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Application of LMI for design of digital control systems
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Abstract. The paper considers a digital design of time-invariant systems in the case of step-invariant (ZOH), bilinear (Tustin’s) and fractional
order hold (FROH) discretization methods. The design problem is formulated as linear matrix inequalities (LMI). A closed-loop stability of
the digitally designed control systems is discussed.
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1. Introduction

The equivalence between continuous-time and digital systems
takes place when the responses of both systems are close-
ly matched for the same inputs and initial conditions. The
digital design approach presented in this paper called digital
redesign consists in design a suitable analogue controller first
and then convert the obtained analogue controller to the equiv-
alent digital controller maintaining the properties of the orig-
inal analogously controlled system. Obviously, the stability of
redesigned system is required for the practical application of
of the digital redesign technique.

The objective of this paper is to present and compare the
digital redesign methods when the step-invariant, bilinear and
fractional order hold transformations are used. The first two
methods are most commonly used methods of discretization
while the third one is used to obtain the model with zeros as
stable as possible.

The design method is based on the linear matrix inequality
(LMI) technique according to the approach presented in [1].
When the optimisation problem is convex, it can be solved ef-
fectively and fast with the use of LMI algorithms [2, 3]. It can
be said that once the problem is formulated as a set of LMIs,
it can be treated as solved, and used software (such as LMI
Toolbox, Yalmip, etc) enables one to find the exact optimum.

The result of this paper is the enlargement of the redesign
method presented in [1] to the case of bilinear and fractional
order hold discretization methods.

Performance of the considered design method applied with
considered transformations is illustrated by simulation study
of fourth-order system and linearized model of chemical re-
actor for the standard LQR control problem. The asymptotic
properties of digital closed-loop systems, i.e. when the sam-
pling period tends to zero are also discussed.

2. Control problem formulation

Consider a linear time-invariant continuous-time system de-
scribed by

ẋc(t) = Axc(t) + Buc(t), xc(0) = x0, (1)

yc(t) = Cxc(t), (2)

where xc(t) is the n-dimensional state vector, uc(t) is the m-
dimensional control vector, yc(t) is the p-dimensional output
vector, and A, B, C are matrices of appropriate dimensions.
The continuous-time controller is given by

uc(t) = −Kcxc(t) + Ecr, (3)

where Kc is the state feedback gain matrix, Ec is the feedfor-
ward gain matrix and r is the p-dimensional reference vector.

The system (1) and the controller (3) yields the
continuous-time closed-loop control system

ẋc(t) = (A − BKc)xc(t) + BEcr, xc(0) = x0, (4)

where the output remains as in (2).

2.1. Step-invariant transformation. The discrete-time mod-
el of the closed-loop system (3), (4) obtained with step-
invariant (ZOH) method is given by

xc(kT + T ) = Gcxc(kT ) + HcEcr, (5)

yc(kT ) = Cxc(kT ), (6)

where T is the sampling period, and

Gc = exp((A − BKc)T ), (7)

Hc = (Gc − I)(A − BKc)
−1B. (8)

It is to be stressed that, whenever identity matrix is used,
its size results from matrix algebra.

The corresponding matrix transfer function is

Ksi(z) = C(zI − Gc)
−1HcEc. (9)

The state Eq. (1) with a digital control input can be given
as

ẋd(t) = Axd(t) + Bud(t), xd(0) = x0, (10)

yd(t) = Cxd(t), (11)

where

ud(t) = ud(kT ) = −Kdxd(kT )+Edr, kT ≤ t < kT +T,

(12)
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where Kd and Ed denote the digital feedback and feedforward
gains, respectively. The resulting closed-loop system is

ẋd(t) = Axd(t) − BKdxd(kT ) + BEdr, (13)

and the discrete-time model of the closed-loop system (13) at
t = kT + T is given by

xd(kT + T ) = (G − HKd)xd(kT ) + HEdr, (14)

yd(kT ) = Cxd(kT ), (15)

where
G = exp(AT ), (16)

H = (G − I)A−1B. (17)

If A is singular, the matrix H can be computed as [1]

H =

∞
∑

i=1

1

i!
(AT )i−1BT.

Now the problem is formulated as follows: for a well designed
gains Kc, Ec in continuous-time controller (3), determine the
digital control gains Kd, Ed in (10) such that digitally con-
trolled system (12) is stable and the output of discrete-time
system (14), (15) matches the output of continuous-time sys-
tem (4), (2) as closely as possible.

2.2. Bilinear transformation. The discrete-time model of
the closed-loop system (4) obtained with bilinear transforma-
tion (Tustin’s method) is given analogously to (5), (6) by

xc(kT + T ) = Gcxc(kT ) + HcEcr, (18)

yc(kT ) = Ccxc(kT ) + DcEcr, (19)

where [2]

Gc =

(

I −
T

2
(A − BKc)

)−1(

I +
T

2
(A − BKc)

)

, (20)

Hc =
T

2

(

I −
T

2
(A − BKc)

)−1

B, (21)

Cc = 2C

(

I −
T

2
(A − BKc)

)−1

, (22)

Dc =
T

2
C

(

I −
T

2
(A − BKc)

)−1

B. (23)

The matrix transfer function for (18), (19) is

Kbl(z) = [Cc(zI − Gc)
−1Hc + Dc]Ec. (24)

The matrices G and H in the corresponding discrete-time
model of the closed-loop system (14) are now given by

G =

(

I −
T

2
A

)−1(

I +
T

2
A

)

, (25)

H =
T

2

(

I −
T

2
A

)−1

B. (26)

The following asymptotic property of step-invariant and
bilinear transformations has been proved in [4]: suppose that

in the stable closed-loop system (4) the matrix A − BKc is
diagonalizable with all real eigenvalues, then

lim
T→0+

||Ksi − Kbl||`p
= 0 (27)

for all 1 ≤ p ≤ ∞, where ||·||`p
denotes the `p-induced norm.

2.3. Fractional order hold transformation. The discrete-
time model of the closed-loop system (4), (2) obtained with
fractional order hold (FROH) method is given by [5]

[

xc(kT + T )

x1(kT + T )

]

=

[

Gc βγ−

0 0

] [

xc(kT )

x1(kT )

]

+

[

γ − βγ−

1

]

Ecr,

(28)

yc(kT ) = Cxc(kT ), (29)

where Gc is given by (7) and

γ =

∫ T

0

exp((A − BKc)s)dsB = Hc, (30)

γ− =

∫ T

0

s

T
exp((A − BKc)s)dsB

= (A − BKc)
−1[Gc −

1

T
(Gc − I)(A − BKc)

−1]B.

(31)

It can be noticed that γ = Hc where Hc is given by (8).
The parameter β is the device adjustable gain, and in the cases
of ZOH and FOH (first-order hold) considered as particular
cases of FROH, we have β = 0, β = 1, respectively. The
corresponding matrix transfer function is

Kfh(z) = [C 0]

(

zI −

[

Gc βγ−

0 0

])−1 [

γ − βγ−

1

]

.

(32)

The corresponding discrete-time model of the closed-loop
system (14) is now given by
[

xd(kT + T )

x1,d(kT + T )

]

=

[

G − (γ
′

− βγ−−)Kd βγ−

−Kd 0

]

[

xd(kT )

x1,d(kT )

]

+

[

γ
′

− βγ−−

1

]

Edr,

(33)
yd(kT ) = Cxd(kT ), (34)

where G is given by (16) and

γ
′

=

∫ T

0

exp(As)dsB = (G − I)A−1B, (35)

γ−− =

∫ T

0

s

T
exp(As)dsB = A−1

[

G −
1

T
(G − I)A−1

]

B.

(36)
From (33) the following equation can be obtained

xd(kT + T ) = [G − (γ
′

− βγ−−)Kd]xd(kT )

+ (γ
′

− βγ−−)Edr + βγ−−x1,d(kT ),
(37)
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where the corresponding matrix H is now

H = γ
′

− βγ−−. (38)

It can be noticed that if β = 0 then γ
′

= H where H is
given by (17).

3. Design method

In this section, the method for determination of the gain ma-
trices Kd, Ed proposed in [1] will shortly be described. Ac-
cording to the theorem given in [1] if there exist a symmetric
positive definite matrix Γ, a matrix F , and a scalar α > 0 such
that the following generalized eigenvalue problem (GEVP) [2]
is solved, then the digital control law (12) with Ed = 0 sat-
isfies the given design objective formulated in the problem
stated in Section 2.1.

min

Γ, F
α s.t. (39)

[

−αΓ ∗

GcΓ − GΓ + HF −αI

]

< 0, (40)

[

−Γ ∗

GΓ − HF −Γ

]

< 0 (41)

where F = KdΓ and ∗ denotes the transposed element in the
symmetric positions. The feedback gain matrix Kd is given
then by

Kd = FΓ−1. (42)

The feedforward gain matrix Ed can be obtained by equal-
izing the steady-state outputs of the original and redesigned
systems. For the case of step-invariant transformation, this
yields

Ed = ((I − (G − HKd))
−1H)†(I − Gc)

−1HcEc (43)

where (·)† denotes the Moore-Penrose pseudo-inverse, and the
matrices G, H are given by (16), (17), respectively. A sepa-
rate determination of Ed is done in order to avoid solving the
bilinear matrix inequality (BMI) problem.

In the case of bilinear transformation, similarly to step-
invariant transformation, the feedforward gain matrix Ed can
again be obtained by equalizing the steady-state output of the
original system

yc(∞) = Kbl(1)r = [Cc(I − Gc)
−1Hc + Dc]Ecr, (44)

and the steady-state output of redesigned sytem

yd(∞) = Cc[(I − (G − HKd))
−1H + Dc]Edr, (45)

This gives

Ed = [Cc(I − (G − HKd))
−1H + Dc]

†

[Cc(I − Gc)
−1Hc + Dc]Ec,

(46)

where G, H are given by (25), (26).
In the case of fractional order hold transformation, the

steady-state output of the original system

yc(∞) = C(I − Gc)
−1γEcr, (47)

and the steady-state output of redesigned sytem

yd(∞) = C[I − G + (γ
′

− βγ−−)Kd]
−1

[(γ
′

− βγ−−)Edr + βγ−−x1,d],
(48)

This gives

Ed = [(I − (G − γ
′

Kd))
−1γ

′

]†(I − Gc)
−1γEc, (49)

so it corresponds to (43).

4. Simulation tests

Performance of the described method for both transformations
is illustrated through the example of a fourth-order unstable
system with the following numerical values [1]:

A =











0 1 0 0

0 −1 −17.15 0

0 0 0 1

0 2 −53.9 0











,

B =











0

0.5

0

−1











, CT =











1

0

0

0











.

The feedback and feedforward gains Kc, Ec for the stan-
dard LQR control problem are

Kc = (3.1623, 2.8864,−14.9723,−4.3837), (50)

Ec = 3.1623, (51)

for the constant reference r = 1, and where the design para-
meters in the LQR cost function are Q = 10I , R = 1.

For all cases β = 0.5 is assumed. In the first simulation
test, the sampling period was taken as T = 0.02 s, then the
digital control gains of the proposed method are obtained

Kd = (2.9822, 2.6388,−12.2563,−4.2663), (52)

Ed = 2.9822, (53)

for the step-invariant transformation,

Kd = (5.9714, 5.2869,−24.5851,−8.5237), (54)

Ed = 2.9857, (55)

for the bilinear transformation, and

Kd = (3.9692, 3.5119,−16.3123,−5.6794), (56)

Ed = 3.9692, (57)

for the fractional order hold transformation.
Figure 1 shows the errors in between original yc(kT ) and

redesigned yd(kT ) system step responses for step-invariant,
bilinear and fractional order hold transformations and T =
0.02 s plotted in discrete time instants.
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Fig. 1. Errors in step responses between original and redesigned
control systems for T = 0.02 s

In the second simulation test, the sampling period was tak-
en as T = 0.2 s, then the digital control gains of the proposed
method are obtained

Kd = (1.6595, 0.8028, 10.1263,−2.3909), (58)

Ed = 1.6595, (59)

for the step-invariant transformation,

Kd = (4.1747, 2.8683, 4.2287,−5.3643), (60)

Ed = 2.0996, (61)

for the bilinear transformation, and

Kd = (2.1564, 1.0975, 11.9938,−2.9455), (62)

Ed = 2.1564, (63)

for the fractional order hold transformation. Figure 2 shows
the corresponding errors in step responses.

Fig. 2. Errors in step responses between original and redesigned
control systems for T = 0.2 s

In Fig. 3, the plot of matching error δ versus sampling
period T is shown for all transformations, where

δ =
1

N

k=N
∑

k=1

|yc(kT ) − yd(kT )|.

It can be observed that for small T the performance of step-
invariant transformation is the best, and for T � 0.7 s the
closed-loop system tends to instability for all transformations.

Fig. 3. Plot of matching error δ versus sampling period T

In the second example, the chemical reactor for waste
management was taken for consideration. The model was lin-
earized around the equilibrium point yielding the following
matrices

A =







−0.0752 −0.0671 0

−0.1346 −0.1421 0

0.1346 0.1343 −0.0079






,

B =







0

0.0052

0






, CT =







0

0

1






.

The feedback and feedforward gains Kc, Ec for the stan-
dard LQR control problem are

Kc = (32.1061, 15.5303, 37.1927), (64)

Ec = 32.1061, (65)

for the constant reference r = 1, and where the design para-
meters in the LQR cost function are

Q =







0 0 21.8

0 0 10

0 0 15.6






, R = 0.01.

The weights Q and R are chosen such that the control
signal (flow rate) that is applied to the actuator stays with-
in the given range. The continuous-time control system has
been discretized for T = 1 s. then the digital control gains
are obtained by the proposed method

Kd = (31.0169, 15.1827, 35.5270), (66)

Ed = 30.7931, (67)

for the step-invariant transformation,

Kd = (62.0733, 30.3620, 71.1505), (68)

Ed = 30.8367, (69)

for the bilinear transformation, and

Kd = (41.0075, 20.1313, 46.9949), (70)

Ed = 39.9564, (71)

for the fractional order hold transformation.
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Figure 4 shows the errors in step responses between the
original and redesigned systems for step-invariant, bilinear
and fractional order hold transformations. The plot of match-
ing error δ versus sampling period T is shown in Fig. 5 for all
transformations. It is worthy to note that in the large range of
sampling period the redesigned closed-loop control systems
remain stable.

Fig. 4. Errors in step responses between original and redesigned
control systems for T = 1.0 s

Fig. 5. Plot of matching error δ versus sampling period T

5. Conclusions

This paper presents an approach toward a digital redesign
of linear time-invariant systems when step-invariant, bilinear
and fractional order hold discretization methods are used. The
comparative simulation examples of fourth-order unstable sys-
tem and third-order stable model of chemical reactor are given
for the standard LQR control problem.

To see the differences between methods more observable,
the matching error between the unit step response of the orig-
inal system and redesigned digital systems was calculated. In
this respect, the performance for all transformations is compa-
rable, however for small values of sampling period the perfor-
mance of redesigned control system with ZOH discretization
is superior to that with Tustin or FROH discretizations.

The proposed method ensures the stability of the all re-
designed control systems for large range of sampling periods.
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