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Abstract. The paper deals with the problem of electromagnetic field analysis for linear, cylindrical and spherical electromechanical
converters at synchronous state of work. There are considered synchronous motor with windings on moving part (rotor, carriage) and
with permanent magnets thereon. The electromagnetic field is determined analytically with the help of separation method proposed for
each problem. The boundary conditions are formulated for electromechanical converters linear, cylindrical and spherically shaped. The
results obtained can be used as benchmark for electromagnetic field numerical analysis and force/torque calculations.

1. Introduction

The determination of forces or torques produced by
electromagnetic field in synchronous motor is important
problem due the fact that linear and spherical motors are
still of interest [1-5]. Modern technologies enable to
construct electromechanical converters with parts
occurring wide range of suitable properties such as
permanent magnets and superconductors. Especially,
synchronous motors – linear, cylindrical and spherical
present wide range of properties that can be useful for
railway transport (linear motor) and mechatronics devices
(spherical and cylindrical motors).

The intention of this paper is to present the analytical
calculations for electromagnetic forces and torques basing
on analytical solutions of electromagnetic field equations
for linear, cylindrical and spherical synchronous motors.
The analytical analysis plays important role in
electromechanical converters technology [5-7].

2. Electromagnetic field equations

For force/torque calculation the distribution of
electromagnetic field in the synchronous motor region is
needed.

The first pair of Maxwell equations [8-10] take the well-
known form

0BdivBEcurl =∧−=
r&rr

. (1)

The second pair of Maxwell equations can be presented
in vector notation as follows

DjHcurlDdiv &r
rrr

+=∧ρ= . (2)

Constitutive relations for electromagnetic field vectors
for non-hysteresis, isotropic medium [8] are

vu BH ν= ,                                   (3)

vu ED ε= ,                                   (4)

where e denote dielectric permittivity, v are magnetic
reluctivity, u, v mean particular co-ordinate of curvilinear
system co-ordinate (summation due to twice appearing
indices is accepted). For the three considered cases of
synchronous motors only one component of magnetic
vector potential does not vanish, it is denoted as third
component i.e.
• for linear problem (Cartesian co-ordinate system

1-x, 2-y, 3-z, zyx iii
rrr

=× , Lx=Ly=Lz=1 – Lame’s

coefficient Table 1)

zzzz iAiAAA
rrrr

=== ,                            (5)

• for cylindrical problem (cylindrical co-ordinate system
1-r, 2-a, 3-z, zr iii

rrr

=× α , Lr=1, La=r, Lz=1)

zzzz iAiAAA
rrrr

=== , (6)

• for spherical problem (spherical co-ordinate system

1-r, 2-j, 3-q, θϕ =× iiir
rrr

, Lr=1, Lj = rsinq, Lq=r)

θθθθ === iAiAAA
rrrr

.                            (7)

Table 1
Lame coefficients for Cartesian, cylindrical and spherical co-

ordinate systems

*e-mail: Dariusz.Spalek@polsl.pl

Co-ordinate system L1 L2 L3

Cartesian
(x1=x, x2=y, x3=z)

1 1 1

cylindrical
(x1=r, x2=α, x3=z)

1 r 1

spherical
(x1=r, x2=ϕ, x3=θ) 1 rsinθ r
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The assumed magnetic vector potential functions (5)-
(7) are due to the shape of stator magnetomotive force
pattern and adequate co-ordinate system placement. The
accuracy of such assumption for magnetic vector potential
results from the technological construction of each
electromechanical converter i.e. linear, cylindrical and
spherical. However, these assumption are not exactly
correct (e.g. end-effects), there are acceptable for analytical
analysis. The magnetic flux density of vector magnetic
potential can be presented as follows [6,8]

AcurlB
rr

= .                                (8)

The curl differential operator for curvilinear orthogonal
co-ordinate system is as follows
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hence the Eq. (8) can be rewritten in unified form with
Lame coefficients as given below
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The third component of magnetic flux density vanishes

0B3 = .                                 (11)

The above presented notation simplifies the analysis
for three cases of synchronous motors considered. It must
be underlined that the numbers do not denote tensors
components [2,11]. The magnetic field strength components
due to equation (3) for the isotropic region can be shown
in the form of

11 BH ν= ,                                (12)

22 BH ν= .                                (13)

The Maxwell equation for conducting region if electric
displacement current vanishes (small field frequency) takes
the form of

AEj)H(curl &rrrr
γ−=γ== ,                         14)

hence for third components
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Combining Eqs. (12), (13) and (15) it is obtained
equation for vector magnetic component
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where it was taken into account that for all three cases
(see Table 1) it is satisfied

0
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For homogeneous region magnetic reluctivities are
spatially constant, thus
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Subsequently, the Eq. (19) leads to relation for the linear
converter (Cartesian co-ordinate system)
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for the cylindrical converter (cylindrical co-ordinate system)
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for the spherical converter (spherical co-ordinate system)

A
A

sinrr

)rA(

r 2

2

222

2
&γ=

ϕ∂
∂

θ
ν+

∂
∂ν

. (22)

At complex analysis the time-partial derivative of A as
presented as multiplication of the operand iw (i means
imaginary unit) and the complex magnetic potential A at
the steady state for time-sinusoidal varying fields [8] as
follows

AiA ω→& ,                                  (23)

where w means rotor field pulsation. The magnetic vector
potential is represented by complex vector. The real part
of magnetic vector potential complex representation means
the time-varying solution

}AeRe{)t(A tiω= . (24)

For synchronous motors the rotor currents and field
pulsation w = 0.

Table 2
Separation method chosen for Eqs. (20), (21) and (22)

The Eqs. (20), (21) and (22) will be solved with the help
of separation method [1,12,13]. The separated functions
for all problems are collected in Table 2. These equations
take the forms as given below.

Co-ordinate system A=A(x1, x2, x3) Function 

Cartesian
(x1=x, x2=y, x3=z) A=X(x)Y(y) )ikyexp()y(Y −=

Cylindrical
(x1=r, x2=α, x3=z)

A=R(r)S(α) )ipexp()(S α−=α

Spherical
(x1=r, x2=ϕ, x3=θ) A=R(r,θ)F(ϕ) )ipexp()(F ϕ−=ϕ
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• for the linear converter (Cartesian co-ordinate system)

0Xk
dx

Xd 2

2

2

=− .                            (25)

with the solutions in the form of (Table 4)

)kxexp(b)kxexp(a)x(X −+= . (26)

• for the cylindrical converter (cylindrical co-ordinate
system)

0R
r

p

rdr
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2

2

2

2

=−+ , (27)

with the solution in the form [14] (Table 5)
pp brar)r(R −+= .                            (28)

• for the spherical co-ordinate system

0
r

R
)1(

dr

rRd
2

2

=κ+κ− ,                           (29)

with the solution (Table 6)
21 brar),r(R κκ +=θ v,                           (30)

where k1, k2 denote the solutions of square equation

θ=κ+κ 22 sin/p)1( ,                             (31)

that depend on the angle q.
The solutions presented should be combined with the

boundary conditions, then the unknown constants can be
calculated.

3. Boundary conditions for electromagnetic
field problems

There are defined four conditions for electromagnetic field
vectors [8,10,14-16,], that enable to calculate the four
unknown constants as, bs, ar, br – two for field exerted by stator
currents (index s), and two for field of rotor/rail (index r).

The magnetic field strength exerted by stator disappears
on the inner rotor surface (x=0 for linear motor, r=R for
cylindrical and spherical motors)

0BH 22 =ν= .                              (32)

For rotor magnetic field strength Eq. (32) is satisfied
on the stator surface (at x=g for linear motor, r=R+g for
cylindrical and spherical motors). These condition results
form the assumption that magnetic reluctivity of rotor and
stator core are infinitely.

The stator magnetomotive force induced by moving part
(carriage, rotor) currents leads to the condition for
tangential component of magnetic field strength on rail/
stator surface (either x=g or r=R+g) as follows

22

s
2 xL

È
B

∂
∂−=ν ,                              (33)

which is derived under the assumption that the magnetic
field strength vanishes on the outer side of winding
surface (magnetic reluctivity for stator core is infinite)
[10,17,18]. The condition (33) is satisfied for rotor
magnetic field strength at either x=0 or r=R. The
boundary conditions defined are physically motivated and
are grouped in Table 3.

For carriage/rotor with permanent magnets the the
boundary condition is written in Table 3.

Table 3

Boundary Stator field Rotor field

x =g / 

r=R+g 22

s
2 xL

È
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∂
∂

−=ν 0B2 =ν

x=0 / 

r=R 0B2 =ν
22

r
2 xL

È
B

∂
∂−=ν  - for mmf 

r2 IB =ν  - for magnets

Table 4
Solution of the differential equations

Rail field (index s) Carriage field (index r)

Solution

constants
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Magnetic flux densi
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Auxiliary functions )kxexp(kb)kxexp(ka)x(dX sss −−= kxexp(kb)kxexp(ka)x(dX rrr −−=
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4. Solutions for electromagnetic field

The analysis of electromagnetic field of relations presented
above and boundary conditions formulated in Section 3 lead
to analytical solution for electromagnetic field problem.
For the three geometrical problems chosen above the
unknown constants are calculated, easily. The solutions
are grouped in Tables 4-6.

4.1. Cartesian co-ordinate system – linear problem.
Solutions of Eq. (20) for stator and rail at boundary
conditions defined in Table 3 lead to the four unknown

constants as, bs, ar, br values. The solutions presented in
Table 4 enable to finish electromagnetic field analysis.

4.2. Cylindrical co-ordinate system. The solutions of
Eq. (21) at boundary conditions given in Table 3 enable to
calculate the four unknown constants as, bs, ar, br – see
Table 5.

The solutions presented in Table 5 enable to evaluate
magnetic field vector potential and magnetic field flux
density.

Table 5
Solution of the differential equations for cylindrical co-ordinate system

Stator field (index s) Rotor field (index r)

Solutions p
s

p
ss rbra)r(R −+= p
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Table 6
Solution of the differential equations for spherical co-ordinate system

Stator field (index s) Rotor field (index r)

Solutions 21 rbra),r(R sss
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4.3. Spherically shaped spherical electromechanical
converter – spherical co-ordinate system. The
solutions of Eq. (22) at boundary given in Table 3 enable
to derive the four unknown constants aa, ba, ar, br for stator
and spherical rotor field. The analytical solution for the
spherical problem can be presented in terms of separated
function R(r,q) and F(j) obtained with the help of separation
proposed. The solutions are presented in Table 6.

The partial differential equations are transformed into
ordinary differential Eqs. (25), (27) and (31). The solutions
for ordinary differential equations for separated functions
R( ) are verified. There are calculated left hand LD and
right hand LR sides of ordinary differential Eqs. (25), (27)
and (29) for r Î [R, R+g]. Exemplary, the ratio Acc(r)=LD/
RD for ordinary differential equation (29) for spherical
problem is presented in Fig. 1. For exact solutions it should
be satisfied Acc(r)=1).

Also, the boundary conditions fulfillments are checked
for boundary conditions (Table 3) for linear, cylindrical and
spherical problems, too. The calculated constants as, bs, ar,
br which appears in provided solutions (26), (28) and (30)
are evaluated correctly.

5. Electromechanical converters

The determination of force/torque induced by
electromagnetic field in electromechanical converters is
important problem [1-4,11,19]. For electromechanical
converters the acting force/torque plays often deciding role
for users. Modern technologies enable to construct
electromechanical converters with parts having wide range
of properties. Especially, the synchronous motors – linear,
cylindrical and spherically shaped play important role for
mechatronics and robotics purposes. The intention of this
paragraph is to present the analytical solutions for

electromagnetic force/torque for linear, cylindrical and
spherical induction motor problems. Basing on the main
equation for electromagnetic forces density there is
presented and discussed force/torque value acting in
electromechanical converters. The analytical relations for
force/torque are the fundamental for material parameters
influence analysis. The presented below solutions could
be used as a benchmark for numerical algorithms, too.

6. Electromagnetic field force equations

The electromagnetic force density is given by Eq. (A.11)
which is valid for each orthogonal curvilinear co-ordinate
system. The electric displacement can be neglected, and
Maxwell’s stress tensor consists only of magnetic field
vector components due to considered range of the frequency
for electromechanical converter. Hence, the total force
density is given by the following relation

∆−σ−=+=
rrrrrr

)(diviQff uuuL , (34)

where all functions are defined in Appendix 1. It should be
emphasized that the operator div( ) in Eq. (2) differs from
the operator divu( ) in (A.11).

For synchronous motors with coiled moving part
(carriage, rotor) the total force/torque results only from
Lorentz force, thus

∆−σ−==
rrrrr

)(diviff uuuL . (35)

The total electromagnetic force/torque for synchronous
motor with permanents magnets on moving part (carriage,
rotor) is exerted by magnets and is described only by
hysteresis component

∆−σ−==
rrrrr

)(diviQf uuu . (36)
Let us physically interpret the hysteresis component

features. For Cartesian co-ordinate system (Lx = Ly = Lz =
1, L = 1, k=0) force component for u=x of Eq. (36a)

0.12 0.15 0.19 0.22
0.999

0.9995

1

1.0005

1.001

Acc r( )

r

Fig. 1. Accuracy for differential equation solution – spherical problem
(qs=120 A, qr=300 A, R=0.1 m, g=0.05m, p=2)
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xxx Q)(divf =σ−= r
,                            (37a)

Taking into account Eq. (A.6f) it can be written

x

I
BQf u

uxx ∂
∂−== . (37b)

For depicted below simple example the physical
representation of hysteresis component force is presented.
Namely, the permanents magnets only for u = y

magnetization does not vanish 0I y ≠ .

The forced magnetic field is oriented along y-axis as
shown in Fig. 2. The permanent magnet is put into this
field so as magnetization vector is parallel to y-axis. The
electromagnetic force is given by hysteresis component and
appears at x=a where the spatial derivative of Iy does not

vanish: 0
x

I y ≠
∂
∂

.

According to Eq. (37b) force density fx > 0 appears at
x=a. The orientation of the force is rather evident due to
the placement of S-poles and N-poles as shown in Fig. 2.

Equations (35) and (36) are useful for force/torque
evaluation and they enable for surface representation of

total electromagnetic torque (see Section 7) i.e. total force/
torque can be calculated by means of surface integral, not
only by volume integral.

7. Electromechanical synchronous converters
– linear, cylindrical and spherical

The analysis of electromagnetic field is the basis for
electromechanical converter force/torque analysis. The

obtained solution for magnetic field vector potential will
be used for force/torque calculation.

7.1. Linear synchronous motor. Linear motors are used in
electrical traction and in robotics technologies. The simplified
model and dimensions thereof are presented in Fig. 2 taking
into account that only first mmf harmonic for rail is important
the magnetic vector field potential distribution both the
magnetic flux density components and the electromagnetic
force can be evaluated, analytically. The Lorentz’s force
describes the force for synchronous linear motor with coiled
rail and carriage. Otherwise, the second component – the called
hysteresis component – describes total force for
electromechanical converter with permanent magnets on
carriage. In both cases the Maxwell stress tensor leads to the
total force values with the help of well-known formula

∫
∂

ν=
V

yxe dSBBF
.                              (38)

Firstly, the electromagnetic force for synchronous motor
with coils on carriage can be evaluated by Lorentz’s force
density as follows

∫=
V

xzL dVBjF
.                                  (39)

Basing on the magnetic flux density complex
representations given in Table 4 the electromagnetic forces
can be calculated analytically (Appendix 2 and 5).

The difference between them – often called material
force – is equal to

LeFe FFF −= ,                                   (40)

and disappears according to Eq. (51) when region is
homogeneous and isotropic

0FFe = .                                     (41)

Secondly, for the synchronous motor with permanent
magnets - Fig. 3 the total force is given by Eq. (37a) and
can be evaluated by means of hysteresis component Eq.
(36) (see Appendix 6)

)eiBHL(div
L

1
f

yL

)I(
BQ yyy

y
y

y

u
uy

rr
+−−==

∂
∆∂−= , (42)

where all functions are defined in Appendix 1.

I  > 0

y

x

   permanet magnet 
magnetisation vectors 

f  > 0   for   x = a

0

y

x

B  >  0y

S - pole

N - pole

N  - pole

S - pole

x =  a

j  I /   <  0   for   x = aj xx

   outer
magnetic
    field

f  x

Fig. 2. Magnets of the exemplary electromechanical converter

Fig. 3. Linear motor with either windings or permanent
magnets on carriage

windings perm. magnets

ν

rail

y

x

x=0

x=g

carriage

move direction
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All forces are calculated for chosen linear motor
(Mathcadä accuracy 10-15 ) - Fig. 4.

The electromagnetic force is calculated twice due to both
Maxwell and Lorentz’s methods – Fig. 4. Analogously, the
electromagnetic force is calculated twice due to both
Maxwell and hysteresis component for linear synchronous
motor wit permanent magnets. The results obtained enable
to discuss influence of parameters on electromagnetic force
developed by electromechanical converter versus air-gap
width Fig. 5.

The analytical model presented enables to present
solution for electromagnetic filed distribution and force
values for linear synchronous motors both coiled and with
permanent magnets.

7.2. Cylindrical motor. The rotating - cylindrically shaped
synchronous motors are commonly used in industry. Often,

the permanent magnets are put on rotor surface for exciting
the magnetic field. Synchronous motor with coiled rotor is
considered, too. The simplified model and dimensions
thereof are presented in Fig. 6.

Let us consider the model of the synchronous motor
presented in Fig. 6. The motor is either coiled (supplied by
DC current ) or with permanent magnets that induce radial
magnetic field. The magnetic rotor does not exhibit
hysteresis phenomenon. The machine rotor is cylindrical -
and its outer radius is R. The air-gap width equals to

g=const. The stator windings (thin layer on inner stator
surface) exerts the sinusoidal 2p-pole magneto motive force

Qs(a) = Qscos(pa-2pft),                           (43)
where Qs stands for the magnitude of mmf, a is the position
angle, f means the stator supply frequency. For such a

FeL

Fe
1.0000000=

Fe 242.16495=FeL 242.16495=

Fe π h⋅ νyδ⋅ dDr x( ) Ds x( )⋅ dDs x( ) Dr x( )⋅−( )⋅ sin k ∆y⋅( )⋅:=FeL π h⋅ Ds x( )⋅ Ir⋅ sin k ∆y⋅( )⋅:=

by Maxwell stress tensor:by the Lorentz force density

Electromagnetic force:

dDr xg( ) 0.000000000=
νyδ dDr x( )⋅

Ir
1.000000000=dDs x( ) 0.000000000=

νyδ dDs xg( )⋅
θs k⋅

1.000000000=

Checking for boundary conditions fulfillment (1, 0, 1, 0):

dDr x( ) k ar⋅ ek x⋅⋅ k br⋅ e k− x⋅⋅−:=Dr x( ) ar ek x⋅⋅ br e k− x⋅⋅+:=br ar e2k xg⋅⋅:=ar
Ir

νyδ k⋅
ek x⋅ e2 k⋅ xg⋅ e k− x⋅⋅−( ) 1−

⋅:=

dDs x( ) k as⋅ ek x⋅⋅ k bs⋅ e k− x⋅⋅−:=Ds x( ) as ek x⋅⋅ bs e k− x⋅⋅+:=bs as e2k x⋅⋅:=as
θs

νyδ
ek xg⋅ e2 k⋅ x⋅ e k− xg⋅⋅−( ) 1−

⋅:=

Constants from boundary conditions for Laplace's equation:

Fig. 5. Linear motor coiled force vs. air-gap width [N vs. m]
(qs=3000 A, qr=1000 A, h=0.5 m, g=0.01 m, k=3.5 m-1)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

200

400

600

800

1000

Fe g( )

g

Fig. 4. Force calculations for synchronous linear motor with permanent magnets - Mathcad™ program
(q=3000 A, Ir=1000 A/m, h=0.5 m, g=0.01 m, k=2.5 m-1)

Fig. 6. Synchronous cylindrical motor model

R R+g

stator coils

coiled rotor or 
with PM

air-gap
rotor shaft

α
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simplified model the vector magnetic field potential,
magnetic flux density components and the electromagnetic
torque are evaluated, analytically. The Maxwell stress
tensor leads to the total electromagnetic torque by means
of the formula

∫
∂

αν=
V

re dSBBrT
 .                            (44)

For synchronous motor with coiled rotor the
electromagnetic torque can be evaluated by Lorentz force
density as follows

∫=
V

rzeL dVBrjT .                             (45)

Torques are calculated by particular relation developed
in Appendix 3 and 5. As an example the synchronous motor
with coiled rotor is taken into account. The electromagnetic
torque curves versus power angle d for two stator mmf are
presented in Fig. 7.

For the synchronous motor with permanent magnets
the total torque can be calculated with the Maxwell stress
tensor method and by means of hysteresis component -
Eq. (36), too. The hysteresis component describes the total
torque density as follows

α∂
∆∂−=

α∂
∆∂−==
α

αα r

I
B

L

)I(
BQf r

r
u

u , (46)

and it enables to calculate the total torque (Appendix 6).
The both methods give the same electromagnetic torque
values as shown in Fig. 6. For the synchronous cylindrical
motor the torque-angle curves are presented in Fig. 8.

The analyses carried for cylindrically shaped
electromechanical converter have brought out to the issue
that for the synchronous motor the hysteresis component
method can be used successfully.

7.3. Spherical motor. Spherically shaped motors are used
in robotics technologies and as actuators [1,2,9,14]. The
simplified model and dimensions thereof are presented in

Fig. 9 and its dimensions in Fig. 6 (analogously as for the
cylindrical motor)

  The analytical solution for magnetic field for the
spherical motor is given in terms of separated function
R(r,q) and F(j) obtained with the help of non-standard
separation proposed – Table 2. The exemplary spherical
induction motor which rotor contains permanent magnets
is considered. The monoharmonic magnetomotive force of
stator is spread in longitudinal direction. The permanents
magnets exert magnetic field which together with stator
field determine the magnetic field distribution and
electromagnetic torque. There is only synchronous motors
with permanent magnets on rotor surface discussed (the
coiled rotor could be considered theoretically only).

For spherical co-ordinate system (Lr = 1, Lj = rsinq, Lq

= r) for horizontal force component u = j, the Eq. (36)
describes the electromagnetic force density as follows

ϕ∂
∆∂−==+−−=
ϕ

ϕϕϕϕ
ϕ

ϕ L

)I(
BQ)eiBHL(div

L

1
f u

u

rr

,   (47)

For the permanent magnets placed in the rotor due to
the motor construction practically only magnetization

Fig. 7. Torque-angle curves for cylindrical synchronous motor:
Te(d) [Nm] for stator mmf qs = 120 [A], and Te1(d) for stator

mmf qs = 145 [A] (qr=90 A, p=2, R=0.15 m,
g=0.01 m, l=0.4 m)
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Fig. 8. Torque-angle curves for cylindrical synchronous motor
with permanent magnets: Te(d) [Nm] for Maxwell method, and

TeH(d) for hysteresis component method
(qs = 150 A, Ir=1000 A/m, p=2, R=0.15 m, g=0.025 m, l=0.5 m)
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vector for u = r is dominant, so D 0I r ≠ . Hence,

electromagnetic torque density equals to

ϕ∂
∆∂−=θ=+θ−−=θ ϕϕϕϕ

r
r

I
BsinrQ)eiBHsinr(divsinrf

rr

,(48)

hence

ϕ∂θ
∆∂

−=ϕ sinr

I
BQ r

r .                             (49)

For the synchronous motor with permanent magnets
and coiled the electromagnetic torque is calculated twice
by Maxwell stress tensor Te and hysteresis component TeH

(Appendix 4 and 6).
The both torque values are equal

∫ ϕθ==
V

eHe dVQ)sin(rTT
. (50)

Exemplary, for spherical motor with permanent
magnets the angular torque density

θ∂
∂= e

e

T
t ,                                  (51)

versus altitudinal angle q and power angle d is presented
in Fig. 8.

8. Conclusions

• The electromagnetic field analytical analyses for
synchronous motors linear, cylindrical and spherical are
obtained. However the analyses are carried out for
simplified models of electromechanical converters they
could improve design process for electromechanical
converters in spite of the fact its approximate form.

• The separation method has been used for
electromagnetic field analysis – Table 2. For spherical
co-ordinate system the non-standard separation has
been proposed. The solutions for vector magnetic field
potential are obtained and shown in Tables 4-6 for the
boundary conditions are defined - Table 3.

• The paper presents electromagnetic force/torque
calculations described in analytical way that could be
treated as benchmark tasks for numerical algorithms.

• There are approached analytically the electromagnetic
torque: Lorentz TeL for synchronous motors with coiled
moving part (carriage, rotor) and hysteresis force
component Q for synchronous motor with permanent
magnets. The electromagnetic torque for each motor
has been calculated for second times with the help of
Maxwell stress tensor method that confirms the
accuracy of the calculations carried out.

• The force/torque components indicate the physical
reason for theirs induction i.e. Lorentz force indicates
for the currents and the hysteresis component for the
permanents magnets.

• The mathematical prove for the main Eq. (34) for force
density has been provided (Appendix 1). The operator
defined in Eq. (A.6b) could be convenient due to its
mathematical form for analytical calculations.

Appendix 1. Electromagnetic field forces

Electromagnetic field force volume density in curvilinear
co-ordinate system can be presented with the help of
Maxwell equation

t

D
jHcurl

∂
∂+=
r

rr

, (A.1)

and Lorentz’s force density in the form of

BjEf L

rrrr

×+ρ= ,                                  (A.2)

that constitute one component of total electromagnetic field
force.

BjEf L

rrrr

×+ρ= .                          (A.3)

Furthermore,

, (A.4)

where it was added 0BdivH =⋅
rr

.

The constitutive relation takes the following form for
hysteresis regions

uwuwu IBH ∆−ν= ,                               (A.5)
where reluctivities are symmetrical.

The second and third component on the right-hand (4)
can be written in the form of

µµµµ −−∆−σ=+× QN)(diviBdivHBHrot uuu

rrrrrrrrr
,

(A.6a)

torque density

θ δ, te,( )
Fig. 10. Electromagnetic torque density te [N/rad] versus

altitudinal angle q [rad] (left-hand axis) and power angle d [rad]
(right-hand line) for motor with PM?s for qs = 350 A, Ir=1000
A/m, p=2, R=0.12 m, g=0.015 m, q=q1¸q2, q1=p/2-p/4, q2=p/

2+p/4, d=0¸p/2

BdivHBHrotEBjf L
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where it was denoted

( ) ( ){*}LdivLi{*}divi uu
1

uuuu ⋅= −
rr

,         (A.6b)

µµ +−=σ eiBH uuu

rrr
, (A.6c)

BHe 2
1

rr
=µ , (A.6d)

)grad(BBN uwwu2
1 ν=µ

r
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is called nonhomogenous force component
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*
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1
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,         (A.6f)

is called hysteresis component, and an auxiliary vector
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2
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u
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rr

, L=LuLvLw.          (A.6g)

The fourth and fifth component on the right-hand side
of (A.4) can be rearranged analogously

   εεεε −−∆−σ=+× QN)(diviDdivEDEl uuu

rrrrrrrrr
, (A.7)

where the constitutive relation (dielectric permittvities are
symmetrical)

uwuwu PED −ε= ,  (A.8)

and
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. (A.9a)
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and an auxiliary vector

( ) MQNdivi
t

)BD(
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rrrrrr
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r

−−−∆−σ−
∂
×∂−= . (A.9d)

Hence, Eq. (A.4) takes the form of
,(A.9e)

where

eiBHDE uuuu

rrrr +−−=σ , (A.10a)
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µε += QQQ
rrr
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The total force density
 is equal to

( ) ∆−σ−=++++=
rrrrrrrrr

uuuPL diviMQNfff ,  (A.11)

where Maxwell stress tensor equals to

eiDEBH uuuu

rrrr +−−=σ , (A.12)

and Poynting force (of electromagnetic field momentum)

t

)BD(
f P ∂

×∂=
rr

r

. (A.13)

Appendix 2. Electromagnetic force calcula-
tions - linear converter

The electromagnetic force over axial period for y Î [0,
l] equals to

∫∫
π

∂
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0
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V
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where

,(A.15)
hence
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Putting in the presented in Table 2 solutions there is
obtained

   ,  (A.17)
where Dy denotes spatial displacement between rail and
carriage fields. Furthermore
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It should be pointed out that any multiplication of
function and its derivative is real function; hence they can
be omitted in Eq. (A.5), thus (d=kDy)
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Integration over the interval [0, 2p/k] according to (A.1)
leads to relation

)sin()XdXdXX(l r
*
s

*
rs δ−πν . (A.20)

Appendix 3. Electromagnetic torque calcula-
tions – cylindrical converter

The electromagnetic force over axial period for a Î [0, 2p],
z Î [0, l] equals to
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where d denotes spatial displacement between rail and
carriage fields (the functions Rs() and Rr() depend on r and
q that is not specified). Furthermore

.          (A.32)
It should be pointed out that any multiplication of

function and its derivative is real function; hence they can
be omitted in Eq. (A.5), thus

.            (A.33)
Integration over the interval j Î [0, 2p] according to (A.1)

leads to relation
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and finally

  .               (A.35)

Appendix 5. Force/torque by Lorentz’s force
calculations – linear, cylindrical and spheri-
cal converters

The electromagnetic force/torque equals to

,      (A.36)
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where

, (A.22)
hence
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Putting in the presented in Table 3 solutions there is
satisfied

, (A.24)
where d denotes spatial displacement between rail and
carriage fields. Furthermore
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Integration over the interval [0, 2p] according to (A.1)
leads to relation

.          (A.27)

Appendix 4. Electromagnetic torque calcula-
tions – spherical converter

The electromagnetic force over axial period for j Î [0, 2p], q
Î [q1, q2] equals to
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where the current equals to

.                (A.37)

First integral (the inner one) equals to

,                   (A.38)

The second integral

.      (A.39)

The third integral equals

.       (A.40)

Appendix 6. Force/torque calculations by
means hysteresis component

∫ ∆=
V

1122
1

ee dV)IB(gradLT/F

  , (A.41)

The first integral over the volume vanishes due to the
fact that …………….
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for permanent magnets can be denoted

mag,11 BI ν=∆ . (A.43)

REFERENCES

[1] K. Davey, G. Vachtsevanos, and R. Powers, “The analysis of
fields and torques in spherical induction motors”, IEEE
Transaction on Magnetics 23 (1), 273-282 (1987).

[2] A.C. Ferreira, R. Stephan, and M.A. Cruz Moreira, “Long
armature linear synchronous motor with NdFeB field
winding”, Int. Conf. on Electrical Machine ICEM, 41 (2002).

[3] G. Kamiński, Electric Motors with Rolling Rotors, Publishing
House of the Warsaw University of Technology, Warszawa,
2003.

[4] T. Lu and A. Binder, “Analytical and experimental analysis
of losses in inverter-fed permanent magnet high-speed
machine with surface-mounted magnets”, Int. Conf. on
Electrical Machine ICEM, 180 (2002).

[5] J. Turowski, K. Zakrzewski, and R. Sikora, Analysis and
Synthesis of Electromagnetic Field, Ossolineum, Warszawa,
1990, (in Polish).

[6] S.R. Holm, H. Polinder, J.A. Ferreira, M.J. Hoeijmakers, P.
van Gelder, and R. Dill, “Analytical calculation of the magnetic
field in electrical machines due to the current density in an
airgap winding”, Int. Conf. on Electrical Machine ICEM, 20
(2002).

[7] J. Purczyński and L. Kaszycki, “Power losses and electromagnetic
torque of spherical induction motor”, Electrotechnical
Dissertations 34 (3), 819-838 (1988), (in Polish).

[8] R.S. Ingarden and A. Jamiołkowski, Classical Electrodynamics,
Elsevier-PWN, Warszawa, 1985.

[9] S. Kästner, Vectors, Tensors and Spinors, Akademie-Verlag,
Berlin, 1960, (in German).

[10] P. Szulkin and S. Pogorzelski, Fundamentals of
Electromagnetic Field Theory, WNT, Warszawa, 1964.

Table A.1
Parameters for Cartesian, cylindrical and spherical co-ordinate systems

Co-ordinat
e system

Cartesian
(x1=x, x2=y, x3=z)

cylindrical
(x1=r, x2=α, x3=z)

spherical
(x1=r, x2=ϕ, x3=θ)

X1 [0,g] [0,R+g] [0,R+g]

X 0 R R

X2 [0,2π/k] [0,2π] [0,2π]

a k p p

A 2π/k 2π 2π

X3 [0,h] [0,l] [θ1,θ2]

F/T )sin(DkhF
g

*
1reL δΘπ= )sin(DlpT

R

*
1r

2
eL δΘπ= )sin(d)sin(DRpT

2

1

R

*
1r

2
eL δθθΘπ= ∫

θ

θ

( )
)Xx(

xL

ei
)Xx(

xL
j 1D

22

iiax
r

1
22

3

2

=−δ
∂

Θ∂=−δ
∂
Θ∂=

δ−

)Xx(e
L

a
1D

iiax

2

r 2 −δΘ− δ−

X

1
*
11D

iiax

2

r
2

X

11
*
132

1

2

1

dxB)Xx(e
L

a
LdxLBjL δ− =−δΘ−= ∫∫

Xx

*
1

iiax
r

1

2 Bea
=

δ−Θ−

δ−

=

δ− Θ−=Θ− ∫∫
A 2

iiax
r

X

22Xx

*
1

iiax
r L

ia
eadxLBea 2

2
1

2

δ−
=

−

=
Θ−= i

Xx

*
1r

2
22

iax

Xx

*
1 eDAiadxLeD

1

2

1

}dxLeDAiaRe{)t(T/F
3

3
1

x

x

33
i

Xx

*
1r

2
2
1

ee =Θ−= ∫ δ−

=

)sin(dxLDAa
3

3
1

x

x

33Xx

*
1r

2
2
1 δΘ∫ =

∫ ∆−
V

112 dV)I(gradBL



Bull. Pol. Ac.: Tech. 55(3) 2007 311

Synchronous motors linear, cylindrical and spherical with permanent magnets or excited

[11] A. Demenko, “Finite element analysis of electromagnetic
torque saturation harmonics in a squirrel cage machine”,
COMPEL 18 (4), 619-628 (1999).

[12] A.N. Miliach, Principles of Electrodynamical  systems with
Three  Degrees of Freedom of Movement, Ukraine Academy
of Sciences, Kiev, 1956, (in Russian).

[13] D. Spałek, “Fast analytical model of induction motor for
approaching rotor eccentricity”, COMPEL Int. J. Computation
Mathematics in Electrical and Electronics Engineering 18 (4),
570-586 (1999).

[14] W.A. Gaworkow, Electric and Magnetic Field, WNT, Warszawa,
1962, (in Polish).

[15] L.D. Landau and E.M. Lifszyc, The classical theory of fields,
Pergamon, New York, 1951.

[16] L.D. Landau and E.M. Lifszyc, Electrodynamics Continuous
Regions, PWN, Warszawa, 1960, (in Polish).

[17] D. Spałek, “Anisotropy component of electromagnetic torque
in electrical machines”, Archives of Electrical Engineering 1,
109-126 (1999).

[18 I.E. Tamm, The Fundamentals of Electric Theory, WNT,
Warszawa, 1965.

[19] E. Bolte and C. Hahlweg, “Analysis of steady-state of high
speed induction motors with exterior rotor and conductive
layer on the slotted stator”, Int. Conf. on Electrical Machine
ICEM, 41 (2002).


