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Chaos in a simple snap system with only
one nonlinearity, its adaptive control

and real circuit design

VIET-THANH PHAM, SUNDARAPANDIAN VAIDYANATHAN, CHRISTOS VOLOS, SAJAD JAFARI,
FAWAZ E. ALSAADI and FUAD E. ALSAADI

We study an elegant snap system with only one nonlinear term, which is a quadratic
nonlinearity. The snap system displays chaotic attractors, which are controlled easily by changing
a system parameter. By using analysis, simulations and a real circuit, the dynamics of such a snap
system has been investigated. We also investigate backstepping based adaptive control schemes
for the new snap system with unknown parameters.
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1. Introduction

There is great interest in the chaos literature in the modelling of new chaotic
systems with special properties [1, 2]. Chaotic systems are identified as non-
linear dynamical systems with characterizing properties such as sensitivity to
initial conditions, topologically mixing and also with dense periodic orbits [3].
Chaotic systems have many applications in science such as lasers [4,5], neural net-
works [6, 7], robotics [8,9], oscillators [10–14], secure communications [15–17],
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weather systems [18,19], neurons [20], circuits [21–23], memristors [24], finance
systems [25], etc.

A jerk differential equation in mechanics is defined as

d3x

dt3
= f

(
x,

dx

dt
,

d2x

dt2

)
. (1)

To simplify notations, we use D =
d

dt
. Then the ODE (1) has the compact

form
D3x = f

(
x, Dx, D2x

)
. (2)

The ODE (2) has a single variable x and a nonlinear function f (.) (named the
“jerk” [26, 27].

Several jerk equations displaying chaotic behavior have been reported in the
chaos literature [28–34].

A hyperjerk system can be defined by

Dnx = f
(
x,Dx,D2 x, . . .,Dn−1x

)
(3)

for n ­ 4 [35]. In Eq. (3), D2x =
d2x

dt2
, D3x =

d3x

dt3
and higher order derivatives

can be similarly defined.
Especially, the hyperjerk system (3) for n = 4 is called a snap system [35].

Previous research has established that chaos has been discovered in snap sys-
tems [36].

Simple chaotic snap systems attracted considerable attention due to its sim-
plicity [37,38]. Five elementary chaotic snap flows were found and studied in [38].
Bao et al. contructed a snap system by applying the concept of memory el-
ement [39]. Dalkiran and Sprott proposed a snap system with an exponential
nonlinear function [37]. Dalkiran and Sprott used a Field-Programmable Analog
Array (FPAA) to realize the hyperjerk system with exponential term.

Finding new simple snap systems with chaotic behavior is still an attrac-
tive topic in research because chaos has been applied in steganography [40],
random number generator [41], multiuser communication [42], and cryptosys-
tems [43–48], etc. Moreover, further studies should be done about hyperjerk
systems with quadratic nonlinear terms because they are elegant and possess
algebraic simplicity [35].

A novel snap system with only one nonlinearity is studied in our work. Section
2 presents dynamics of the snap system. In Sec. 3, we realize the simple snap
system in a real circuit. Adaptive control of the snap system via backstepping
control method is detailed in Sec. 4. We report the adaptive synchronization of
the identical snap systems via backstepping control method in Sec. 5. We remark
noticeable conclusions in Sec. 6.
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2. The snap system and its dynamics

2.1. The snap system with only one nonlinearity

In order to design a new snap system, we consider the following hyperjerk
equation

f
(
x,Dx,D2 x,D3x

)
= −ax−Dx−D3 x+ bxD2x. (4)

It is simple to observe that the proposed hyperjerk function f consists of just
one quadratic nonlinear term.

We define new phase variables as

x1 = x, x2 = Dx, x3 = D2x, x4 = D3x. (5)

As a result, we propose the new snap system:



ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = x4 ,

ẋ4 = −ax1 − x2− x4+ bx1x3 .

(6)

Here a, b are positive parameters.
The proposed system (6) includes only one quadratic nonlinear term (x1x3).
It is simple to confirm that E0 = 0 is a single equilibrium of the snap system (6).
Interestingly, for the set of parameters a = 0.2,b= 1, the calculated Lyapunov

exponents of system (6) are L1 = 0.0849, L2 = 0, L3 =−0.3014 and L4 =−0.7834
(for initial conditions (x1(0), x2(0), x3(0), x4(0)) = (0,0.1,0,0)). Therefore, snap
system (6) generates chaotic attractor as presented in Fig. 1.

2.2. Equilibrium point analysis

We start with the linearization matrix of the snap system (6) at E0 = 0:

JE =



0 1 0 0
0 0 1 0
0 0 0 1
−a −1 0 −1


. (7)

Therefore, the spectrum of the system (6) at E is characterized by the spectral
equation

|λId − JE | = λ4
+ λ3
+ λ + a = 0. (8)

For the chaotic case, (a,b) = (0.2,1), the spectral equation (8) takes the particular
form

λ4
+ λ3
+ λ +0.2 = 0 (9)
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a)

b)

c)

Figure 1: Phase portraits of the snap system for the set of parameters (a,b) = (0.2,1)

and the initial conditions x(0) = (0,0.1,0,0)
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which yields the spectral values as

λ1 = −1.4239, λ2 = −0.1941, λ3,4 = 0.309±0.7925i. (10)

We determine that the rest point E0 is an unstable point with saddle-focus type.

2.3. Dissipativity

In order to check the dissipativity of the snap system (6), we compute

∇V =
∂ ẋ1

∂x1
+

∂ ẋ2

∂x2
+

∂ ẋ3

∂x3
+

∂ ẋ4

∂x4
= −1. (11)

Hence, it is quite straightforward to confirm that the snap system (6) is dissi-
pative.

2.4. Dynamics of the snap system

Different dynamics have been observed in system (6) when varying the pa-
rameter a. As can be seen from the bifurcation diagram (Fig. 2) and Lyapunov
exponents (Fig. 3), system (6) exhibits periodic and chaotic dynamics.

Figure 2: Bifurcation diagram of system (6) for a ∈ [0.1,0.3] and b = 1

Moreover, we can take the parameter b as a control parameter for varying the
size of attractor [49–51]. As illustrated in Fig. 4, chaotic attractors are adjusted
by changing b.
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Figure 3: Calculation of Lyapunov exponents L1 (black color), L2 (blue color) and L3

(red color) of snap system (6) for a ∈ [0.1,0.3] and b = 1

3. Circuit of the simple snap system

In chaos applications, a vital topic is the hardware realization of mathematical
models [52, 53]. We unveil an electronic circuit for implementing the proposed
snap system (6) in this section.

Figure 5 illustrates the schematic of the circuit for the snap system (6), which
is based on four integrators (U1, . . ., U4).

Equations of the designed circuit of Fig. 5 are



ẋ1 =
1

RC
x2 ,

ẋ2 =
1

RC
x3 ,

ẋ3 =
1

RC
x4 ,

ẋ4 =
1

RC

(
− R

Ra

x1− x2− x4+
R

Rb

x1x3

)
,

(12)

where the variables x1, x2, x3 and x4 are the voltages of the integrators.
The circuit has been realized on a breadboard for R = 10 kΩ, R1 = 90 kΩ,

Rb = 50 kΩ, and C = 10 nF. A digital oscilloscope (HMO1002 of ROHDE &
SCHWARZ) for observing the measurements and capturing the experimental
results has been used.

In this way, the experimental phase portraits of circuit’s behavior, for the same
values of the parameters a, b as in the corresponding phase portraits of Fig. 1,
are depicted as shown in Fig. 6. As expected, the obtained experimental results
confirm the feasibility of the proposed snap system (6).
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a)

b)

c)

Figure 4: Phase portraits when changing the parameter b: green color for b = 0.6,
black color for b = 1, red color for b = 2
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Figure 5: The circuit designed for the snap system (6)
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a)

b)

c)

Figure 6: Experimental observation of circuit’s chaotic behavior in different
phase portraits
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4. Control the simple snap system

The literature on chaos has highlighted the complex dynamics of chaotic
systems, in which a tiny change of initial conditions leads completely different
trajectories [54, 55]. Scientists developed many deterministic schemes to control
chaotic dynamical systems [56]. In this section, we stabilize the new snap system
via backstepping control method.

We take the new snap system with a single feedback control given by



ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = x4 ,

ẋ4 = −ax1− x2− x4+ bx1x3+u,

(13)

where a,b are unknown parameters. The control law u uses a time-varying pa-
rameter estimate (A(t),B(t)) in lieu of (a,b).

We have the parameter estimation errors:

ea (t) = a− A(t), eb(t) = b−B(t). (14)

From (14), we get:
ėa = Ȧ, ėb = Ḃ. (15)

Then, the main adaptive control result of this section is established.

Theorem 1 The new snap system (13)is stabilized via the following feedback
control law,

u = −[5− A(t)]x1−9x2−9x3−3x4−B(t)x1x3−K z4 (16)

with a positive constant K ,

z4 = 3x1+5x2 +3x3+ x4 (17)

and the dynamics to update the parameter estimates as

{
Ȧ(t) = −z4x1 ,

Ḃ(t) = z4x1x3 .
(18)

Proof. This result is proved by applied Lyapunov stability theory [57].
In backstepping control method, we start with a quadratic Lyapunov function

V1(z1) =
1

2
z2

1 , (19)
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where
z1 = x1 . (20)

Differentiating V1 along (13), we find that

V̇1 = z1 ż1 = x1x2 = −z2
1 + z1(x1+ x2). (21)

We set
z2 = x1+ x2 , (22)

The equation (21) can be simplified as

V̇1 = −z2
1 + z1z2 . (23)

Next, we take a quadratic Lyapunov function

V2(z1, z2) = V1(z1)+
1

2
z2

2 =
1

2

(
z2

1 + z2
2

)
. (24)

Differentiating V2 along (13), we find that

V̇2 = −z2
1 − z2

2 + z2(2x1+2x2+ x3). (25)

We set
z3 = 2x1+2x2+ x3 , (26)

Using (26), the equation (25) can be simplified as

V̇2 = −z2
1 − z2

2 + z2z3 . (27)

Next, we take a quadratic Lyapunov function

V3(z1, z2, z3) = V2(z1, z2)+
1

2
z2

3 =
1

2

(
z2

1 + z2
2 + z2

3

)
. (28)

Differentiating V3 along the dynamics (13), we find that

V̇3 = −z2
1 − z2

2 − z2
3 + z3(3x1+5x2+3x3+ x4). (29)

We set
z4 = 3x1+5x2+3x3+ x4 . (30)

Using (30), the equation (29) can be simplified as

V̇2 = −z2
1 − z2

2 − z2
3 + z3z4 . (31)
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Finally, we set the quadratic Lyapunov function

V (z1, z2, z3, z4,ea,eb) = V3(z1, z2, z3)+
1

2
z2

4 +
1

2
e2

a +
1

2
e2

b . (32)

Differentiating V along (13), we get

V̇ = −z2
1 − z2

2 − z2
3 − z2

4 + z4(z4+ z3+ ż4)− ea Ȧ− ebḂ. (33)

The equation (33) can be expressed in a compact manner as

V̇ = −z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea Ȧ− ebḂ, (34)

where
S = z4+ z3+ ż4 = z4+ z3+3ẋ1+5ẋ2+3ẋ3+ ẋ4 . (35)

It is easy to see that

S = (5− a)x1+9x2+9x3+3x4+ bx1x3+u. (36)

We substitute the adaptive control law (16) into (36) and get

S = −[a− A(t)]x1+ [b−B(t)]x1x3−K z4 . (37)

Using (15), it is easy to simplify (37) as

S = −ea x1+ ebx1x3−K z4 . (38)

Combining (38) and (34), we find that we obtain

V̇ = −z2
1 − z2

2 − z2
3 − (1+K )z2

4 + ea

[
−z4x1− Ȧ

]
+ eb

[
z4x1x3− Ḃ

]
. (39)

It is simple to confirm that V̇ is a negative semi-definite because of

V̇ = −z2
1 − z2

2 − z2
3 − (1+K )z2

4 . (40)

Using Barbalat’s lemma [57], it verifies that z(t)→ 0 asymptotically as times
goes to infinity for all initial conditions z(0) in R4.

As a consequence, it confirms that x(t) converges to 0 asymptotically as t→∞
for all values of x(0) ∈ R4. �

For our numerical example, we suppose that the parameters of the new snap
system (13) are taken as (a,b) = (0.2,1), a chaotic case.

We choose the new snap system (13) with initial conditions x1(0) = 3.5,
x2(0) = 2.9, x3(0) = 1.3 and x4(0) = 4.8.

Th initial conditions of the parameter estimates are A(0) = 12.4 and B(0) =
9.5. In addition we take the parameter K = 25.

The asymptotic convergence of the controlled state x(t) is exhibited in Fig. 7,
when the controls (16) and (18) are implemented.
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Figure 7: The states of the simple snap system (13) when are controlled

5. Synchronization of the identical snap systems

Chaos synchronization plays a vital role in chaos studies [58–60]. In this
section, for synchronization between a pair of identical new snap systems (master
and slave systems), we use backstepping control method.

We consider the master and slave snap systems (41), (42):



ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = x4 ,

ẋ4 = −ax1 − x2− x4+ bx1x3 ;

(41)



ẏ1 = y2 ,

ẏ2 = y3 ,

ẏ3 = y4 ,

ẏ4 = −ay1− y2− y4+ by1y3+u.

(42)

Here a,b are unknown parameters and u is an adaptive feedback control law
which uses a time-varying parameter estimate (A(t),B(t)) in lieu of (a,b).

The complete synchronization error is

ei (t) = yi (t)− xi (t) (i = 1, 2, 3, 4). (43)
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The synchronization error dynamics for the snap systems is obtained as fol-
lows: 

ė1 = e2 ,

ė2 = e3 ,

ė3 = e4 ,

ė4 = −ae1 − e2 − e4 + b(y1y3− x1x3)+u.

(44)

We get the parameter estimation errors:

ea (t) = a− A(t), eb(t) = b−B(t). (45)

It is easy to see that
ėa = Ȧ, ėb = Ḃ. (46)

Then, the main synchronization result is presented.

Theorem 2 The new simple snap systems (41) and (42) are synchronized via the
control law,

u = −[5− A(t)]e1 −9e2 −9e3−3e4 −B(t)(y1y3− x1x3)−K z4 (47)

with a positive constant K ,

z4 = 3e1 +5e2 +3e3+ e4 (48)

and the following dynamics to update the parameter estimates

{
Ȧ(t) = −z4e1 ,

Ḃ(t) = z4(y1y3− x1x3).
(49)

Proof. By using Lyapunov stability theory [57], this result is proved.
In backstepping control method, we start with a quadratic Lyapunov function

V1(z1) =
1

2
z2

1 , (50)

where
z1 = e1 . (51)

Differentiating V1 along (44), we find that

V̇1 = z1 ż1 = e1e2 = −z2
1 + z1(e1 + e2). (52)

We set
z2 = e1 + e2 . (53)
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The equation (52) can be simplified as

V̇1 = −z2
1 + z1z2 . (54)

Next, we take a quadratic Lyapunov function

V2(z1, z2) = V1(z1)+
1

2
z2

2 =
1

2

(
z2

1 + z2
2

)
. (55)

Differentiating V2 along (44), we find that

V̇2 = −z2
1 − z2

2 + z2(2e1 +2e2 + e3). (56)

We set
z3 = 2e1+2e2 + e3 . (57)

Using (57), the equation (56) can be simplified as

V̇2 = −z2
1 − z2

2 + z2z3 . (58)

Next, we take a quadratic Lyapunov function

V3(z1, z2, z3) = V2(z1, z2)+
1

2
z2

3 =
1

2

(
z2

1 + z2
2 + z2

3

)
. (59)

Differentiating V3 along the dynamics (44), we find that

V̇3 = −z2
1 − z2

2 − z2
3 + z3(3e1 +5e2+3e3 + e4). (60)

We set
z4 = 3e1+5e2 +3e3 + e4 . (61)

Using (61), the equation (60) can be simplified as

V̇2 = −z2
1 − z2

2 − z2
3 + z3z4 . (62)

Finally, the quadratic Lyapunov function is selected as a positive definite
function on R6:

V (z1, z2, z3, z4,ea,eb) = V3(z1, z2, z3)+
1

2
z2

4 +
1

2
e2

a +
1

2
e2

b . (63)

We differentiate V along (44):

V̇ = −z2
1 − z2

2 − z2
3 − z2

4 + z4(z4+ z3+ ż4)− ea Ȧ− ebḂ. (64)
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The equation (64) can be expressed in a compact manner as

V̇ = −z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea Ȧ− ebḂ, (65)

where
S = z4+ z3+ ż4 = z4+ z3+3ė1 +5ė2 +3ė3+ ė4 . (66)

It is easy to see that

S = (5− a)e1 +9e2 +9e3+3e4 + b(y1y3− x1x3)+u. (67)

We substitute the adaptive control law (47) into (67) and get:

S = −[a− A(t)]e1 + [b−B(t)](y1y3− x1x3)−K z4 . (68)

Using (46), it is easy to simplify (68) as

S = −eae1 + eb(y1y3− x1x3)−K z4 . (69)

Combining (69) and (65), we find that we obtain

V̇ = −z2
1 − z2

2 − z2
3 − (1+K )z2

4 + ea

[
−z4e1 − Ȧ

]
+ eb

[
z4(y1y3− x1x3)− Ḃ

]
. (70)

Substituting (49) into (70), V̇ is a negative semi-definite function on R6:

V̇ = −z2
1 − z2

2 − z2
3 − (1+K )z2

4 . (71)

Barbalat’s lemma [57] confirms that z(t)→ 0 asymptotically as times goes to
infinity for all initial conditions z(0) in R4.

As a consequence, it verifies that e(t) → 0 asymptotically as t →∞ for all
initial conditions e(0) ∈ R4. �

For our numerical example, we suppose that the parameters of the new snap
systems are (a,b) = (0.2,1), the chaotic case.

We take initial conditions (72) for the master snap system (41):

x1(0) = 1.2, x2(0) = 2.5, x3(0) = −4.3, x4(0) = 3.7. (72)

For the slave snap system (42), initial conditions (73) are taken:

y1(0) = 2.8, y2(0) = −4.2, y3(0) = 1.4, y4(0) = 2.5. (73)

In addition, we select A(0) = 12.7, B(0) = 6.3 and K = 25.
The complete asymptotic synchronization of corresponding states is indicated

in Figs. 8–11. The time-history of the complete synchronization error is displayed
in Fig. 12.
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Figure 8: Simulation showing the asymptotic synchronization of the state variables x1

and y1 of the snap systems (41) and (42)

Figure 9: Simulation showing the asymptotic synchronization of the state variables x2

and y2 of the snap systems (41) and (42)
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Figure 10: Simulation showing the asymptotic synchronization of the state variables x3

and y3 of the snap systems (41) and (42)

Figure 11: Simulation showing the asymptotic synchronization of the state variables x4

and y4 of the snap systems (41) and (42)
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Figure 12: Simulation showing the synchronization error between the snap systems (41)
and (42)

6. Conclusion

Great interest in investigation of hyperjerk systems having minimum number
of nonlinearities and exhibiting chaos has witnessed recently. Our work derived a
simple four-dimensional hyperjerk system, which is also known as a snap system,
with only one nonlinear term. Explicitly, we used just a quadratic nonlinearity in
our model of the new snap system. We showed that the snap-system displayed
chaotic attractors, which are controlled easily by changing a system parameter.
We presented detailed analysis, phase portraits, simulations and a real circuit
of the new snap system. Control applications for control and synchronization
of the new snap system were reported. Snap systems are simple and elegant
because they describe the time evolution of a single scalar variable. Many four-
dimensional mechanical systems can be conveniently presented as a snap system.
Chaotic behaviors generated from snap systems have many potential applications
in robotics, cryptosystems and chaos-based communication systems.
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