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An algorithm for the calculation of the minimal polynomial
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Abstract. This paper gives the simple algorithm for calculation of the degree and coefficients of the minimal polynomial for the complex

matrix A = [aij ]n×n.
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1. Introduction

We use the standard notation. We denote by Mm,n the set of

m×n real or complex matrices. In case n = m we will write

Mn instead of Mn,n.

A complex polynomial f(λ) is called an annihilationy

polynomial for a matrix A ∈ Mn if f(λ) 6≡ 0 and f(A) =
0 ∈Mn. The complex polynomial

f(λ) = anλ
n + an−1λ

n−1 + · · · + a1λ+ a0,

where an 6= 0, is called monic if its leading coefficient

an = 1. The monic polynomial ψ(λ) of least degree for

which ψ(A) = 0 ∈ Mn is called the minimal polynomial

of the matrix A ∈Mn.

The properties and the applications of the minimal poly-

nomials in the control theory have been presented in [1, 2].

In this paper the simple algorithm is given for the calcula-

tion of the degree and coefficients of the minimal polynomial.

For the matrix A = [aij ] ∈Mn we will use the following

notations:

ϕ(λ) = det(λI − A) – charecteristic polynomial of the ma-

trix A,

ψ(λ) – minimal polynomial of the matrix A,

vecA = [a11 a12 . . . a1n a21 a22 . . . a2n . . . an1 an2 . . . ann]
T,

A0 = I ∈Mn,

Ak = Ak−1A (k = 1, 2, . . .), (1)

Ak = [a
(k)
ij ] (k = 0, 1, 2, . . .),

a(k) = vecAk (k = 0, 1, 2, . . .),

Bk = [a(0)a(1) · · · a(k)] (k = 0, 1, 2, . . .)
where a(k) is k + 1-th column of the matrix Bk ∈Mn2,k+1,

rank (B) – rank of the matrix B,

N = {1, 2, 3, . . .},

I or In – unit matrix,

degf(x) – degree of the polynomial f(λ),

∅ – empty set.

Example 1. For the matrix A =

[

a11 a12

a21 a22

]

we have:

a(0) = [1 0 0 1]T , a(1) = [a11 a12 a21 a22]
T , . . . ,

a(k) = [a
(k)
11 a

(k)
12 a

(k)
21 a

(k)
22 ]T , B0 = [a(0)] = [1 0 0 1]T ,

B1 = [a(0)a(1)] =











1 a11

0 a12

0 a21

1 a22











.

2. An algorithm for the calculation of the degree

and the coefficients of the minimal polynomial

For the matrix A = [aij ] ∈ Mn we will prove the following

Lemma.

Lemma 1. If the matrix A = [aij ] ∈ Mn, the matrix Bk is

defined by (1), then

K = {k ∈ N : rank Bk = rank Bk−1} 6= ∅ and n ∈ K.

Proof. We see that if

ϕ(λ) = det(λI −A) = λn + bn−1λ
n−1 + · · · + b1λ+ b0,

then

An + bn−1A
n−1 + · · · + b1A+ b0I = 0 ∈Mn,

a(n) = −[bn−1a
(n−1) + · · · + b1a

(1) + b0a
(0)],

rank Bn = rank [a(0)a(1) . . . a(n)]

= rank [a(0)a(1) . . . a(n−1)0] = rank Bn−1,

where 0 = [0 0 . . . 0]T ∈ Mn2,1. Therefore n ∈ K and

K 6= ∅.

Definition 1. A number k0 = minK is called the associated

rank of the matrix A = [aij ] ∈Mn.

Theorem 1. If k0 is the associated rank of the matrix A =
[aij ] ∈Mn and ψ(λ) is the minimal polynomial of this matrix

then:
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1) rank Bk = k + 1 (k = 0, 1, . . . , k0 − 1),
2) rank Bk = k0 (k ≥ k0),
3) degψ(λ) = k0,

where the matrix Bk is defined by the relation (1).

Proof. Let Bk = [a(0)a(1) · · · a(k0−1)a(k0)a(k0+1) · · · a(k)].
First we will prove that rankBk = k + 1 (k =

0, 1, . . . , k0 − 1). From the definition of k0 it follows that

rankBk0
= rankBk0−1. For k0 = 1 rankB1 = rankB0 = 1.

However, for k0 > 1 we have:

rankB1 > rankB0 = 1 ⇒ rankB1 = 2,

rankB2 > rankB1 = 2 ⇒ rankB2 = 3,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

rankBk0−1 > rankBk0−2 = k0 − 1 ⇒ rankBk0−1 = k0.

Therefore rankBk = k + 1 for k ∈ {0, 1, 2, . . . , k0 − 1}
and rankBk0

= rankBk0−1 = k0. Hence it follows that

the columns a(0), a(1), . . . , a(k0−1) are linear independent

and the column a(k0) can be written as the linear combi-

nation of the columns a(0), a(1), . . . , a(k0−1), so there exists

α = (α0, α1, . . . , αk0−1) ∈ Ck0 such that

α0a
(0) + α1a

(1) + · · · + αk0−1a
(k0−1) = −a

(k0)
0 .

It denotes that

α0I + α1A+ · · · + αk0−1A
k0−1 +Ak0 = 0 ∈Mn

and the polynomial f(λ) = α0 + α1λ + · · · + λk0 is the

annihilationy polynomial of the matrix A.

For k > k0, m = k − k0 and any arbitrary numbers

β0, β1, . . . , βm−1 ∈ C the polynomial g(λ) = f(λ)(β0 +
β1λ+· · ·+βm−1λ

m−1+λm) = γ0+γ1λ+. . .+γk−1λ
k−1+λk

is the annihilationy polynomial of the matrix A, too.

Therefore

γ0I + γ1A+ · · · + γk−1A
k−1 +Ak = 0 ∈Mn,

γ0a
(0) + γ1a

(1) + · · · + γk−1a
(k−1) + a(k) = 0 ∈Mn2,1.

(2)

In the matrix Bk = [a(0)a(1) · · · a(k0−1)a(k0)a(k0+1) · · · a(k)]
the column a(j) can be multiplied by – γj (j = 0, 1, . . . , k−1)
and added to the column a(k). Hence and (2) we have

rankBk = rank[a(0)a(1) · · · a(k−1)0] = rankBk−1.

Similary transformation can be used to the matrix Bk−1.

At the end, we have

rankBk = rank[a(0)a(1) · · · a(k0−1)a(k0)0 · · · 0]

= rankBk0
= k0

for k ≥ k0. This finishes the proof of 2) of the Theorem 1.

Now we prove that if ψ(λ) is the minimal polynomial of

the matrix A then degψ(λ) = k0.

Hence that rankBk0
= rankBk0−1 = k0 it follows that

the set of equations

Bk0−1α = −a(k0),

with the unknown α = [α0α1 . . . αk0−1]
T ∈ Ck0 , has only

one solution and

α0I + α1A+ · · · + αk0−1A
k0−1 +Ak0 = 0 ∈Mn,

besides

α0 + α1λ+ · · · + αk0−1λ
k0−1 + λk0 , (3)

is the annihilationy polynomial of the matrix A.

Hence that rankBk = k + 1 (k = 0, 1, . . . , k0 − 1) it

follows that the set of equations

Bk−1α = −a(k),

with the unknown α = [α0α1 . . . αk−1]
T ∈ Ck, has not the

solutions.

This denotes that the polynomial (3) is the minimal poly-

nomial of the matrix A and degψ(λ) = k0.

Now, we give the algorithm for the calculation of the de-

gree and coefficients of the minimal polynomial of the matrix

A = [aij ] ∈Mn.

Consider the matrix

Bn = [a(0)a(1) . . . a(n)] ∈Mn2,n+1,

which is defined in (1).

The elements of the matrix Bn are denoted by bij , there-

fore Bn = [bij ] ∈ Mn2,n+1, where b11 = 1, b12 =

a
(1)
11 , . . . , b1,n+1 = a

(n)
11 , . . . , bn2,n+1 = a

(n)
nn .

We will calculate the rank of the matrix Bn by Gaussian

elimination, except interchange and cancel of the null

columns.

We obtain

rankBn = rank





















1 b12 . . . b1,n+1

0 b
(1)
22 . . . b

(1)
2,n+1

0 b
(1)
32 . . . b

(1)
3,n+1

. . . . . . . . . . . .

0 b
(1)
n2,2 . . . b

(1)
n2,n+1





















,

where, for example b
(1)
22 = b22, . . . , b

(1)
2,n+1 = b2,n+1, b

(1)
n2,2 =

bn2,2 − b12.

From the Lemma 1 it follows that n ∈ K = {k ∈
N : rankBk = rankBk−1}.
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Therefore there exists r ∈ N such that r ≤ n and

rankBn = rank



















































1 b12 b13 . . . . . . . . . . . . . . . . . . b1,n+1

0 b
(1)
12 b

(1)
23 . . . . . . . . . . . . . . . . . . b

(1)
2,n+1

0 0 b
(2)
33 . . . . . . . . . . . . . . . . . . b

(2)
3,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 b
(r−1)
rr b

(r−1)
r,r+1 . . . . . . . . . b

(r−1)
r,n+1

0 0 0 . . . 0 0 0 b
(r−1)
r+1,r+2 . . . b

(r−1)
r+1,n+1

0 0 0 . . . 0 0 0 b
(r−1)
r+2,r+2 . . . b

(r−1)
r+2,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 b
(r−1)
n2,r+2 . . . b

(r−1)
n2,n+1



















































,

where b
(i−1)
ii 6= 0 (i = 1, 2, . . . , r).

From this it follows that rankBj = j (j = 1, 2, . . . , n),
rankBr−1 = r, rankBr = r.

Therefore k0 = minK = r and degψ(λ) = r = k0.

Thus, by Gaussian elimination we can compute the degree

of the minimal polynomial of the matrix A.

Hence that detBr−1 = detBk0−1 6= 0 and rankBk0
=

rankBk0−1 = k0 it follows that the set of equations

Bk0−1α = −a(k0), (4)

with the unknown α = [α0α1 . . . αk0−1]
T ∈ Ck0 , has only

one solution and

α0 + α1A+ · · · + αk0−1A
k0−1 +Ak0 = 0 ∈Mn.

Therefore α0, α1, . . . , αk0−1, 1 are the coefficients of the

minimal polynomial of the matrix A. The set of Eq. (4) is

equivalent to the set of equations

B̃α = b̃,

where

B̃ =

























1 b11 . . . . . . b1r

0 b
(1)
22 . . . . . . b

(1)
2r

0 0 b
(2)
33 . . . b

(2)
3r

. . . . . . . . . . . . . . .

0 0 . . . 0 b
(r−1)
rr

























, b̃ =





















b1,r+1

b
(1)
2,r+1

...

b
(r−1)
r,r+1





















,

α = [α0 α1 . . . αk0−1]
T , r = k0.

Example 2. We will calculate the minimal polynomial of the

matrix

A =







3 −3 2

−1 5 −2

−1 3 0






.

In this example we have

A2 =







10 −18 12

−6 22 −12

−6 18 −8






,

A3 =







36 −84 56

−28 92 −56

−28 84 −48






,

rankB3 = rank



































1 3 10 36

0 −3 −18 −84

0 2 12 56

0 −1 −6 −28

1 5 22 92

0 −2 −12 −56

0 −1 −6 −28

0 3 18 84

1 0 −8 −48



































= rank



































1 3 10 36

0 −3 −18 −84

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



































= 2,

B̃ =

[

1 3

0 −3

]

, b̃

[

−10

18

]

, k0 = 2,

α = [α0 α1]
T = [8 − 6]T .

Therefore, ψ(λ) = λ2−6λ+8. is the minimal polynomial

of the matrix A.
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