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The Poincaré theorem in linear circuit synthesis
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Abstract. The paper deals with linear circuits synthesis with periodic parameters. It was proved that the time-varying voltages
and currents of inner branches of such circuits can be calculated using linear recursive equations with periodic coefficients if
signals on port are given. The stability theorem of periodic solution was formulated. Hereby described the synthesis problems
appear when compensation of power supply systems is considered.
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1. Introduction
The problem of electrical circuit synthesis which accom-
plish the assumed voltage-current distribution appears
frequently in the electrotechnics, electronic and first of all
in the power-electronic domain. It is the power-electronic
that the problem of matching source to load appears in
and it is called the compensation task. It consists in such
a modification of the receiver circuit as to meet the op-
timal condition of the source signal. The exact optimal
criteria result from the minimization of some evaluation
functionals under the condition of the prescribed value of
the provided power P. These varied functionals and their
solutions are presented in the paper [1].

The circuits connected to the existing power network
to assure the optimal signal distribution are called the
compensatory circuits. Figure 1 shows: a) the circuit with-
out compensation, b) the circuit with two-terminal shunt
compensations, c) the serious compensation, d) two-port
compensatory network.

The advantage of the two terminal compensation is its
simplicity but such a circuit does not assure appropriate
power balance. We will prove it in the shunt compensation
example (commonly used). The two terminal compensator
is usually lossy because from the power balance in Fig. 1b
results:

Fig. 1. Simple compensatory circuits: circuit without the compensator (a), shunt compensation (b), serious compensation (c),
lossless two port compensation (d)
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(uopt, iK) = (uopt, iopt) − (Y 0uopt, uopt)

= P − (Y 0uopt, uopt)
(1)

but the power condition says

P − (Y 0u0, u0) = 0 (2)

then the active power of the compensator

(uopt, iK) 6= 0

where: (,) stands for the dot product of signals, and Y 0

is the admittance operator of the load.
From (1) and (2) results that under the prescribed

power P condition, the circuit does not assure the as-
sumed power P0 of the load. On the other hand when we
prescribe P0 we arrive at the casual value of P. However,
when assuming the lossless compensatory circuit we get
an equation P = P0 but the value of P is incontrollable.

The ideal compensatory circuit is the four-terminal
network which can assure to the load the conditions be-
fore the compensation, and to the source its own optimal
conditions (Fig. 1a and 1d). Such a four terminal com-
pensatory circuit can be lossless (passive) because:

(uo, io) − (uopt, iopt) = 0 (3)

Nevertheless, the two-terminal compensatory net-
works are worth paying attention to. Because of their its
simplicity they are convenient to construct complex net-
works.

2. Time varying compensatory branch
While analyzing in detail the shrunk compensatory net-
works [2] the most advantageous seems to be the use of a
two-terminal network consisting of the linear operator Zk

and the voltage source ek (both controlled by the optimal
current signal).

ek = ek(iopt) (4)

Zk = Zk(iopt). (5)

One can formulate two equivalent conceptions of the
compensatory branch synthesis:

a) without the controlled source but with the time-varying
linear operator (5),

b) with the controlled source (4) and the stationary linear
two-terminal network Zk, often very simple

The equivalent circuits representing the foregoing con-
ceptions are shown below.

According to the conception (a) we needed to con-
struct the simple linear time-varying GC branch as shown
in Fig. 3.

The shrunk compensatory branch has to produce the
optimal voltage signal on its terminals:

u(t) = uopt(t) = e(t) − Ziopt(t)

and the optimal compensatory current (see Figs. 1b,2,3)

i(t) = iopt(t) − Y 0uopt(t)

Fig. 2. Compensatory branches representing equivalent con-
ceptions

Fig. 3. Time-varying GC compensatory branch and its discrete
counterpart

The differential equation describing the time-varying
GC branch shown in Fig. 3 has a form of (using the time
derivative of charge):

GR(t)u(t) +
d

dt
[C(t)u(t)] = i(t)

but it can be rewritten in the following way

G(t)u(t) + C(t)
du

dt
= i(t) (6)

After the discretisation of the Eq. (6) with the sam-
pling time τ we achieve the difference equation

ungn + ∆uncn = in (7)

where the instant values are: un = u(nτ), ∆un = un −
un−1, in = i(nτ), gn = G(nτ), cn = 1

τ C(nτ).
The determination of the sought discrete {gn} and

{cn} sequences from the Eq. (7) is equivocal. As to achieve
an unique solution we introduce an additional condition:

()2 + (∆cn)2 → min (8)

(for any n ∈ Integer) where:

∆gn = gn − gn−1, ∆cn = cn − cn−1.

The formula (8) minimize the parameter changes along
the time, making the practical realization of {g + n} and
{cn} easier.
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The conditions (7) and (8) make together the opti-
mization task under ‘smooth conductance and capacity
changes’ condition:

(∆gn)2 + (∆cn)2 → min
ungn + ∆uncn = in

(9)

The solution of (9) is a pair of values [gn, cn] cal-
culated from the previous ones [gn−1, cn−1]. Thus, as
a matter of fact, we seek the recurrent transformation
[gn−1, cn−1] → [gn, cn] where the instant values un, ∆un

and in are known.
Applying the Lagrange multiplier method we arrive at

the unbounded minimum task:

fλ(gn, cn) = (∆gn)2 + (∆cn)2 + λ(ungn + ∆uncn) → min
(10)

Calculating the difference of (10) we get the necessary
minimum condition:

δfλ(gn, cn) = fλ(gn + δgn, cn + δcn) − fλ(gn, cn)
= (2∆gn + λun)δgn + (2∆cn + λ∆un)δcn

+ (δgn)2 + (δcn)2 > 0
(11)

for any δgn, δcn and n ∈ Integer.
Inequality (11) is met when:

2∆gn + λun = 0
2∆cn + λ∆un = 0.

(12)

Connecting both (12) and (7) to make the set of linear
equations depending on gn, cn, λ we get:

ungn + ∆uncn = in

2gn + unλ = 2gn−1

2cn + ∆unλ = 2cn−1.

(13)

Solving the above we get the transformation:

[gn−1, cn−1] → [gn, cn]

which can be written in a matrix form[
gn

cn

]
=

1
(un)2 + (∆un)2

( [
(∆un)2 −un∆un

−un∆un (un)2

]
×

[
gn−1

cn−1

]
+

[
unin

∆unin

] ) (14)

or in a shortened form

xn = Anxn−1 + αn (15)

where

An =
1

(un)2 + (∆un)2

[
(∆un)2 −un∆un

−un∆un (un)2

]
αn =

1
(un)2 + (∆un)2

[
unin

∆unin

]
xn =

[
gn

cn

]
.

The recursive formula in the classical form allows us
to evolve the g, c parameters to reach the solution when

the strong inequality

(un)2 + (∆un)2 > 0 (16)

is met. Thus, the prescribed voltage signal and its deriva-
tive must not simultaneously be zero.

3. Multi-dimensional problem
Some generalization of the minimization procedure de-
scribed in 2 is the time-varying coefficients synthesis

x0(t), x1(t), . . . , xM−1(t)

of the linear differential equation

x0(t)u(t) + x1(t)u(1)(t) + . . . + xM−1(t)u(M−1)(t) = s(t)
(17)

where: u(t), u(1)(t), . . . , u(M−1)(t) – a prescribed signal
with its derivatives, s(t) – a single prescribed signal. Such
a problem appears in a complex multi-element linear cir-
cuit.

It is more convenient to change the differential into
the difference equation (see previous chapter)

b0
nx0

n + b1
nx1

n + . . . + bM−1
n xM−1

n = sn (18)

where: bk
n = (∆ku)n = (∆k−1u)n − (∆k−1u)n−1 – stands

for k-th derivative of the prescribed signal {un}:

un =
1
τ

u(nτ)

Also, this time the unique determination of the time-
varying vector

xn =
[
x0

n, x1
n, . . . , xM−1

n

]T

using only (18) is impossible. We require an additional
minimum condition which together with (18) makes a con-
strained minimum condition.

(bn, xn) = sn

(∆xn,∆xn) → min
(19)

where xn =
[
x0

n, x1
n, . . . , xM−1

n

]T – the vector of the
sought coefficient, ∆xn = xn−xn−1, T – stands for trans-
position.

Task (19) can be formulated in a convenient form us-
ing a matrix notation:

bT
nxn = sn

(∆xn)T ∆xn → min
(20)

Further, we can extend the foregoing problem adding
more constrains conditions, by adding more linear differ-
ence equations:

b0,0
n x0

n + b1,0
n x1

n + . . . + bM−1,0
n xM−1

n = s0
n

b0,1
n x0

n + b1,1
n x1

n + . . . + bM−1,1
n xM−1

n = s0
n

. . . . . . . . .

b0,P−1
n x0

n + b1,p−1
n x1

n + . . . + bM−1,p−1
n xM−1

n = sp−1
n

(21)
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under the condition that P < M . Then we formulate the
following minimum tasks

BT
n xn = sn

(∆xn)T ∆xn → min
(22)

where:
[BT

n ]ij = bi,j
n – the prescribed time-varying matrix;

sn =
[
s0

n, s1
n, . . . , sP−1

n

]T – the prescribed signals vector.
The solution of (22) consists in finding the values xn

by the use of the previous one xn−1. A suitable functional
for the task (22) has a form:

fλ(xn) = (∆xn)T ∆xn + xT
nBnλ (23)

where λ = [λ1, λ2, . . . , λp]
T – the vector of the Lagrange

factors.
Taking into consideration that

δ∆xn = δxn

We get the condition for the variation of (23)

δfλ(xn) = fλ(xn + δxn) − fλ(xn)

= (δxn)T ∆xn + (∆xn)T δxn

+ (δxn)T Bnλ + (δxn)T δxn = (δxn)T

× (2xn − 2xn−1 + Bnλ) + (δxn)T δxn.

(24)

The variation (24) is positive for any δxn if only

2xn − 2xn−1 + Bnλ = 0

thus
xn = xn−1 − 0.5Bnλ. (25)

Substituting (25) to the first equation of (22) we get

BT
n xn−1 − 0.5BT

n Bnλ = sn

Therefore, we get the set of linear equations for λ coeffi-
cients:

BT
n Bnλ = 2BT

n xn−1 − 2sn (26)

If BT
n Bn is not singular for any n then there exists λ

λ = 2(BT
n Bn)−1BT

n xn−1 − 2(BT
n Bn)−1sn (27)

Substituting it to (25) we get a solution of a minimum
task (22)

xn =
[
1 − Bn(BT

n Bn)−1BT
n

]
xn−1 + Bn(BT

n Bn)−1sn

(28)
which can be rewritten in a classical form (15) where:

An = 1 − Bn(BT
n Bn)−1BT

n (29)

αn = Bn(BT
n Bn)−1sn. (30)

In a particular case of the minimum task (19) or (22)
with the single constraint the recursive formula takes the
form of:

xn =
[
1 − bnbT

n

bT
nbn

]
xn−1 +

bn

bT
nbn

sn. (31)

This is a general form of (15) where:

bn =
[

un

∆un

]
; xn =

[
gn

cn

]
.

The above solution exists if for any n the norm of bn
meets the strong inequality condition

||bn|| =
√

bT
nbn 6= 0 (32)

It is clear that (16) is a particular case of (32).

4. Time-varying circuits – a stability
problem

In a real situation the input signals often change period-
ically. Thus the matrix An and αn (Eq. 15) are periodic
too, with the period N :

An+N = An

αn+1 = αn

The solution of the recursive Eq. (15) with the initial
condition x0 has the form of:

xn = Ynx0 + yn (33)

where Yn, yn, are called a resolved matrix and a vector.
Substituting the general solution (33) in (15) we get:

xn = An(Yn−1x0 + yn−1) + αn (34)

where the recursive formulas for a resolved matrix and a
vector have a from:

Yn = AnYn−1 Y0 = 1 (35)

yn = Anyn−1 + αn y0 = 0 (36)

for n = 1, 2, . . . N .
For the sake of periodicity of An and αn the recursive

formulas (35) and (36) are executed only N times. Then
we get:

(1, 0) → (Y1, y1) → (Y2, y2) . . . → (YN−1, yN−1)
→ (YN ,yN ) = (Y , y)

We call the function:

x → Yx + y (37)

the Poincaré mapping [2,3].
Therefore the Poincaré mapping for x is the ending

point of the trajectory (15) starting from x = x0 and
continuing over one period from 1 to N (Fig. 4).

Fig. 4. Poincaré mapping trajectory
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Fig. 5. Cyclic Poincaré mapping

The solution of (15) becomes N-periodic for n ap-
proaching infinity if the cyclic Poincaré mapping

xn = Y xn−1 + y (38)

drives to the steady point (Fig. 5.)

x∗ = Y x∗ + y (39)

Thus the steady point can be calculated from

(1 − Y )x∗ = y (40)

and if (1 − Y ) is not singular

x∗ = (1 − Y )−1y. (41)

On the other side the cyclic Poincaré mapping gives
the series

xn − Y nx0 = (1 + Y + Y 1 + Y 2 + . . . + Y n−1)y. (42)

From (42) results that the convergence

xn → x∗ (43)

takes place if for any x0 and n → ∞

Y nx0 → 0 (44)

or if, and only if,

(1 + Y + Y 1 + Y 2 + . . . + Y n−1) → (1 − Y )−1

for n → ∞
what results from the following formula

(1 + Y + Y 1 + Y 2 + . . . + Y n−1)(1 − Y )

= (1 + Y + Y 1 + Y 2 + . . . + Y n−1)

− (Y + Y 1 + Y 2 + . . . + Y n−1 + Y n)
= (1 − Y n) → 1

(45)

The Y n matrix is the solution of the recursive equa-
tion

xn = Y xn−1 (46)

which means that

xn = Y nx0. (47)

The solution of (46) has a form

xn = zna

and is convergent for |z| < 1 i.e. xn → 0 and Y n → 0 for
any a and x0.

Substituting above to (46) we get

zna = Y zn−1a

or
(1z − Y )a = 0

Therefore (46) converges only if all eigenvalues of Y
(from here Y is called the Poincaré matrix) meets the
condition of |z| < 1. Therefore the following theorem is
true.

The linear set of Eqs. (15) with an N-periodical An

matrix and αn vector has a stable solution if all eigenval-
ues of the Poincaré matrix z : |1z − Y | = 0 include the
unit circle i.e.

∧
z:|z|>0

|1z − Y | 6= 0 (48)

Example 1. For various couples of the periodic sig-
nals [{un}, {in}] the convergence process of [{gn}, {cn}]
was studied according to the formula (14). In the picture
6 the individual Poincaré points are marked. There are
also written the eigenvalues of the Poincaré matrix.

Example 2. In this example the synthesis problem of
the time-varying parameters will be formulated. The pa-
rameters are: conductance and capacity of the structure
shown in Fig. 7.

In the circuit shown in Fig. 7 the pairs

{u1
n, i1n}, {u2

n, i2n}, {u3
n, i3n},

stand for samples of the prescribed signals on ports and

xn =
[
x1

n, x2
n, x3

n, x4
n, x5

n, x6
n, x7

n

]T

the vector of the conductance-capacity elements of inner
branches of the three port network is the sought.

According to Fig. 7 we can formulate the following
current equations:

u1
nx1

n + (∆u1
n − ∆u2

n)x6
n + (u1

n − u3
n)x7

n = i1n

u2
nx2

n + (∆u2
n − ∆u1

n)x6
n + (u2

n − u3
n)x5

n = i2n

u3
nx3

n + ∆u3
nx4

n + (u3
n − u2

n)u5
n + (u3

n − u1
n)x7

n = i3n

they can be rewritten in a standard form which has ap-
peared before in (22)

BT
n xn = sn

i.e.:

u1
n ∆(u1

n − u2
n) u1

n − u3
n

u2
n u2

n − u3
n ∆(u2

n − u1
n)

u3
n ∆u1

n u3
n − u2

n u3
n − u1

n

×

×

x1
n i1n

x2
n = i2n

x3
n i3n

x4
n

x5
n

x6
n

x7
n
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Fig. 6. Time diagram of {gn}, {cn} of the time-varying parallel GC branch, o – marks N-period. After short time parameters
{gn}, {cn} become periodic

Fig. 7. Three-port network with conductance-capacity ele-
ments

In the example described above the problem dimen-
sions are: P = 3 (number of conditions); M = 7 (number
of the sought elements).

The matrix BT
n Bn which decides about the existence

of the Eq. (28) has the following form

a + b + c b c

b b + d + e e

c e c + e + f + g

where:

a = (u1
n)2; b =

[
∆(u1

n − u2
n)

]
2; c = (u1

n − u3
n)2;

d = (u2
n)2; e = (u2

n − u3
n)2; f = (u3

n)2; g = (∆u3
n)2;

The determinant of the above matrix is equal

(a + b + c)[d(e + f + g) + e(f + g)] + (a + b)c(d + e)
+ ab(c + e + f + g) + bc(3e + f + g)

and all its elements are positive, so the determinant will
usually be nonzero. Therefore, the set of recursive Eq. (28)
exists.

5. Additional conditions
The next generalization of (22) is the minimum task with
the additional elements of power condition.

∆xT
n∆xn → min

BT
n xn = sn

xT
nQnxn = qn

(49)

Qn – a positive symmetric matrix for any n
qn – a prescribed signal.

Introducing the vector of Lagrange multiplier λ =
[λ1, λ2, . . . , λp, ]

T an appropriate functional can be writ-
ten as

fλ0,λ(xn) = (∆xn)T ∆xn + λ0x
T
nQnx − 2λT Bnxn (50)

and its variation is equal

δfλ0,λ(xn) = fλ0,λ(xn + δxn) − fλ0,λ(xn)

= 2((∆xn)T + λ0x
T
nQn − λT BT

n )δxn

+ (δxn)T (1 + λ0Qn)δxn

which gives the optimizing equation:

(1 + λ0Qn)xn = xn−1 + Bnλ. (51)

However, for the indeterminate Lagrange coefficients
we must formulate an additional set of the differential
equations:

dλ0

dt
= xT

nQnxn − qn

dλ

dt
= sn − BT

n xn (52)

The stable singular point of (52) i.e.

dλ0

dt
→ 0,

dλ

dt
→ 0

and Eq. (51) make the solution of (49). The existence of
such a singular point has been proved in [2]. Thus, the
recursive Eq. (51) with (52) determine the trajectory of
the element’s vector {xn}.
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Fig. 8. The time-varying parameters g, c for the signals u and i from Figs. 6a and 6c calculated according to formula (61),
o – marks N-period

Example 3. In the elementary circuit shown in fig 3.
we put the extended minimum task

∆xT
n∆xn → min

bT
nxn = in

xT
nxn = qn

(53)

bn =
[

un

∆un

]
; xn =

[
gn

cn

]
in which the condition of limiting the values of the circuit
elements was added to the original Eq. (9).

The optimizing Eq. (51) now takes a form:

xn =
1

1 + λ0
(xn−1 + λ1bn) (54)

where the lamdas are sought from the additional differen-
tial equations:

dλ0

dt
=

1
(1 + λ0)2

(
xT

n−1 + λ1b
T
n

)
(xn−1 + λ1bn) − qn

dλ1

dt
= in − 1

1 + λ0
bT

n (xn−1 + λ1bn). (55)

Substituting the following 1 + λ0 = µ, λ1 = λ we get
the equation of singular point (55) in a shortened form

xT
n−1xn−1 + 2λbT

nxn−1 + λ2bT
nbn = qnµ2

λbT
nbn = inµ − bT

nxn−1 (56)

The solution of (56) has a fairly simple form

µn =

√
(xT

n−1xn−1)(bT
nbn) − (bT

nxn−1)2

qn(bT
nbn) − i2n

(57)

λn =
inµn − bT

nxn−1

bT
nbn

. (58)

The recursive Eq. (54) has now an explicit form in its
right side without the additional differential equations:

xn =
1
µn

(xn−1 + λnbn) (59)

the functions µn, λn are defined according to (57 i 58).
From the analysis of the Eq. (57) results that the con-

dition to the real µn exists has a form

qnbT
nbn − i2n > 0

or

qn >
(in)2

(un)2 + (∆un)2
. (60)

Received inequality (60) is the relation between three sig-
nals involved in this task.

Substituting some real signals to the formulas (57, 58
and 59) the recursive Eq. (59) for the sequences {gn},
{cn} takes a form

gn =
1
µn

(gn−1 + λnun)

cn =
1
µn

(cn−1 + λn∆un) (61)

where
µn =√

[(gn−1)2 + (cn−1)2][(un)2 + (∆un)2] − (ungn−1 + ∆uncn−1)2

qn[(un)2 + (∆un)2] − (in)2
,

λn =
inµn − (ungn−1 + ∆uncn−1)

(un)2 + (∆un)2
.

The resultant recursive formula is now nonlinear. The nu-
merical example of the above formula is shown in Fig. 8.

6. Conclusion and some realization
of time-varying elements

The present article considered mainly the synthesis of the
time-varying branch G(t)C(t) and the circuits constructed
with it. Such circuits are able to maintain the assumed
signals on ports. It was proved that the parameters g(t),
c(t) are sought with some recursive formulas. In a particu-
lar case such formulas have periodic coefficients. To solve
them the algorithm (35–36) was introduced. It was called
the periodic iteration scheme [2] similarly to the case of
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differential equation [4]. Now we will make some remarks
on the technical realization of the time-varying branches
G(t)C(t). Figure 9 shows some realization of the element
{gn} based on a high-low switch conception. The switch
period is τ .

As to the negative time-varying conductance realiza-
tion make possible we must use the negative constant one.
Figure 9 depicts it. Analogically we can realize {cn} ele-
ment. Another conception is presented in Fig. 10 [5].

Fig. 9. Binary controlled time-varying conductance

Fig. 10. Realization of {gn} based on a high-low switch concept

According to this conception the function g is realized
of value – in binary mode – equal

g = (X020 + X121 + X222 + . . . + X02B−1)γ

This conductance is driven by 0-1 switching vector (B-
bits)

X = (X0, X1, X2, . . . XB−1), Xi ∈ {0, 1}

In that way the control in the range
[
0, (2B − 1)γ

]
with the γ quantization error is possible. As to make
negative values possible we must add the shrunk con-
stant negative conductance (Fig. 10). Such circuit makes
the realization of the conductance in symmetric range[
−(2B − 1)γ, (2B − 1)γ

]
possible. Analogically we can re-

alize the {cn} element.
As a matter of fact the realization of G(t)C(t) branch

is based on a driving algorithm and a transformation:[
un

in

]
→

[
gn

cn

]
with the use of periodic iteration algorithm. This trans-
formation can be realized diversely e.g. with the use of a
controlled voltage source.

In this way we arrive at a general compensation theo-
rem in which conductance is substituted by an equivalent
source. This principle is depicted in Fig. 11.

The controlled voltage source can be realized in di-
verse ways. One is the two voltage level PWM modulation
shown in Fig. 12 [2]. The branch with PWM source can
imitate many other branches.

Fig. 11. General compensation theorem

Fig. 12. Realization of voltage controlled source with two voltage level modulation
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Fig. 13. Realization of negative conductance using the PWM voltage source

Fig. 14. Realization of time-varying G(t)C(t) branch using the PWM voltage source

In Figs. 13 and 14 the negative conductance and
G(t)C(t) branch realization are shown, with the voltage
controlled source used. Also the driving rules of the volt-
age source in an analog and a digital form are written
there. For the digital version the following symbols are
introduced:

e = col
n

[en]; u = col
n

[un]

G = diag
n

[gn]; C = diag
n

[cn]; D − difference matrix.

These are the ‘intelligent’ systems which respond to
the input signal u and control the source e according to
the appropriate algorithm. Such branches as well as time-
varying GC branches, can realize the optimal voltage-
current distribution on the complex power networks. This
issue is described in more detail in [6].
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