An algorithm for the calculation of the minimal polynomial

S. BIAŁAS ${ }^{1 *}$ and M. BIAŁAS ${ }^{2}$
${ }^{1}$ The School of Banking and Management, 4 Armii Krajowej St., 30-150 Kraków, Poland
${ }^{2}$ Faculty of Management, AGH University of Science and Technology, 30 Mickiewicza St., 30-059 Kraków, Poland

Abstract

This paper gives the simple algorithm for calculation of the degree and coefficients of the minimal polynomial for the complex matrix $A=\left[a_{i j}\right]_{n \times n}$.

Key words: matrix, minimal polynomial, characteristic polynomial.

1. Introduction

We use the standard notation. We denote by $M_{m, n}$ the set of $m \times n$ real or complex matrices. In case $n=m$ we will write M_{n} instead of $M_{n, n}$.

A complex polynomial $f(\lambda)$ is called an annihilationy polynomial for a matrix $A \in M_{n}$ if $f(\lambda) \not \equiv 0$ and $f(A)=$ $0 \in M_{n}$. The complex polynomial

$$
f(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
$$

where $a_{n} \neq 0$, is called monic if its leading coefficient $a_{n}=1$. The monic polynomial $\psi(\lambda)$ of least degree for which $\psi(A)=0 \in M_{n}$ is called the minimal polynomial of the matrix $A \in M_{n}$.

The properties and the applications of the minimal polynomials in the control theory have been presented in [1, 2].

In this paper the simple algorithm is given for the calculation of the degree and coefficients of the minimal polynomial.

For the matrix $A=\left[a_{i j}\right] \in M_{n}$ we will use the following notations:
$\varphi(\lambda)=\operatorname{det}(\lambda I-A)-$ charecteristic polynomial of the matrix A,
$\psi(\lambda)$ - minimal polynomial of the matrix A,
$\operatorname{vec} A=\left[\begin{array}{lllll}a_{11} & a_{12} \ldots a_{1 n} & a_{21} & a_{22} \ldots a_{2 n} \ldots a_{n 1} & a_{n 2} \ldots a_{n n}\end{array}\right]^{T}$,
$A^{0}=I \in M_{n}$,
$A^{k}=A^{k-1} A \quad(k=1,2, \ldots)$,
$A^{k}=\left[a_{i j}^{(k)}\right] \quad(k=0,1,2, \ldots)$,
$a^{(k)}=\operatorname{vecA}^{\mathrm{k}}(\mathrm{k}=0,1,2, \ldots)$,
$B_{k}=\left[a^{(0)} a^{(1)} \cdots a^{(k)}\right](k=0,1,2, \ldots)$
where $a^{(k)}$ is $k+1$-th column of the matrix $B_{k} \in M_{n^{2}, k+1}$,
rank (B) - rank of the matrix B,
$N=\{1,2,3, \ldots\}$,
I or I_{n} - unit matrix,
$\operatorname{deg} f(x)$ - degree of the polynomial $f(\lambda)$,
\emptyset - empty set.

Example 1. For the matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ we have:

$$
\left.\begin{array}{c}
a^{(0)}=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]^{T}, \quad a^{(1)}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{21} \\
a_{22}
\end{array}\right]^{T}, \ldots, \\
a^{(k)}=\left[\begin{array}{lll}
a_{11}^{(k)} & a_{12}^{(k)} & a_{21}^{(k)}
\end{array} a_{22}^{(k)}\right.
\end{array}\right]^{T}, B_{0}=\left[\begin{array}{ll}
a^{(0)}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T},,\left[\begin{array}{lll}
1 & a_{11} \\
0 & a_{12} \\
0 & a_{21} \\
1 & a_{22}
\end{array}\right] . ~ . ~\left[a^{(0)} a^{(1)}\right]=\left[\begin{array}{ll}
B_{1}
\end{array}\right.
$$

2. An algorithm for the calculation of the degree and the coefficients of the minimal polynomial

For the matrix $A=\left[a_{i j}\right] \in M_{n}$ we will prove the following Lemma.

Lemma 1. If the matrix $A=\left[a_{i j}\right] \in M_{n}$, the matrix B_{k} is defined by (1), then
$K=\left\{k \in N: \operatorname{rank} \mathrm{B}_{\mathrm{k}}=\operatorname{rank} \mathrm{B}_{\mathrm{k}-1}\right\} \neq \emptyset$ and $\mathrm{n} \in \mathrm{K}$.
Proof. We see that if

$$
\varphi(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+b_{n-1} \lambda^{n-1}+\cdots+b_{1} \lambda+b_{0}
$$

then

$$
\begin{aligned}
& A^{n}+b_{n-1} A^{n-1}+\cdots+b_{1} A+b_{0} I=0 \in M_{n}, \\
& a^{(n)}=-\left[b_{n-1} a^{(n-1)}+\cdots+b_{1} a^{(1)}+b_{0} a^{(0)}\right], \\
& \quad \operatorname{rank} \mathrm{B}_{\mathrm{n}}=\operatorname{rank}\left[\mathrm{a}^{(0)} \mathrm{a}^{(1)} \ldots \mathrm{a}^{(\mathrm{n})}\right] \\
& =\operatorname{rank}\left[\mathrm{a}^{(0)} \mathrm{a}^{(1)} \ldots \mathrm{a}^{(\mathrm{n}-1)} 0\right]=\operatorname{rank} \mathrm{B}_{\mathrm{n}-1},
\end{aligned}
$$

where $0=\left[\begin{array}{llll}0 & 0 & \ldots\end{array}\right]^{T} \in M_{n^{2}, 1}$. Therefore $n \in K$ and $K \neq \emptyset$.

Definition 1. A number $k_{0}=\min K$ is called the associated rank of the matrix $A=\left[a_{i j}\right] \in M_{n}$.

Theorem 1. If k_{0} is the associated rank of the matrix $A=$ $\left[a_{i j}\right] \in M_{n}$ and $\psi(\lambda)$ is the minimal polynomial of this matrix then:

[^0]1) $\operatorname{rank} B_{k}=k+1 \quad\left(k=0,1, \ldots, k_{0}-1\right)$,
2) $\operatorname{rank} B_{k}=k_{0} \quad\left(k \geq k_{0}\right)$,
3) $\operatorname{deg} \psi(\lambda)=k_{0}$,
where the matrix B_{k} is defined by the relation (1).
Proof. Let $B_{k}=\left[a^{(0)} a^{(1)} \cdots a^{\left(k_{0}-1\right)} a^{\left(k_{0}\right)} a^{\left(k_{0}+1\right)} \cdots a^{(k)}\right]$.
First we will prove that $\operatorname{rankB}_{\mathrm{k}}=\mathrm{k}+1(k=$ $\left.0,1, \ldots, k_{0}-1\right)$. From the definition of k_{0} it follows that $\operatorname{rankB} \mathrm{k}_{0}=\operatorname{rankB}_{\mathrm{k}_{0}-1}$. For $k_{0}=1 \operatorname{rank} B_{1}=\operatorname{rankB} B_{0}=1$.

However, for $k_{0}>1$ we have:

$$
\begin{aligned}
& \operatorname{rankB}_{1}>\operatorname{rank} B_{0}=1 \Rightarrow \operatorname{rankB}_{1}=2, \\
& \operatorname{rank} B_{2}>\operatorname{rank} B_{1}=2 \Rightarrow \operatorname{rankB}_{2}=3,
\end{aligned}
$$

$$
\operatorname{rank} \mathrm{B}_{\mathrm{k}_{0}-1}>\operatorname{rankB}_{\mathrm{k}_{0}-2}=\mathrm{k}_{0}-1 \Rightarrow \operatorname{rank} \mathrm{~B}_{\mathrm{k}_{0}-1}=\mathrm{k}_{0}
$$

Therefore $\operatorname{rank} \mathrm{B}_{\mathrm{k}}=\mathrm{k}+1$ for $k \in\left\{0,1,2, \ldots, k_{0}-1\right\}$ and $\operatorname{rankB} \mathrm{k}_{0}=\operatorname{rankB}_{\mathrm{k}_{0}-1}=\mathrm{k}_{0}$. Hence it follows that the columns $a^{(0)}, a^{(1)}, \ldots, a^{\left(k_{0}-1\right)}$ are linear independent and the column $a^{\left(k_{0}\right)}$ can be written as the linear combination of the columns $a^{(0)}, a^{(1)}, \ldots, a^{\left(k_{0}-1\right)}$, so there exists $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k_{0}-1}\right) \in C^{k_{0}}$ such that

$$
\alpha_{0} a^{(0)}+\alpha_{1} a^{(1)}+\cdots+\alpha_{k_{0}-1} a^{\left(k_{0}-1\right)}=-a_{0}^{\left(k_{0}\right)}
$$

It denotes that

$$
\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{k_{0}-1} A^{k_{0}-1}+A^{k_{0}}=0 \in M_{n}
$$

and the polynomial $f(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\cdots+\lambda^{k_{0}}$ is the annihilationy polynomial of the matrix A.

For $k>k_{0}, m=k-k_{0}$ and any arbitrary numbers $\beta_{0}, \beta_{1}, \ldots, \beta_{m-1} \in C$ the polynomial $g(\lambda)=f(\lambda)\left(\beta_{0}+\right.$ $\left.\beta_{1} \lambda+\cdots+\beta_{m-1} \lambda^{m-1}+\lambda^{m}\right)=\gamma_{0}+\gamma_{1} \lambda+\ldots+\gamma_{k-1} \lambda^{k-1}+\lambda^{k}$ is the annihilationy polynomial of the matrix A, too.
Therefore

$$
\begin{gather*}
\gamma_{0} I+\gamma_{1} A+\cdots+\gamma_{k-1} A^{k-1}+A^{k}=0 \in M_{n} \\
\gamma_{0} a^{(0)}+\gamma_{1} a^{(1)}+\cdots+\gamma_{k-1} a^{(k-1)}+a^{(k)}=0 \in M_{n^{2}, 1} \tag{2}
\end{gather*}
$$

In the matrix $B_{k}=\left[a^{(0)} a^{(1)} \cdots a^{\left(k_{0}-1\right)} a^{\left(k_{0}\right)} a^{\left(k_{0}+1\right)} \cdots a^{(k)}\right]$ the column $a^{(j)}$ can be multiplied by $-\gamma_{j}(j=0,1, \ldots, k-1)$ and added to the column $a^{(k)}$. Hence and (2) we have

$$
\operatorname{rank} B_{\mathrm{k}}=\operatorname{rank}\left[\mathrm{a}^{(0)} \mathrm{a}^{(1)} \ldots \mathrm{a}^{(\mathrm{k}-1)} 0\right]=\operatorname{rank} B_{\mathrm{k}-1}
$$

Similary transformation can be used to the matrix B_{k-1}. At the end, we have

$$
\begin{gathered}
\operatorname{rank} B_{\mathrm{k}}=\operatorname{rank}\left[\mathrm{a}^{(0)} \mathrm{a}^{(1)} \cdots \mathrm{a}^{\left(\mathrm{k}_{0}-1\right)} \mathrm{a}^{\left(\mathrm{k}_{0}\right)} 0 \cdots 0\right] \\
=\operatorname{rankB}_{\mathrm{k}_{0}}=\mathrm{k}_{0}
\end{gathered}
$$

for $k \geq k_{0}$. This finishes the proof of 2) of the Theorem 1.
Now we prove that if $\psi(\lambda)$ is the minimal polynomial of the matrix A then $\operatorname{deg} \psi(\lambda)=k_{0}$.

Hence that $\operatorname{rank} B_{\mathrm{k}_{0}}=\operatorname{rank}_{\mathrm{k}_{0}-1}=\mathrm{k}_{0}$ it follows that the set of equations

$$
B_{k_{0}-1} \alpha=-a^{\left(k_{0}\right)}
$$

with the unknown $\alpha=\left[\alpha_{0} \alpha_{1} \ldots \alpha_{k_{0}-1}\right]^{T} \in C^{k_{0}}$, has only one solution and

$$
\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{k_{0}-1} A^{k_{0}-1}+A^{k_{0}}=0 \in M_{n}
$$

besides

$$
\begin{equation*}
\alpha_{0}+\alpha_{1} \lambda+\cdots+\alpha_{k_{0}-1} \lambda^{k_{0}-1}+\lambda^{k_{0}} \tag{3}
\end{equation*}
$$

is the annihilationy polynomial of the matrix A.
Hence that $\operatorname{rankB}_{\mathrm{k}}=\mathrm{k}+1\left(k=0,1, \ldots, k_{0}-1\right)$ it follows that the set of equations

$$
B_{k-1} \alpha=-a^{(k)},
$$

with the unknown $\alpha=\left[\alpha_{0} \alpha_{1} \ldots \alpha_{k-1}\right]^{T} \in C^{k}$, has not the solutions.

This denotes that the polynomial (3) is the minimal polynomial of the matrix A and $\operatorname{deg} \psi(\lambda)=k_{0}$.

Now, we give the algorithm for the calculation of the degree and coefficients of the minimal polynomial of the matrix $A=\left[a_{i j}\right] \in M_{n}$.

Consider the matrix

$$
B_{n}=\left[a^{(0)} a^{(1)} \ldots a^{(n)}\right] \in M_{n^{2}, n+1}
$$

which is defined in (1).
The elements of the matrix B_{n} are denoted by $b_{i j}$, therefore $B_{n}=\left[b_{i j}\right] \in M_{n^{2}, n+1}$, where $b_{11}=1, b_{12}=$ $a_{11}^{(1)}, \ldots, b_{1, n+1}=a_{11}^{(n)}, \ldots, b_{n^{2}, n+1}=a_{n n}^{(n)}$.

We will calculate the rank of the matrix B_{n} by Gaussian elimination, except interchange and cancel of the null columns.

We obtain

$$
\operatorname{rankB} \mathrm{n}_{\mathrm{n}}=\operatorname{rank}\left[\begin{array}{cccc}
1 & b_{12} & \ldots & b_{1, n+1} \\
0 & b_{22}^{(1)} & \ldots & b_{2, n+1}^{(1)} \\
0 & b_{32}^{(1)} & \ldots & b_{3, n+1}^{(1)} \\
\ldots & \ldots & \ldots & \ldots \\
0 & b_{n^{2}, 2}^{(1)} & \ldots & b_{n^{2}, n+1}^{(1)}
\end{array}\right]
$$

where, for example $b_{22}^{(1)}=b_{22}, \ldots, b_{2, n+1}^{(1)}=b_{2, n+1}, b_{n^{2}, 2}^{(1)}=$ $b_{n^{2}, 2}-b_{12}$.

From the Lemma 1 it follows that $n \in K=\{k \in$ $\left.N: \operatorname{rank} B_{\mathrm{k}}=\operatorname{rankB} \mathrm{B}_{\mathrm{k}-1}\right\}$.

Therefore there exists $r \in N$ such that $r \leq n$ and

$$
\operatorname{rank} \mathrm{B}_{\mathrm{n}}=\operatorname{rank}\left[\begin{array}{cccccccccc}
1 & b_{12} & b_{13} & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & b_{1, n+1} \\
0 & b_{12}^{(1)} & b_{23}^{(1)} & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & b_{2, n+1}^{(1)} \\
0 & 0 & b_{33}^{(2)} & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & b_{3, n+1}^{(2)} \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & b_{r r}^{(r-1)} & b_{r, r+1}^{(r-1)} \ldots & \ldots & \ldots & b_{r, n+1}^{(r-1)} \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & b_{r+1, r+2}^{(r-1)} & \ldots & b_{r+1, n+1}^{(r-1)} \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & b_{r+2, r+2}^{(r-1)} & \ldots & b_{r+2, n+1}^{(r-1)} \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & b_{n^{2}, r+2}^{(r-1)} & \ldots & b_{n^{2}, n+1}^{(r-1)}
\end{array}\right]
$$

where $b_{i i}^{(i-1)} \neq 0(i=1,2, \ldots, r)$.
From this it follows that $\operatorname{rank} \mathrm{B}_{\mathrm{j}}=\mathrm{j}(j=1,2, \ldots, n)$, $\operatorname{rankB} B_{r-1}=r, \operatorname{rank} B_{r}=r$.

Therefore $k_{0}=\min K=r$ and $\operatorname{deg} \psi(\lambda)=r=k_{0}$.
Thus, by Gaussian elimination we can compute the degree of the minimal polynomial of the matrix A.

Hence that $\operatorname{det} B_{r-1}=\operatorname{det} B_{k_{0}-1} \neq 0$ and $\operatorname{rank} \mathrm{B}_{\mathrm{k}_{0}}=$ rank $B_{\mathrm{k}_{0}-1}=\mathrm{k}_{0}$ it follows that the set of equations

$$
\begin{equation*}
B_{k_{0}-1} \alpha=-a^{\left(k_{0}\right)} \tag{4}
\end{equation*}
$$

with the unknown $\alpha=\left[\alpha_{0} \alpha_{1} \ldots \alpha_{k_{0}-1}\right]^{T} \in C^{k_{0}}$, has only one solution and

$$
\alpha_{0}+\alpha_{1} A+\cdots+\alpha_{k_{0}-1} A^{k_{0}-1}+A^{k_{0}}=0 \in M_{n} .
$$

Therefore $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k_{0}-1}, 1$ are the coefficients of the minimal polynomial of the matrix A. The set of Eq. (4) is equivalent to the set of equations

$$
\tilde{B} \alpha=\tilde{b},
$$

where

$$
\tilde{B}=\left[\begin{array}{ccccc}
1 & b_{11} & \ldots & \ldots & b_{1 r} \\
0 & b_{22}^{(1)} & \ldots & \ldots & b_{2 r}^{(1)} \\
0 & 0 & b_{33}^{(2)} & \ldots & b_{3 r}^{(2)} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & b_{r r}^{(r-1)}
\end{array}\right], \tilde{b}=\left[\begin{array}{c}
b_{1, r+1} \\
b_{2, r+1}^{(1)} \\
\vdots \\
b_{r, r+1}^{(r-1)}
\end{array}\right],
$$

$\alpha=\left[\begin{array}{llll}\alpha_{0} & \alpha_{1} & \ldots & \alpha_{k_{0}-1}\end{array}\right]^{T}, r=k_{0}$.
Example 2. We will calculate the minimal polynomial of the matrix

$$
A=\left[\begin{array}{ccc}
3 & -3 & 2 \\
-1 & 5 & -2 \\
-1 & 3 & 0
\end{array}\right]
$$

In this example we have

$$
A^{2}=\left[\begin{array}{ccc}
10 & -18 & 12 \\
-6 & 22 & -12 \\
-6 & 18 & -8
\end{array}\right]
$$

$$
A^{3}=\left[\begin{array}{ccc}
36 & -84 & 56 \\
-28 & 92 & -56 \\
-28 & 84 & -48
\end{array}\right]
$$

$$
\operatorname{rankB} B_{3}=\operatorname{rank}\left[\begin{array}{cccc}
1 & 3 & 10 & 36 \\
0 & -3 & -18 & -84 \\
0 & 2 & 12 & 56 \\
0 & -1 & -6 & -28 \\
1 & 5 & 22 & 92 \\
0 & -2 & -12 & -56 \\
0 & -1 & -6 & -28 \\
0 & 3 & 18 & 84 \\
1 & 0 & -8 & -48
\end{array}\right]
$$

$$
=\operatorname{rank}\left[\begin{array}{cccc}
1 & 3 & 10 & 36 \\
0 & -3 & -18 & -84 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=2
$$

$$
\tilde{B}=\left[\begin{array}{cc}
1 & 3 \\
0 & -3
\end{array}\right], \tilde{b}\left[\begin{array}{c}
-10 \\
18
\end{array}\right], \quad k_{0}=2
$$

$$
\alpha=\left[\begin{array}{ll}
\alpha_{0} & \alpha_{1}
\end{array}\right]^{T}=\left[\begin{array}{ll}
8 & -6
\end{array}\right]^{T} .
$$

Therefore, $\psi(\lambda)=\lambda^{2}-6 \lambda+8$. is the minimal polynomial of the matrix A.

REFERENCES

[1] S. Barnett, Matrices in Control Theory, Van Nostrand Reinhold Company, London, 1960.
[2] T. Kaczorek, Vectors and Matrices in Automatics and Electrotechnics, WNT, Warszawa, 1998.

[^0]: *e-mail: sbialas@uci.agh.edu.pl

