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A computational continuum-discrete model of materials
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Abstract. The paper contains a description of a multiscale algorithm based on the boundary element method (BEM) coupled
with a discrete atomistic model. The atomic model uses empirical pair-wise potentials to describe interactions between atoms.
The Newton-Raphson method is applied to solve a nanoscale model. The continuum domain is modelled by using BEM. The
application of BEM reduces the total number of degrees of freedom in the multiscale model. Some numerical results of simulations
at the nanoscale are shown to examine the presented algorithm.
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1. Introduction

Recently, multiple-scale models of engineering materials
have been developed to address the coupling of different
length scales for various applications.

The strength and stiffness of engineering materials are
effected by the characteristics at various length scales.
Atomic defects such as vacancies and dislocations play
a role at the atomic scale, while characteristics of grain
boundaries at the micro- or meso-scales contribute to the
material strength. In order to understand and predict me-
chanical behaviours of engineering materials it is neces-
sary to incorporate all those characteristics in different
length scales.

Most of the multi-scale models considered two neigh-
bouring length scales, while some other examines bridged
more than two length scales. Coupling of a discrete model
such as an atomic model and continuum model was un-
dertaken in [1]. A recent survey on multi-scale modelling
was provided in [2]. It summarized and compared various
coupling techniques between the atomic model and a con-
tinuum model. In all papers [2,3] the continuum model is
considered in the framework of the finite element method
(FEM). The coupling molecular dynamics (MD) and FEM
is presented in [3].

This paper deals with a multiscale algorithm based on
the boundary element method (BEM) coupled with a dis-
crete atomistic model. It is a developed version of the own
approach presented in [4,5]. In this approach, the material
behaviour at the atomic level can be simulated and the
total number of degrees of freedom is reduced, because
in most cases only a small part of the multi-scale model
contains atoms and BEM does not need discretization of
the continuum’s domain. The discrete scale is modelled
using Lennard-Jones potential. This potential is sufficient

for benchmark problems, but for more realistic compu-
tations potentials like Embedded-Atom-Method EAM [6]
should be used. Examples of analysis using one-scale MD
and Morse potential can be found in [7]. The presented
multiscale algorithm can be used for different types of in-
teratomic potentials. The potentials in the atomic scale
are prepared using results from ab initio computations.

2. The continuum model
Consider a continuum model of material on the microscale
level as an elastic medium which occupies a domain Ω
bounded by a boundary Γ. The field of displacement
u(z), z ∈ Ω, is described by Navier-Lame equation:

(λ + µ)grad divu + µ∇2u + b(z) = 0, z ∈ Ω (1)

where λ and µ are the Lame parameters characterizing
the material medium.

Equation (1) should be completed by boundary con-
ditions:

u(x) = uo(x), x ∈ Γu

t(x) = σn = to(x), x ∈ Γt

(2)

where σ = (σij) is a stress tensor, n is a unit normal vector
outward to the boundary Γ, Γu ∪Γt = Γ and Γu ∩Γt = ∅.

To solve the boundary-value (1) and (2) the boundary
element method is used [8]. The problem is transformed
to the following vector boundary integral equation:

c(x)u(x) +
∫
Γ

T(x,y)u(y)dΓ(y)

=
∫
Γ

U(x,y)t(y)dΓ(y) +
∫
Ω

U(x, z)b(z)dΩ(z)
(3)

where: U(x,y) and T(x,y) are the fundamental solutions
of electrostatics, u and t are the vectors of displacements
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and tractions, respectively, b(z), z ∈ Ω, denotes a vector
of body forces, c is a free term coefficient which depends
on the boundary geometry.

To solve Eq. (3) the boundary Γ of the continuum do-
main Ω is discretized using three node quadratic bound-

ary elements Γe, Γ =
E∪

e=1
Γe. The boundary fields of dis-

placements and tractions are approximated by means of
nodal values and shape functions:

u = Nun

t = Ntn.
(4)

The boundary element method [8] is applied to solve
approximately the Eq. (3). Second order shape functions
are used to approximate boundary tractions and displace-
ments. Algebraic counterpart of Eq. (3) is given in matrix
form:

[H]{u} = [G]{t} + {B} (5)

where the matrix [H] depends on boundary integrals of
the fundamental solution T, the matrix [G] on boundary
integrals of the fundamental solution U and the matrix c,
B depends on body forces and column matrices u and t
contain nodal values of boundary displacements and trac-
tions, respectively.

Taking into account boundary conditions (2) Eq. (4)
is transformed to system of linear algebraic equations:

[A]{X} = {Y} (6)

where the matrix [A] is built from matrices [H] and [G],
the column matrix X contains unknown nodal values of
displacements and tractions and the matrix Y depends
on boundary conditions.

A part of the boundary Γ of the continuum domain Ω
is contacted in the interface with embedded atoms. Since
the BEM model uses tractions instead of nodal forces, the
transformation of the interatomic forces to the tractions
is needed. It can be done by comparing the work of the
nodal forces F (left side) and the work of the tractions t
(right side):

unT F =
∫
Γe

uT tdΓe (7)

After substitution (4) to (7), finally one can be obtained:

tn =

∫
Γe

NT NJdΓe

−1

· F (8)

were J is the Jacobian, defined:

J =
dΓ
dξ

=

√(
dx1(ξ)

dξ

)2

+
(

dx2(ξ)
dξ

)2

(9)

x and ξ are respectively global and local coordinates.

3. The discrete model
The discrete atomic model is applied to simulate deforma-
tions of the atomistic lattice under loads. This model is

based on the equilibrium equations of atomic interaction
forces [9]. The equilibrium state of the lattice corresponds
to the minimal value of the total potential energy of the
atomic structure. The potential energy is described using
different equations depending on distance between each
2, 3 or many atoms. The parameters of the equations
are computed to provide best fit to various properties
of a material (equilibrium lattice constant, elastic con-
stants, etc.). The parameters of the potentials equations
are prepared on the base of ab initio calculations. The
best results can be obtained performing whole computa-
tions using ab initio approach, but the computer cost of
such approach would be very large. To describe the poten-
tial energy and interactions between atoms the empirical
potentials can be used:
– the Lennard-Jones 2-body potential:

Φ(rij) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

(10)

– the Morse [10] 2-body potential:

Φ(rij) = ε
[
e2α(r0−rij) − 2eα(r0−rij)

]
(11)

– the Stillinger-Weber [11] 3-body potential:

Φ(rij , rik, rjk) = v2(rij) + v3 (rij , rik, rjk) (12)

– the EAM [6] potential (many-body potential):

Φ [rij , ρ̄(r)] = ED [ρ̄(r)] + V (rij) (13)

where: Φ denotes the potential energy, r – vector contain-
ing distance between atoms, r0 is equilibrium bond length,
σ – the collision diameter and ε is the dissociation energy,
v2(rij) – pair potential, v3 (rij , rik, rjk) – triplet potential,
V (rij) – is a potential energy for core to core repulsion
between atoms, ρ̄(r) – describes the electron density and
depends on the atom density (and distances of all atom
surrounding considered one), ED [ρ̄(r)] – is the embed-
ding function depending only on electron density value
ρ̄(r). The Lennard-Jones and Morse for material used in
numerical examples functions are shown in Fig. 1.

Fig. 1. Interatomic pair potentials
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The interaction forces (Fig. 2) between each pair of
atoms in the lattice are computed as the derivative of in-
teratomic potential respect to the distance between two
atoms:

fij = −∂Φ(rij)
∂rij

nrij ; fji = −fij . (14)

Consider homogeneous deformations of an infinite rep-
resentative crystallite (Fig. 3). The kinematic relation is
given by the 1st order Cauchy-Born rule:

rij = K × Rij (15)

K is the 1st order deformation gradient which defines a
linear tangent map which is given by the tensor:

K = ∇ϕ (16)

where ϕ(X) is deformation map which relates the place-
ment X in the material configuration to the placement
x = ϕ(X) in the spatial configuration (Fig. 3).

Fig. 2. Forces acting between i-th and j -th atom

Fig. 3. The 1st order Cauchy-Born rule for homogeneous de-
formation

Since ∇ϕ can be expressed as:

∇ϕ = I + ∇u (17)

where:
∇uij =

∆uij

Rij
(18)

after substitution (16) and (17) to (15), the following ex-
pression can be obtained:

rij = Rij + ∆uij ∆uij = uj − ui (19)

Figure 4 shows the vector interpretation of (19): Xi,
Xj are the initial positions of the two atoms and the Rij

is the initial distance vector, ui and uj are displacements

applied to these atoms, respectively and rij is the resul-
tant distance vector.

Fig. 4. Initial and displaced positions of the two atoms

Since the interaction force between atoms in displaced
position can be written as:

fij(rij) = fij(rij)
rij

rij
. (20)

After substitution (14) and (19) into above equation,
the following expression can be formulated:

fij(rij) = fij(rij)
∆uij

rij
+ fij(rij)

Rij

rij
(21)

and the following equilibrium equation can be formulated:

fij(rij)
∆uij

rij
− fij(rij)

Rij

rij
= 0 (22)

or in the matrix form (for two-dimensional case):
k 0 −k 0
0 k 0 −k
−k 0 k 0
0 −k 0 k




uix

uiy

ujx

ujy

 =


fix

fiy

fjx

fjy

 (23)

where: k := fij(rij)/rij .
This system of equations describing one atomic bond-

ing, is nonlinear and must be transformed into the form,
which can be solved using an iterative method. After some
transformations, system of equations can be expressed as:

k 0 −k 0
0 k 0 −k
−k 0 k 0
0 −k 0 k




uix

uiy

ujx

ujy

 −


k(xi − xj)
k(yi − yj)
k(xj − xi)
k(yj − yi)

 =


0
0
0
0


(24)

or
L(u) = 0 (25)

where

L(u) =


L1

L2

L3

L4

 ≡ k


(uix − ujx) − (xi − xj)
(uiy − ujy) − (yi − yj)
(ujx − uix) − (xj − xi)
(ujy − uiy) − (yj − yi)

 (26)

The system of nonlinear Eqs. (25) is solved iteratively,
using the Newton-Raphson method:

u(n+1) = u(n) −
[
L′(u(n))

]−1

L(u(n)) (27)
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where:

L′ =


∂L1
∂uix

∂L1
∂uiy

∂L1
∂ujx

∂L1
∂ujy

∂L2
∂uix

∂L2
∂uiy

∂L2
∂ujx

∂L2
∂ujy

∂L3
∂uix

∂L3
∂uiy

∂L3
∂ujx

∂L3
∂ujy

∂L4
∂uix

∂L4
∂uiy

∂L4
∂ujx

∂L4
∂ujy

 . (28)

The Jacobian matrix L’ and the vector L are com-
puted for all atoms, which interact with others in circular
area. The cut-off radius is defined as a multiplicity of the
lattice constant. After aggregation of L’ and L, the con-
straints are applied using elimination method. The main
concept is to assume some initial positions of molecules
(eg. undeformed lattice) and obtain final, stable equilib-
rium configuration of atoms with appropriate boundary
conditions.

4. The multiscale model
The construction of the multiscale model is shown in Fig.
5. The discrete model occupies only rather small area
of the model Ωa, where the simulation at the nanoscale
should be performed. The rest of the structure Ω is mod-
elled by BEM.

Fig. 5. The coupled BEM-atomic multiscale model

Fig. 6. The algorithm of solving coupled atomistic-BEM model

The interface Γa contains so-called embedded atoms
which coordinates are equal to the corresponding nodes
of boundary elements. The boundary conditions are ap-
plied on the continuum model.

The algorithm of solving the coupled multiscale model
is presented in the Fig. 6.

In the first step, the microscale boundary conditions
are applied and the BEM model is solved (Fig. 6). Dis-
placements of the interface atoms are obtained and intro-
duced as initial displacements of the outer boundary of
the atomic lattice. In the next step, equilibrium positions
of the atoms in the nanoscale model are computed, using
the method described in previous section. Finally, forces
acting on interface atoms are computed and introduced as
a tractions nodal values to the BEM model. These com-
putations are repeated iteratively until the stop condi-
tion is satisfied. The stop condition is executed when the
difference between displacements of the embedded atoms
during two iterations is less than an admissible value (er-
ror) ε.

5. Numerical examples
Some numerical simulations were performed using the
technique described in above sections. In the first example
the plate witch the u-shape notch under the shear load is
presented (Fig. 7a):

Fig. 7. The plate with the notch under the tensile load: ini-
tial equilibrium without any load (a), equilibrium state of the

loaded plate (b)

The left side of the plate is constrained and the shear
load is applied on the opposite side. Some imperfections
are introduced to the hexagonal atomic lattice. Dimen-
sions of the plate are 18×12 nm. The continuum model
contains 61 quadratic elements and 244 degrees of free-
dom. The atomic model contains 282 atoms, 546 degrees
of freedom. The Lennard-Jones potential was used with
the following parameters: σ = 0.2575 nm, ε = 0.1699
nN*nm, r0 = 0.289 nm, values are taken from [12]. The
potential describe material with properties close to the
aluminum.
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Figure 7b shows the result of the numerical simulation.
The atoms displaced to the new equilibrium positions un-
der the loaded continuum model. It can be observed that
a crack at the centre of the notch is arising.

The next example shows a plate with the U-shape
notch (Fig. 8a):

The bottom of the plate is constrained and the shear
load is applied on the right side. Dimensions of the
plate are 40×27 nm. The continuum model contains 113
quadratic elements. The atomic model contains 884 atoms
(1768 degrees of freedom). The parameters and material
properties are the same as in previous example.

Results of the numerical simulations are presented in
Fig. 8b. The atoms moved to find a new equilibrium state.
Opening of the cracks at the corners of the notch can be
observed.

Fig. 8. The plate with U-notch under the shear load: initial
equilibrium without load (a), equilibrium state under shear

load (b)

6. Final remarks
This kind of analysis gives possibility of simulation, e.g.
slips, crack behaviour and fracture at the atomic level and
also may be used in modelling some technological pro-
cesses in material science. The more realistic results can
be obtained using EAM potential. The presented exam-
ples can be treated as benchmark problems. The conver-
gence of the Newton-Raphson method and the total num-
ber of iterations strongly depend on the initial positions of
the atoms and their displacements taken from BEM. How-
ever, for small deformations of the atomic structure, the
Newton-Raphson method is efficient. The process of min-
imization of the potential energy can be also done by us-
ing the evolutionary algorithm by Mrozek et al. [13]. The
applications of these algorithms in prediction of atoms
distribution give a great probability of finding the global
optimal solutions but this kind of approach is very time
consuming.

In the presented approach the first-order Cauchy-Born
rule requires sufficiently homogeneous deformations of the

continuum BEM model of material. This model is no more
valid if the deformation becomes inhomogeneous because
size effects cannot be taken into account. The extended
Cauchy-Born rule can be considered by introducing the
second-order deformation gradient [12]. In this case the
continuum BEM model will be described by the applica-
tion of the second order gradient stress theory [14].
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