www.czasopisma.pan.pl

BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 56, No. 4, 2008

An algorithm for the calculation of the minimal polynomial

S. BIAŁAS^{1*} and M. BIAŁAS²

¹ The School of Banking and Management, 4 Armii Krajowej St., 30-150 Kraków, Poland ² Faculty of Management, AGH University of Science and Technology, 30 Mickiewicza St., 30-059 Kraków, Poland

Abstract. This paper gives the simple algorithm for calculation of the degree and coefficients of the minimal polynomial for the complex matrix $A = [a_{ij}]_{n \times n}$.

Key words: matrix, minimal polynomial, characteristic polynomial.

1. Introduction

We use the standard notation. We denote by $M_{m,n}$ the set of $m \times n$ real or complex matrices. In case n = m we will write M_n instead of $M_{n,n}$.

A complex polynomial $f(\lambda)$ is called an annihilationy polynomial for a matrix $A \in M_n$ if $f(\lambda) \not\equiv 0$ and f(A) = $0 \in M_n$. The complex polynomial

$$f(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0,$$

where $a_n \neq 0$, is called monic if its leading coefficient $a_n = 1$. The monic polynomial $\psi(\lambda)$ of least degree for which $\psi(A) = 0 \in M_n$ is called the minimal polynomial of the matrix $A \in M_n$.

The properties and the applications of the minimal polynomials in the control theory have been presented in [1, 2].

In this paper the simple algorithm is given for the calculation of the degree and coefficients of the minimal polynomial.

For the matrix $A = [a_{ij}] \in M_n$ we will use the following notations:

 $\varphi(\lambda) = \det(\lambda I - A)$ – charecteristic polynomial of the matrix A,

 $\psi(\lambda)$ – minimal polynomial of the matrix A,

 $vecA = [a_{11} \ a_{12} \dots a_{1n} \ a_{21} \ a_{22} \dots a_{2n} \dots a_{n1} \ a_{n2} \dots a_{nn}]^{\mathrm{T}},$ $A^0 = I \in M_n,$ $A^k = A^{k-1}A \quad (k = 1, 2, \ldots),$ (1) $A^k = [a_{ij}^{(k)}] \quad (k = 0, 1, 2, \ldots),$ $a^{(k)} = \operatorname{vecA^{k}}(k = 0, 1, 2, \ldots),$ $B_k = [a^{(0)}a^{(1)}\cdots a^{(k)}] \ (k = 0, 1, 2, ...)$ where $a^{(k)}$ is k + 1-th column of the matrix $B_k \in M_{n^2, k+1}$,

rank (B) – rank of the matrix B, $N = \{1, 2, 3, \ldots\},\$ I or I_n – unit matrix, degf(x) – degree of the polynomial $f(\lambda)$, \emptyset – empty set.

Example 1. For the matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ we have: $a^{(0)} = [1 \ 0 \ 0 \ 1]^T, \ a^{(1)} = [a_{11} \ a_{12} \ a_{21} \ a_{22}]^T, \dots,$ $a^{(k)} = [a_{11}^{(k)} \ a_{12}^{(k)} \ a_{21}^{(k)} \ a_{22}^{(k)}]^T, \ B_0 = [a^{(0)}] = [1 \ 0 \ 0 \ 1]^T,$ $B_1 = [a^{(0)}a^{(1)}] = \begin{bmatrix} 1 & a_{11} \\ 0 & a_{12} \\ 0 & a_{21} \\ \vdots \end{bmatrix}.$

2. An algorithm for the calculation of the degree and the coefficients of the minimal polynomial

For the matrix $A = [a_{ij}] \in M_n$ we will prove the following Lemma.

Lemma 1. If the matrix $A = [a_{ij}] \in M_n$, the matrix B_k is defined by (1), then

 $K = \{k \in N : \text{ rank } B_k = \text{ rank } B_{k-1}\} \neq \emptyset \text{ and } n \in K.$

Proof. We see that if

$$\varphi(\lambda) = \det(\lambda I - A) = \lambda^n + b_{n-1}\lambda^{n-1} + \dots + b_1\lambda + b_0,$$

then

$$A^{n} + b_{n-1}A^{n-1} + \dots + b_{1}A + b_{0}I = 0 \in M_{n},$$

$$a^{(n)} = -[b_{n-1}a^{(n-1)} + \dots + b_{1}a^{(1)} + b_{0}a^{(0)}],$$

$$\operatorname{rank} B_{n} = \operatorname{rank} [a^{(0)}a^{(1)} \dots a^{(n)}]$$

$$= \operatorname{rank} [a^{(0)}a^{(1)} \dots a^{(n-1)}0] = \operatorname{rank} B_{n-1},$$

where $0 = [0 \ 0 \dots 0]^T \in M_{n^2,1}$. Therefore $n \in K$ and $K \neq \emptyset.$

Definition 1. A number $k_0 = \min K$ is called the associated rank of the matrix $A = [a_{ij}] \in M_n$.

Theorem 1. If k_0 is the associated rank of the matrix A = $[a_{ij}] \in M_n$ and $\psi(\lambda)$ is the minimal polynomial of this matrix then:

^{*}e-mail: sbialas@uci.agh.edu.pl

www.czasopisma.pan.pl

www.journals.pan.pl

S. Białas and M.Białas

1) rank $B_k = k + 1$ (k = 0, 1, ..., k₀ - 1),

2) rank $B_k = k_0 \quad (k \ge k_0),$

3) deg $\psi(\lambda) = k_0$,

where the matrix B_k is defined by the relation (1).

Proof. Let $B_k = [a^{(0)}a^{(1)}\cdots a^{(k_0-1)}a^{(k_0)}a^{(k_0+1)}\cdots a^{(k)}].$

First we will prove that $\operatorname{rankB_k} = k + 1$ ($k = 0, 1, \ldots, k_0 - 1$). From the definition of k_0 it follows that $\operatorname{rankB_{k_0}} = \operatorname{rankB_{k_0-1}}$. For $k_0 = 1$ $\operatorname{rankB_1} = \operatorname{rankB_0} = 1$. However, for $k_0 > 1$ we have:

 $\operatorname{rank}B_1 > \operatorname{rank}B_0 = 1 \Rightarrow \operatorname{rank}B_1 = 2,$

$$\operatorname{rank}B_2 > \operatorname{rank}B_1 = 2 \Rightarrow \operatorname{rank}B_2 = 3,$$

 $\mathrm{rank}B_{k_0-1}>\mathrm{rank}B_{k_0-2}=k_0-1\Rightarrow\mathrm{rank}B_{k_0-1}=k_0.$

Therefore rankB_k = k + 1 for $k \in \{0, 1, 2, ..., k_0 - 1\}$ and rankB_{k0} = rankB_{k0-1} = k₀. Hence it follows that the columns $a^{(0)}, a^{(1)}, ..., a^{(k_0-1)}$ are linear independent and the column $a^{(k_0)}$ can be written as the linear combination of the columns $a^{(0)}, a^{(1)}, ..., a^{(k_0-1)}$, so there exists $\alpha = (\alpha_0, \alpha_1, ..., \alpha_{k_0-1}) \in C^{k_0}$ such that

$$\alpha_0 a^{(0)} + \alpha_1 a^{(1)} + \dots + \alpha_{k_0 - 1} a^{(k_0 - 1)} = -a_0^{(k_0)}$$

It denotes that

$$\alpha_0 I + \alpha_1 A + \dots + \alpha_{k_0 - 1} A^{k_0 - 1} + A^{k_0} = 0 \in M_n$$

and the polynomial $f(\lambda) = \alpha_0 + \alpha_1 \lambda + \cdots + \lambda^{k_0}$ is the annihilationy polynomial of the matrix A.

For $k > k_0$, $m = k - k_0$ and any arbitrary numbers $\beta_0, \beta_1, \ldots, \beta_{m-1} \in C$ the polynomial $g(\lambda) = f(\lambda)(\beta_0 + \beta_1\lambda + \cdots + \beta_{m-1}\lambda^{m-1} + \lambda^m) = \gamma_0 + \gamma_1\lambda + \ldots + \gamma_{k-1}\lambda^{k-1} + \lambda^k$ is the annihilationy polynomial of the matrix A, too. Therefore

$$\gamma_0 I + \gamma_1 A + \dots + \gamma_{k-1} A^{k-1} + A^k = 0 \in M_n,$$

$$\gamma_0 a^{(0)} + \gamma_1 a^{(1)} + \dots + \gamma_{k-1} a^{(k-1)} + a^{(k)} = 0 \in M_{n^2, 1}.$$
(2)

In the matrix $B_k = [a^{(0)}a^{(1)}\cdots a^{(k_0-1)}a^{(k_0)}a^{(k_0+1)}\cdots a^{(k)}]$ the column $a^{(j)}$ can be multiplied by $-\gamma_j$ $(j = 0, 1, \dots, k-1)$ and added to the column $a^{(k)}$. Hence and (2) we have

$$\operatorname{rank} B_{k} = \operatorname{rank} [a^{(0)}a^{(1)} \cdots a^{(k-1)}0] = \operatorname{rank} B_{k-1}$$

Similarly transformation can be used to the matrix B_{k-1} . At the end, we have

$$rankB_{k} = rank[a^{(0)}a^{(1)}\cdots a^{(k_{0}-1)}a^{(k_{0})}0\cdots 0]$$
$$= rankB_{k_{0}} = k_{0}$$

for $k \ge k_0$. This finishes the proof of 2) of the Theorem 1. Now we prove that if $\psi(\lambda)$ is the minimal polynomial of

the matrix A then deg $\psi(\lambda) = k_0$.

Hence that $\mathrm{rank}B_{k_0}=\mathrm{rank}B_{k_0-1}=k_0$ it follows that the set of equations

$$B_{k_0-1}\alpha = -a^{(k_0)},$$

with the unknown $\alpha = [\alpha_0 \alpha_1 \dots \alpha_{k_0-1}]^T \in C^{k_0}$, has only one solution and

$$\alpha_0 I + \alpha_1 A + \dots + \alpha_{k_0 - 1} A^{k_0 - 1} + A^{k_0} = 0 \in M_n,$$

besides

$$\alpha_0 + \alpha_1 \lambda + \dots + \alpha_{k_0 - 1} \lambda^{k_0 - 1} + \lambda^{k_0}, \qquad (3)$$

is the annihilationy polynomial of the matrix A.

Hence that rank $B_k = k + 1$ $(k = 0, 1, ..., k_0 - 1)$ it follows that the set of equations

$$B_{k-1}\alpha = -a^{(k)},$$

with the unknown $\alpha = [\alpha_0 \alpha_1 \dots \alpha_{k-1}]^T \in C^k$, has not the solutions.

This denotes that the polynomial (3) is the minimal polynomial of the matrix A and $\deg \psi(\lambda) = k_0$.

Now, we give the algorithm for the calculation of the degree and coefficients of the minimal polynomial of the matrix $A = [a_{ij}] \in M_n$.

Consider the matrix

$$B_n = [a^{(0)}a^{(1)}\dots a^{(n)}] \in M_{n^2,n+1},$$

which is defined in (1).

The elements of the matrix B_n are denoted by b_{ij} , therefore $B_n = [b_{ij}] \in M_{n^2,n+1}$, where $b_{11} = 1$, $b_{12} = a_{11}^{(1)}, \ldots, b_{1,n+1} = a_{11}^{(n)}, \ldots, b_{n^2,n+1} = a_{nn}^{(n)}$.

We will calculate the rank of the matrix B_n by Gaussian elimination, except interchange and cancel of the null columns.

We obtain

$$\operatorname{rankB}_{n} = \operatorname{rank} \left[\begin{array}{cccccc} 1 & b_{12} & \dots & b_{1,n+1} \\ 0 & b_{22}^{(1)} & \dots & b_{2,n+1}^{(1)} \\ 0 & b_{32}^{(1)} & \dots & b_{3,n+1}^{(1)} \\ \dots & \dots & \dots & \dots \\ 0 & b_{n^{2},2}^{(1)} & \dots & b_{n^{2},n+1}^{(1)} \end{array} \right],$$

where, for example $b_{22}^{(1)} = b_{22}, \dots, b_{2,n+1}^{(1)} = b_{2,n+1}, b_{n^2,2}^{(1)} = b_{n^2,2} - b_{12}.$

From the Lemma 1 it follows that $n \in K = \{k \in N : \operatorname{rankB}_{k} = \operatorname{rankB}_{k-1}\}.$

www.czasopisma.pan.pl

An algorithm for the calculation of the minimal polynomial

Therefore there exists $r \in N$ such that $r \leq n$ and

	1	b_{12}	b_{13}	 				 $b_{1,n+1}$]
	0	$b_{12}^{(1)}$	$b_{23}^{(1)}$	 				 $b_{2,n+1}^{(1)}$	
${\rm rankB_n}={\rm rank}$	0	0	$b_{33}^{(2)}$	 				 $b_{3,n+1}^{(2)}$	
		•••		 				 	
$\mathrm{rank}B_n=\mathrm{rank}$	0	0	0	 0	$b_{rr}^{(r-1)}$	$b_{r,r+1}^{(r-1)}\dots$		 $b_{r,n+1}^{(r-1)}$	
	0	0	0	 0	0	0	$b_{r+1,r+2}^{(r-1)}$	 $b_{r+1,n+1}^{(r-1)}$	
	0	0	0	 0	0	0	$b_{r+2,r+2}^{(r-1)}$	 $b_{r+2,n+1}^{(r-1)}$	
	0	0	0	 0	0	 0	$b_{n^2,r+2}^{(r-1)}$	 $b_{n^2,n+1}^{(r-1)}$.	

where $b_{ii}^{(i-1)} \neq 0$ (i = 1, 2, ..., r). From this it follows that rankB_j = j (j = 1, 2, ..., n), $\operatorname{rank}B_{r-1} = r$, $\operatorname{rank}B_r = r$.

Therefore $k_0 = \min K = r$ and $\deg \psi(\lambda) = r = k_0$.

Thus, by Gaussian elimination we can compute the degree of the minimal polynomial of the matrix A.

Hence that det $B_{r-1} = \det B_{k_0-1} \neq 0$ and rank $B_{k_0} =$ $\operatorname{rank}B_{k_0-1} = k_0$ it follows that the set of equations

$$B_{k_0-1}\alpha = -a^{(k_0)},\tag{4}$$

with the unknown $\alpha = [\alpha_0 \alpha_1 \dots \alpha_{k_0-1}]^T \in C^{k_0}$, has only one solution and

$$\alpha_0 + \alpha_1 A + \dots + \alpha_{k_0 - 1} A^{k_0 - 1} + A^{k_0} = 0 \in M_n.$$

Therefore $\alpha_0, \alpha_1, \ldots, \alpha_{k_0-1}, 1$ are the coefficients of the minimal polynomial of the matrix A. The set of Eq. (4) is equivalent to the set of equations

$$\tilde{B}\alpha = \tilde{b},$$

where

$$\tilde{B} = \begin{bmatrix} 1 & b_{11} & \dots & b_{1r} \\ 0 & b_{22}^{(1)} & \dots & b_{2r}^{(1)} \\ 0 & 0 & b_{33}^{(2)} & \dots & b_{3r}^{(2)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & b_{rr}^{(r-1)} \end{bmatrix}, \tilde{b} = \begin{bmatrix} b_{1,r+1} \\ b_{2,r+1}^{(1)} \\ \vdots \\ b_{r,r+1}^{(r-1)} \end{bmatrix}$$

$$\alpha = [\alpha_0 \ \alpha_1 \ \dots \ \alpha_{k_0-1}]^T, \ r = k_0.$$

Example 2. We will calculate the minimal polynomial of the matrix

$$A = \begin{bmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{bmatrix}$$

In this example we have

$$A^2 = \left[\begin{array}{rrrr} 10 & -18 & 12 \\ -6 & 22 & -12 \\ -6 & 18 & -8 \end{array} \right],$$

Bull. Pol. Ac.: Tech. 56(4) 2008

• • •	•••			•••	
$0 \qquad b_r^{(}$	r-1) $n^2, r+2$		$b_n^{(r)}$	$(r-1)^{2}, n+1$]
$A^3 =$	$= \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix}$	6 28 28	$-84 \\ 92 \\ 84$	$56 \\ -56 \\ -48$],
$\operatorname{rankB}_3 =$	rank	0	$2 \\ -1 \\ 5 \\ -2 \\ -1$	-18	$\begin{array}{c c} -28\\ 84 \end{array}$
= rank	0 - 0 0 0 0 0		$ \begin{array}{c} 10 \\ -18 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} 36 \\ -84 \\ 0 \\ $	$\Bigg] = 2,$
$\tilde{B} = \begin{bmatrix} 1\\ 0\\ \alpha \end{bmatrix}$	_		-	$\begin{bmatrix} 0 \\ -6 \end{bmatrix}^T$	

Therefore, $\psi(\lambda) = \lambda^2 - 6\lambda + 8$. is the minimal polynomial of the matrix A.

REFERENCES

- [1] S. Barnett, Matrices in Control Theory, Van Nostrand Reinhold Company, London, 1960.
- [2] T. Kaczorek, Vectors and Matrices in Automatics and Electrotechnics, WNT, Warszawa, 1998.