¢ in-
creases the behavior of variations of Z(4) is similar for all
cases. From Fig. 16 it is noticed that the values of Z(5) start
with maximum for MMT1, but the trend of the variation for
all cases is similar in the whole range.

Fig. 15. Variation of the amplitude ratio Z(4) angle of incidence
of coupled transverse and microrotational (CD-I) wave propagating
with velocity V4
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Fig. 16. Variation of the amplitude ratio Z(5) angle of incidence
of coupled transverse and microrotational (CD-I) wave propagating
with velocity V4

6. Conclusions

Detailed numerical calculations have been presented for the
cases of thermal(T) wave, longitudinal microstretch(LM) wave
and coupled transverse(CD-I) wave incident at the free surface
of the model considered. Appreciable magnetic and thermal
e ects have been observed on the amplitude ratios, for the
two theories of generalized thermoelasticity (L-S and G-L).
The problem though theoretical, is of physical interest in the

eld of seismology, geophysics and earthquake engineering
etc.
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