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Abstract. One of the prime tool in non-invasive cardiac electrophysiology is the recording of an electrocardiographic signal (ECG) which

analysis is greatly useful in the screening and diagnosis of cardiovascular diseases. However, one of the greatest problems is that usually

recording an electrical activity of the heart is performed in the presence of noise. The paper presents Bayesian and empirical Bayesian

approach to problem of weighted signal averaging in time domain which is commonly used to extract a useful signal distorted by a noise.

The averaging is especially useful for biomedical signal such as ECG signal, where the spectra of the signal and noise significantly overlap.

Using the methods of weighted averaging are motivated by variability of noise power from cycle to cycle, often observed in reality. It

is demonstrated that exploiting a probabilistic Bayesian learning framework leads to accurate prediction models. Additionally, even in the

presence of nuisance parameters the empirical Bayesian approach offers the method of theirs automatic estimation which reduces number

of preset parameters. Performance of the new method is experimentally compared to the traditional averaging by using arithmetic mean and

weighted averaging method based on criterion function minimization.
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1. Introduction

In the most of biomedical signal processing systems (for ex-

ample electrocardiographic signal, which is the main case of

interest in this work) noise reduction plays very important

role. Accuracy of all later operations performed on signal,

such as detections, classifications or measurements, depends

on the quality of noise-reduction algorithms. Using the fact

that certain biological systems produce repetitive patterns, an

averaging in the time domain may be used for noise attenu-

ation. Traditional averaging technique assumes the constancy

of the noise power cycle-wise, however the most types of noise

are not stationary. In these cases a need for using weighted

averaging occurs, which reduces influence of hardly distorted

cycles on resulting averaged signal (or even eliminates them).

The paper presents new method for resolving of signal

averaging problem which incorporates Bayesian and empiri-

cal Bayesian inference. By exploiting a probabilistic Bayesian

framework [1], [2] and an expectation-maximization technique

[3] it can be derived an algorithm of weighted averaging which

application to electrocardiographic (ECG) signal averaging is

competitive with alternative methods as will be shown in the

later part of the paper.

2. Signal averaging methods

Let us assume that in each signal cycle yi(j) is the sum of

a deterministic (useful) signal x(j), which is the same in all

cycles, and a random noise ni(j) with zero mean and vari-

ance for the ith cycle equal to σ2
i . Thus, yi(j) = x(j)+ni(j),

where i is the cycle index i ∈ {1, 2, . . . , M}, and the j is the

sample index in the single cycle j ∈ {1, 2, . . . , N} (all cycles

have the same length N ). The weighted average is given by

v(j) =

M
∑

i=1

wiyi(j), (1)

where wi is a weight for ith signal cycle and v(j) is the

averaged signal.

2.1. Traditional arithmetic averaging. The traditional en-

semble averaging with arithmetic mean as the aggregation

operation gives all the weights wi equal to M−1. If the noise

variance is constant for all cycles, then these weights are opti-

mal in the sense of minimizing the mean square error between

v and x, assuming Gaussian distribution of noise. When the

noise has a non-Gaussian distribution, the estimate (1) is not

optimal, but it is still the best of all linear estimators of x [4].

2.2. Weighted averaging method based on criterion func-

tion minimization. As it is shown in [8], for yi =

[yi(1), yi(2), . . . , yi(N)]
T
, w = [w1, w2, . . . , wM ]

T
and v =

[v(1), v(2), . . . , v(N)]
T

minimization the following scalar cri-

terion function

Im(w, v) =

M
∑

i=1

(wi)
mρ(yi − v), (2)

with respect to the weights vector w yields
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wi =
[ρ(yi − v)]

(1−m)−1

M
∑

j=1

[ρ(yi − v)]
(1−m)−1

. (3)

for i ∈ {1, 2, . . . , M}, where ρ(·) is a measure of dissimilarity

for vector argument and m ∈ (1,∞) is a weighting exponent

parameter. When the most frequently used quadratic function

ρ(·) = ‖·‖22 is used, the averaged signal can be obtained as

v =

M
∑

i=1

(wi)
m

yi

M
∑

i=1

(wi)m

, (4)

for the weights vector given by (2) with the quadratic func-

tion. The optimal solution for minimization (2) with respect

to w and v is a fixed point of (3) and (4) and it is obtained

from the Picard iteration.

If m tends to one then the trivial solution is obtained

where only one weight, corresponding to the signal cycle with

the smallest dissimilarity to averaged signal, is equal to one.

If m tend to infinity then weights tend to M−1 for all i. Gen-

erally, a larger m results in a smaller influence of dissimilarity

measures. The most common value of m is 2 which results

in greater decrease of medium weights [5].

2.3. Bayesian and empirical Bayesian weighted averaging

methods. Given a data set y = {yi(j)}, where i is the cycle

index i ∈ {1, 2, . . . , M} and the j is the sample index in the

single cycle j ∈ {1, 2, . . . , N}, there are made assumptions

that yi(j) = x(j)+ni(j), where a random noise ni(j) is zero-

mean Gaussian with variance for the ith cycle equal to σ2
i , and

signal x = {x(j)} has also Gaussian distribution with zero-

mean and covariance matrix B = diag(η2
1 , η2

2 , . . . , η2
N ). The

zero-mean assumption for the signal expresses the fact that

no prior knowledge about the real distance from the signal to

the isoelectric line. Thus, from the Bayes rule, the posterior

distribution over x and the noise variance is proportional to

p(x, α|x, β) =
p(y|x, α)p(x|β)p(α)

p(y)
∝
(

M
∏

i=1

αi

)

N
2 N
∏

j=1

β
1
2
j

exp



−1

2

M
∑

i=1

N
∑

j=1

(yi(j)− x(j))
2
αi −

1

2

N
∑

j=1

(x(j))
2
βj



 ,

(5)

where αi = σ−2
i and βj = η−2

j , because of assumption that

the prior p(α) is approximately constant (for large M the in-

fluence of this prior is very small). The values x and α which

maximize (5) are given by

αi = N





N
∑

j=1

(yi(j)− x(j))
2





−1

, (6)

x(j) =

M
∑

i=1

αiyi(j)

βj +
M
∑

i=1

αi

(7)

for i ∈ {1, 2, . . . , M} and j ∈ {1, 2, . . . , N}. The conditions

in equations (6) and (7) are obtained by differentiating loga-

rithm of (5) with respect to x and α respectively and setting

the results equal to zero. As can be calculated differentiating

logarithm of (5) with respect to α gives:

∂

∂αk

log







(

M
∏

i=1

αi

)

N
2 N
∏

j=1

β
1
2
j

exp



−1

2

M
∑

i=1

N
∑

j=1

(yi(j)− x(j))
2
αi −

1

2

N
∑

j=1

(x(j))
2
βj







 =

=
∂

∂αk

(

N

2

M
∑

i=1

log αi

)

−

−1

2

∂

∂αi





M
∑

i=1

N
∑

j=1

(yi(j)− x(j))
2
αi



 =

=
N

2αk

− 1

2

N
∑

j=1

(yk(j)− x(j))
2
,

(8)

and with respect to x gives:

∂

∂x(k)
log







(

M
∏

i=1

αi

)

N
2 N
∏

j=1

β
1
2
j

exp



−1

2

M
∑

i=1

N
∑

j=1

(yi(j)− x(j))
2
αi −

1

2

N
∑

j=1

(x(j))
2
βj







 =

= −1

2

∂

∂x(k)





N
∑

j=1

M
∑

i=1

(yi(j)− x(j))
2
αi



−

−1

2

∂

∂x(k)





N
∑

j=1

(x(j))
2
βj



 =

=

M
∑

i=1

(yi(k)− x(k)) αi − x(k)βk =

=

M
∑

i=1

yi(k)αi − x(k)

(

βk +

M
∑

i=1

αi

)

.

(9)

Since βj could not be observed, the iterative EM algo-

rithms is used like in [6]. Assuming the gamma prior (which

is conjugate prior distribution for the inverse of the normal

variance [1], [2]) with scale parameter λ and shape parameter

p:
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p(βj) =
λp

Γ(p)
β

p−1
j exp(−λβj), λ, p, βj > 0 (10)

for all j, as values of βj it is taken

E(βj |x(j)) =

∞
∫

0

βjp(βj |x(j))dβj =

=

∞
∫

0

βjp(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=

=

∞
∫

0

βj

√
βj

√
2π

exp
(

− 1
2
x(j)2βj

)

λp

Γ(p)
β

p−1
j exp(−λβj)dβj

∞
∫

0

√
βj

√
2π

exp
(

− 1
2
x(j)2βj

)

λp

Γ(p)
β

p−1
j exp(−λβj)dβj

=

=

λp
√

2πΓ(p)

(

− 1
2
x(j)2 − λ

)−1
β

p+
1
2

j exp
((

− 1
2
x(j)2 − λ

)

β
)

∣

∣

∣

∣

+∞

0
∞
∫

0

p(x(j)|βj)p(βj)dβj

+

+

−
(

p + 1
2

) (

− 1
2
x(j)2 − λ

)−1
∞
∫

0

p(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=

=

0 +
(

p + 1
2

) (

1
2
x(j)2 + λ

)−1
∞
∫

0

p(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=
2p + 1

x(j)2 + 2λ
.

(11)

The estimate λ̂ of hyperparameter λ can be calculated by

applying empirical method [7]. The probability distribution

function p(x(j)|λ) can be written in the form

p(x(j)|λ) =

∞
∫

0

√

βj√
2π

exp

(

−1

2
x(j)2βj

)

λp

Γ(p)
β

p−1
j exp(−λβj)dβj =

∣

∣

∣

∣

∣

(

x(j)2 + 2λ
)

βj = t2 βj = t2
(

x(j)2 + 2λ
)−1

(

x(j)2 + 2λ
)

dβj = 2tdt

∣

∣

∣

∣

∣

=
λp

Γ(p)
√

2π

∞
∫

0

(

t2

x(j)2 + 2λ

)p−
1
2

exp(− 1
2
t
2)

2t

x(j)2 + 2λ
dt =

=
λp

Γ(p) (x(j)2 + 2λ)p+
1
2

∞
∫

0

2√
2π

t
2p exp(− 1

2
t
2)dt =

=
λp (2p − 1)!!

Γ(p) (x(j)2 + 2λ)p+
1
2

,

(12)

where the last equation is the consequence of the fact that the

last integral is the 2p-th moment of standard normal distribu-

tion assuming that p is positive integer. The double factorial

is defined as follows

(2p− 1)!! = 1 · 3 · . . . · (2p− 1). (13)

Since p is a positive integer:

E(|x(j)| |λ) = 2

∞
∫

0

x(j)p(x(j)|λ)dx(j) =

= 2

∞
∫

0

x(j)
λp (2p− 1)!!

Γ(p) (x(j)2 + 2λ)
p+

1
2

dx(j) =

=
2λp (2p− 1)!!

Γ(p)

−1

(2p− 1) (x(j)2 + 2λ)
p−

1
2

∣

∣

∣

∣

∣

∣

+∞

0

=

=
2λp (2p− 1)!!

Γ(p)

1

(2p− 1) (2λ)p−
1
2

=

=
(2p− 1)!!

Γ(p) (2p− 1)
2

3
2−pλ

1
2 .

(14)

Therefore the estimate λ̂ of hyperparameter λ can be cal-

culated based on first absolute sample moment as follows

λ̂ =





Γ(p) (2p− 1)

(2p− 1)!!
2p−

3
2

1

N

N
∑

j=1

|x(j)|





2

. (15)

The results above are generalisation of those presented in [8],

where the prior distribution of βj was exponential which is the

special case of gamma distribution, for the shape parameter p

equal 1.

Therefore the proposed Empirical Bayesian Weighted Av-

eraging (EBWA.1) algorithm can be described as follows,

where ε and p (positive integer) are preset parameters:

1. Initialize v
(0) ∈ RN . Set the iteration index k = 1.

2. Calculate the hyperparameter λ(k) using (15), next β
(k)
j

using (11) for j = 1, 2, . . . , N and α
(k)
i using (6) for

j = 1, 2, . . . , M , assuming x = v
(k−1).

3. Update the averaged signal for kth iteration v
(k) using

(7) and β
(k)
j and α

(k)
i , assuming v

(k) = x.

4. If
‖v(k)−v

(k−1)‖
‖v(k)‖ > ε then k ← k + 1 and go to 2, else

stop.

When the parameter p is positive integer greater than 1,

the estimate λ̂ of hyperparameter λ can be calculated based on

third absolute sample moment. Since p is a positive integer:
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E(|x(j)|3 |λ ) = 2

∞
∫

0

x(j)3p(x(j)|λ)dx(j) =

= 2

∞
∫

0

x(j)3
λp (2p − 1)!!

Γ(p) (x(j)2 + 2λ)p+
1
2

dx(j) =

=
2λp (2p − 1)!!

Γ(p)




−1

(2p − 3) (x(j)2 + 2λ)p−
3
2

+
2λ

(2p − 1) (x(j)2 + 2λ)p−
1
2





∣

∣

∣

∣

∣

∣

+∞

0

=

=
2λp (2p − 1)!!

Γ(p)





1

(2p − 3) (2λ)p−
3
2

− 2λ

(2p − 1) (2λ)p−
1
2



 =

=
(2p − 1)!!

Γ(p)
2

5
2
−p





λ
3
2

2p − 3
− λ

3
2

(2p − 1)



 =

=
(2p − 3)!!

(2p − 3)Γ(p)
2

7
2
−p

λ
3
2 .

(16)

Therefore the hyperparameter λ can be calculated based on

third absolute sample moment as follows

λ̂ =





(2p− 3) Γ(p)

2
7
2−p (2p− 3)!!

1

N

N
∑

j=1

|x(j)|3




2
3

(17)

In this case the proposed Empirical Bayesian Weighted Aver-

aging (EBWA.3) algorithm can be described as follows, where

ε and p (positive integer greater than 1) are preset parameters:

1. Initialize v
(0) ∈ RN . Set the iteration index k = 1.

2. Calculate the hyperparameter λ(k) using (17), next β
(k)
j

using (11) for j = 1, 2, . . . , N and α
(k)
i using (6) for

j = 1, 2, . . . , M , assuming x = v
(k−1).

3. Update the averaged signal for kth iteration v
(k) using

(7) and β
(k)
j and α

(k)
i , assuming v

(k) = x.

4. If
‖v(k)−v

(k−1)‖
‖v(k)‖ > ε then k ← k + 1 and go to 2, else

stop.

However, the assumption of the gamma prior for βj is

not necessarily adequate in all cases. When no reliable prior

information concerning βj exists, it is possible to use non-

informative Jeffrey’s prior [1] given by

p(βj) = β−1
j , βj > 0. (18)

In this situation the proposed algorithm would not require

setting of additional parameters such as p or λ, because

E(βj |x(j)) =

∞
∫

0

βjp(βj |x(j))dβj =

=

∞
∫

0

βjp(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=

=

∞
∫

0

βj

√
βj

√
2π

exp
(

− 1
2x(j)2βj

)

β−1
j exp(−λβj)dβj

∞
∫

0

√
βj

√
2π

exp
(

− 1
2x(j)2βj

)

β−1
j exp(−λβj)dβj

=

=

1√
2π

(

− 1
2x(j)2

)−1
β

1
2
j exp

((

− 1
2x(j)2

)

β
)

∣

∣

∣

∣

+∞

0
∞
∫

0

p(x(j)|βj)p(βj)dβj

+

+

− 1
2

(

− 1
2x(j)2

)−1
∞
∫

0

p(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=

=

0 + x(j)−2
∞
∫

0

p(x(j)|βj)p(βj)dβj

∞
∫

0

p(x(j)|βj)p(βj)dβj

=

=
1

x(j)2
.

(19)

As can be seen the result above is identical with (11) for

λ = 0 and p = 0.

In this case the proposed Bayesian Weighted Averaging

(BWA) algorithm can be described as follows, where ε is

a preset parameter:

1. Initialize v
(0) ∈ RN . Set the iteration index k = 1.

2. Calculate β
(k)
j using (19) for j = 1, 2, . . . , N and α

(k)
i

using (6) for j = 1, 2, . . . , M , assuming x = v
(k−1).

3. Update the averaged signal for kth iteration v
(k) using

(7) and β
(k)
j and α

(k)
i , assuming v

(k) = x.

4. If
‖v(k)−v

(k−1)‖
‖v(k)‖ > ε then k ← k + 1 and go to 2, else

stop.

3. Numerical experiments

In all experiments using Weighted Averaging method based

on Criterion Function Minimization (WACFM) as well as

Bayesian and Empirical Bayesian Weighted Averaging meth-

ods (BWA, EBWA.1 and EBWA.3) calculations were initial-

ized as the means of disturbed signal cycles. Iteration were

stopped as soon as the L2 norm for a successive pair of vectors

was less than 10−6, respectively w vectors for the WACFM

and v vectors for the BWA, EBWA.1 and EBWA.3. For a

computed averaged signal the performance of tested meth-

ods was evaluated by the maximal absolute difference be-

tween the deterministic component and the averaged signal.
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The root mean-square error (RMSE) between the determin-

istic component and the averaged signal was also computed.

All experiments were run in the R1 environment for R version

2.4.0.

The simulated ECG signal cycles were obtained as the

same deterministic component with added realizations of ran-

dom noise. The deterministic component presented in Fig. 1

was obtained by averaging 500 real ECG signal cycles (2000-

Hz and 16-bit resolution) with high signal to noise ratio and

before averaging these cycles were time-aligned using the

cross correlation method. A series of 100 ECG cycles was

generated with the same deterministic component and zero-

mean white Gaussian noise with four different standard de-

viations. For the first, second, third and fourth 25 cycles, the

noise standard deviations were 10, 50, 100, 200 µV, respec-

tively. These signal cycles were averaged using the following

methods: Traditional Arithmetic Averaging (TAA), WACFM

with m = 2, BWA as well as EBWA.1 and EBWA.3 with

various values of parameter p. Subtraction of deterministic

component from these averaged signal gives a residual noise.

The RMSE and the maximal value (MAX) of residual

noise for all tested methods are presented in Table 1. The

best results for each power of noise are bolded.

However, in practice besides of Gaussian types of noise, it

can be observed random noise with heavy-tailed distribution

[9]. The example of such distribution is Cauchy distribution

with probability density function given by

f(x) =
1

πs

(

1 +

(

x− l

s

)2
)−1

, (20)

where l is the location parameter and s is the scale parameter.

The parameters are commonly used instead of expected val-

ue and standard deviation because of the absence of first two

moments. In next experiment to the ECG signal was added

Cauchy distributed random noise with l = 0 and s = 10µV.

In Fig. 2 the deterministic component was presented along

with example of Cauchy noise.

Fig. 1. The simulated ECG signal and this signal with 100 µV standard deviation Gaussian noise

Table 1

RMSE and maximum absolute error for averaged ECG signals with Gaussian noise

Averaging method MAX [µV] RMSE [µV]

TAA 39.17285 12.09635

WACFM 5.984498 1.938105

BWA 8.419009 2.345869

p = 1 5.585312 1.925123

p = 2 5.585997 1.925604

EBWA.1 p = 3 5.586081 1.925729

p = 4 5.586110 1.925787

p = 5 5.586123 1.925822

p = 2 5.585873 1.925470

p = 3 5.586123 1.925777
EBWA.3

p = 4 5.586178 1.925862

p = 5 5.586202 1.925902

1R is a free software environment for statistical computing and graphics (http://www.r-project.org)
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Fig. 2. The simulated ECG signal and this signal with Cauchy noise

Table 2

RMSE and maximum absolute error for averaged ECG signals with Cauchy noise

Averaging method MAX [µV] RMSE [µV]

TAA 6907.1413 424.3746

WACFM 69.25222 17.40984

BWA 56.76064 14.71391

p = 1 60.05436 16.07817

p = 2 60.41708 16.12834

EBWA.1 p = 3 60.47729 16.13810

p = 4 60.50249 16.14290

p = 5 60.51657 16.14591

p = 2 60.34284 16.12001

p = 3 60.49377 16.13974
EBWA.3

p = 4 60.53017 16.14519

p = 5 60.54688 16.14789

Fig. 3. The simulated ECG signal and this signal with muscle noise

The RMSE and the maximal value (MAX) of residual

noise for all tested methods are presented in Table 2 and the

best results are bolded. In this experiment the signal cycles

were averaged using WACFM with m = 3, because for most

common value of m = 2, the method does not reach stop con-

dition even after 1000 iterations (although in previous cases it

did not require more than 20 iterations to stop). It shows that

the smallest RMSE were obtained by BWA method and a lit-
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tle bit worse results were obtained by EBWA and WACFM. It

can be seen that despite the fact that the assumption of Gaus-

sian distributed random noise is not satisfied, the results of

the experiment are much better compared to the ones obtained

by traditional arithmetic averaging.

Usually in case of electrocardiographic (ECG) signal, two

principal sources of noise can be distinguished: the ‘technical’

caused by the physical parameters of the recording equipment

and the ‘physiological’ representing the bioelectrical activity

of living cells not belonging to the area of diagnostic inter-

est (also called background activity). Both sources produce

noise of random occurrence, overlapping the ECG signal in

both time and frequency domains [10]. This was motivation to

perform next experiment with ECG signal distorted by muscle

noise which can be treated as composition of Gaussian and

impulsive distortion (well modeled by heavy-tailed distribu-

tion). In practical applications signal to noise ratio is often

very poor, even below one (which mean that noise level ex-

ceeds signal level). In Fig. 3 the deterministic component was

presented along with example of such muscle noise where sig-

nal to noise ratio is equal one (0 dB).

The RMSE and the maximal value (MAX) of residual

noise for all tested methods are presented in Table 3 and the

best results are bolded. It shows that the smallest RMSE were

obtained by BWA method and a little bit worse results were

obtained by EBWA and WACFM. It can be seen that despite

the fact that the assumption of Gaussian distributed random

noise is not satisfied, the results of the experiment are still

acceptable (see Figs. 4–8) and slightly better compared to the

ones obtained by traditional arithmetic averaging.

Table 3

RMSE and maximum absolute error for averaged ECG signals with muscle noise

Averaging method MAX [µV] RMSE [µV]

TAA 106.47622 35.95089

WACFM 87.64957 33.22810

BWA 79.18179 26.95332

p = 1 79.04318 30.09347

p = 2 77.29849 30.26317

EBWA.1 p = 3 76.84224 30.28546

p = 4 76.63690 30.29371

p = 5 76.52048 30.29784

p = 2 78.05169 30.25046

p = 3 76.64020 30.28531
EBWA.3

p = 4 76.23566 30.29045

p = 5 76.04061 30.29180

Fig. 4. The simulated ECG signal and the averaged signal using TAA method
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Fig. 5. The simulated ECG signal and the averaged signal using WACFM method

Fig. 6. The simulated ECG signal and the averaged signal using BWA method
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Fig. 7. The simulated ECG signal and the averaged signal using EBWA.1 method with parameter p = 1

Fig. 8. The simulated ECG signal and the averaged signal using EBWA.3 method with parameter p = 5
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4. Conclusions
In this work the new approach to weighted averaging of

biomedical signal was presented along with the application to

averaging ECG signals. Presented methods use the results of

Bayesian and empirical Bayesian methodology which leads to

improved reduction of noise comparing with alternative meth-

ods. The new methods are introduced as Bayesian inference

together with expectation-maximization procedure. It is worth

noting that the BWA algorithm does not require setting of ad-

ditional parameters in contrast to for example WACFM which

needs value of an exponential parameter m. In the EBWA

algorithms the parameter λ which influences performance of

the procedure is estimated during iterations from input values

by empirical method and the only parameter which must be

set manually is parameter p. However in all performed exper-

iments the best results appear for p = 1. Another advantage

of presented method is fast convergence to the optimal result.

In all performed experiments it did not require more than 10

iterations to stop for EBWA and 50 for BWA.

The results of numerical experiments show usefulness of

the presented method in the noise reduction in ECG signal

competitively to existing algorithms. The short computational

study presented in this paper confirms that applying Bayesian

inference has a practical and beneficial use to weighted aver-

aging of biomedical signal in particular electrocardiographic

signal.
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