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On the alternative stability criteria for positive systems
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Abstract. The paper discusses the stability problem for continuous time and discrete time positive systems. An alternative formulation of

stability criteria for positive systems has been proposed. The results are based on a theorem of alternatives for linear matrix inequality (LMI)

feasibility problem, which is a particular case of the duality theory for semidefinite programming problems.

1. Introduction

The main characteristic feature of positive systems is that for

nonnegative initial conditions their state variables and outputs

assume nonnegative values, provided the inputs are nonnega-

tive [1–4]. Positive systems have been frequently encountered

in practice since many quantities, such as for instance pres-

sure, sugar concentration in blood, etc., take only nonnegative

values. For these reasons, positive systems are frequently en-

countered in engineering [5–8], medicine and biology [9–15],

economics etc. The stability and stabilizability are the key fea-

tures we require from the dynamic systems, and the positive

systems are not an exception in this regard. The stability prob-

lem for positive system has been considered in many papers,

for example, [16–23]. Application of linear matrix inequalities

to the stability checking has a long history, indeed, it can be

traced back to the celebrated Lyapunov result on the stability

of linear systems. More information on that can be found in

[24]. The LMI framework has been successfully applied for

checking stability of positive systems [24,25]. In [26] duality

aspects of semidefinite programming are presented and the

role they play in control theory. The duality results derived

from optimization theory presented in [26] provide us with

better insight into some problems of control theory. It turns

out that some of ideas from [26] may be extended to study the

positive systems. In this paper the problems of positive sys-

tems stability are addressed by means of LMIs (linear matrix

inequalities), in particular, alternative formulations of stability

criteria are proposed.

2. Preliminaries

2.1. Positive Systems. Let us denote by R
m×n the set of

all real matrices with m rows and n columns. Also let

R
m := R

m×1.

Definition 1. [4] The matrix A = [aij ] ∈ R
n×n is called

a Metzler matrix if its all off-diagonal entries are nonnegative,

i.e., aij ≥ 0 for i 6= j, i, j = 1, 2, . . . , n.

The set of all n × n Metzler matrices will be denoted by

M
n.

Definition 2. [4] A matrix A ∈ R
n×m is called non-

negative if its entries aij are nonnegative, i.e., aij ≥ 0 for

i = 1, . . . , n, j = 1, . . . , m.

The set of nonnegative n × m matrices is denoted R
n×m
+ .

Let us note, that nonnegative matrix A ∈ R
n×m may have

all entries equal to zero.

Let us consider the following linear time-continuous sys-

tem

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ R
n, y(t) ∈ R

p, and u(t) ∈ R
m are the

state, output, and input vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n.

Definition 3. [4] The system (1) is called (internally) pos-

itive if for any x0 ∈ R
n
+ and every input u ∈ R

m
+ one has

x ∈ R
n
+ and y ∈ R

p
+ for every t ≥ 0. Where R

n
+, R

m
+ , and

R
p
+, are the positive orthants of the real vector spaces R

n,

R
m, and R

p, respectively.

Lemma 1. The system (1) is (internally) positive if and

only if A is a Metzler matrix, and B ∈ R
n×m
+ , C ∈ R

p×n
+ .

Proof. See, e.g., [4].

Lemma 2. The system (1) is asymptotically stable if and

only if all the eigenvalues of its system matrix A have negative

real parts.

Proof. See, e.g., [4].

Let us consider the following linear time-discrete system

x(i + 1) = Ax(i) + Bu(i), x(0) = x0, (2a)

y(i) = Cx(i), i = 1, 2, 3, . . . (2b)

where x(i) ∈ R
n, y(i) ∈ R

p, and u(i) ∈ R
m are the

state, output, and input vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n.

Definition 4. [4] The system (2) is called (internally) pos-

itive if for any x0 ∈ R
n
+ and every input u ∈ R

m
+ one has

x ∈ R
n
+ and y ∈ R

p
+ for every i ≥ 0.
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Lemma 3. The system (1) is (internally) positive if and

only if A, B and C are nonnegative matrices, i.e., A ∈ R
n×n
+ ,

B ∈ R
n×m
+ , C ∈ R

p×n
+ .

Proof. See, e.g., [4].

Lemma 4. The system (2) is asymptotically stable if and

only if all the eigenvalues of its system matrix A have modulii

less than 1.

Proof. See, e.g., [4].

2.2. Linear matrix inequalities. The set of n×n symmetric

matrices is denoted by S
n. The set of n×n diagonal matrices

is denoted by S
n
d . Obviously, S

n
d ⊂ S

n.

We say that Q ∈ S
n is positive definite (positive semidef-

inite) if its quadratic form is positive, i.e., ∀x ∈ R
n, x 6= 0,

xTQx > 0 (nonnegative, i.e., ∀x ∈ R
n xTQx ≥ 0). We

denote this fact by Q ≻ 0 (Q � 0). The negative definiteness

(negative semidefiniteness) is defined in a similar way.

Let V denote a finite-dimensional real vector space with

an associated inner product 〈·, ·〉V , and let 〈yz〉V := tr(yTz),
where yT denotes the transpose of the vector y. In a sim-

ilar way we define 〈Y, Z〉Sn := tr(Y TZ). By definition

Y T = Y for any symmetric matrix Y ∈ S
n, thus one ob-

tains 〈Y, Z〉Sn = tr(Y Z).
Definition 5. [26] A linear matrix inequality (LMI) in the

variable x is an inequality of the form

F(x) + F0 � 0, (3)

where the variable x takes values in the real vector space V ,

the mapping F : V → S
n is linear, and F0 ∈ S

n.

Remark 1. A set of LMIs can always be converted

to one LMI, that is, the list of LMIs F1(x1) + F1 � 0,

F2(x2) + F2 � 0, . . ., Fq(xq) + Fq � 0 in the variables

x1 ∈ V 1, x2 ∈ V 2, . . ., xq ∈ V q are equivalent to one LMI

F(x) + F � 0, where

x = (x1, x2, . . . , xq) ∈ V 1 × V 2 × . . . × V q,

F is a block-diagonal matrix

F = diag [F1, F2, . . . , Fq] ,

and the function F : V 1 ×V 2 × . . .×V q → S
n1+n2+...+nq

is given by

F(x) = diag [F1,F2, . . . ,Fq] .

Definition 6. For the linear mapping F : V → S
n we

define its adjoint mapping F∗ : S → V such that for all

x ∈ V and Z ∈ S, 〈F(x), Z〉
S

= 〈x,F∗(Z)〉
V

.

In our considerations we discriminate the following three

kinds of feasibility:

1. Strict feasibility: ∃x ∈ V with F(x) + F0 ≻ 0 .

2. Nonzero feasibility: ∃x ∈ V with F(x) + F0�0
(i.e., positive semidefinite and nonzero).

3. Feasibility: ∃x ∈ V with F(x) + F0 � 0 .

Lemma 5. Suppose that F and Z are symmetric matrices

of the same size, and that F ≻ 0, Z�0. Then

tr(FZ) > 0 .

Proof. See, e.g., [27].

3. Alternative stability criterion for continuous

time positive systems

Before proceeding to the main result of the section we provide

an auxiliary lemma. We shall make use of some results from

Section II.

Lemma 6. Suppose that A is a Metzler matrix, i.e.,

A ∈ M
n. The matrix A is a Hurwitz matrix if and only if the

following LMIs are feasible with respect to the diagonal ma-

trix variable X (i.e., Xij = 0 for i, j = 1, 2, . . . , n i 6= j):

[

−(ATX + XA) 0

0 X

]

≻ 0. (4)

Proof. See, e.g., [3,24].

The alternative stability criterion for positive continuous-

time systems is as follows.

Proposition 1. Suppose that A is a Metzler matrix, i.e.,

A ∈ M
n.

The matrix A ∈ M
n is Hurwitz if and only if the follow-

ing LMIs are infeasible with respect to the matrix variable Y

Y = Y T � 0, (5a)

I ◦ [AY ] � 0, (5b)

where I stands for identity matrix of appropriate dimensions

and the symbol ◦ denotes the Hadamard product of two ma-

trices (i.e., componentwise multiplication). In other words,

A ∈ M
n has at least one eigenvalue with nonegative real

part if and only if LMIs (5a–5b) are feasible.

Proof. Let us note that with Z1 := Y LMIs (5a–5b) can

be rewritten as follows:

Z =

[

Z1 0

0 Z2

]

� 0, (6a)

Z2 = I ◦
[
AZ1 + Z1A

T
]
, (6b)

Let us note that (6a–6b) and (4) and contradict each other:

0 <

〈[

−(ATX + XA 0

0 X

]

,

[

Z1 0

0 Z2

]〉

Sn×Sn
d

=
〈
X, Z2 − I ◦ [AZ1 + Z1A

T]
〉

Sn
d

= 0,

where the inequality follows by virtue of Lemma .5. Thus (4)

and (6) cannot hold simultaneously.

Now, it remains to show that infeasibility of (4) implies fea-

sibility of (6). To this end consider the set
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C =

{

U ∈ S
n × S

n
d :

[

−(ATX + XA 0

0 X

]

+ U ≻ 0

for some X ∈ S
n
d

}

.

Suppose that (4) does not hold, i.e., 0 /∈ C. Since C is open,

nonempty and convex, there exists a hyperplane separating 0
from C, i.e., there exists a nonzero Z ∈ S

n×S
n
d that satisfies

〈0, Z〉
Sn×Sn

d
≤ 〈U, Z〉

Sn×Sn
d

for all U ∈ C. This means that Z must satisfy Z 6= 0 and

0 6

〈

Q −

[

−(ATX + XA 0

0 X

]

,

[

Z1 0

0 Z2

]〉

Sn
×S

n
d

= −

〈

X, Z2 − I ◦

[

AZ1 + Z1A
T

]〉

Sn
d

+

+

〈

Q,

[

Z1 0

0 Z2

]〉

Sn
×S

n
d

for all Q ≻ 0 and all X ∈ S
n
d . Let us note that

−
〈
X, Z2 − I ◦

[
AZ1 + Z1A

T
]〉

Sn
d

is unbounded below with

respect to the variable X if Z2 − I ◦
[
AZ1 + Z1A

T
]
6= 0,

and it is equal to zero if Z2 − I ◦
[
AZ1 + Z1A

T
]

= 0.

Since Z defines a separating hyperplane, it must satisfy

Z2 − I ◦
[
AZ1 + Z1A

T
]

= 0. We also have that

〈

Q,

[

Z1 0

0 Z2

]〉

Sn×Sn
d

is unbounded below with respect to the variable Q ≻ 0 if

Z � 0. Thus we obtain the second condition: Z � 0. In

summery, Z satisfies

Z =

[

Z1 0

0 Z2

]

� 0, Z2 − I ◦ [AZ1 + Z1A
T ] = 0.

Example 1. Let us consider the following continuous-time

system

ẋ(t) =








−1.1 0.1 0.6 0.4

0.3 −1.0 1.5 1.2

3.0 1.3 −0.2 0.3

0.1 0.4 0.5 −1.3








︸ ︷︷ ︸

A

x(t)+








1.4

3.3

3.4

0.3








︸ ︷︷ ︸

B

u(t),

y(t) =
[

1.4 4.1 2.1 0.4
]

︸ ︷︷ ︸

C

x(t),

(7)

Obviously, A is a Metzler matrix and it has the following

eigenvalues λ1 = 1.6650, λ2 = −2.4407, λ3 = −1.1648,

λ4 = −1.6595. Since λ1 > 0 the matrix A is not Hurwitz. In

fact, for the matrix

Y =








0.8053 0.8476 1.7255 0.5555

0.8476 3.4660 2.5872 1.0567

1.7255 2.5872 9.4887 2.3628

0.5555 1.0567 2.3628 0.9981








� 0,

the conditions (5) are satisfied. One can also verify that for

Z1 := Y and

Z2 = diag [ 0.9128 3.8741 14.7020 0.7242 ] ≻ 0,

the conditions (6) are satisfied.

4. Alternative stability criterion for discrete

time positive systems

Before proceeding to the main result of the section we provide

an auxiliary lemma. Once again, we shall make use of some

results from Section 2.

Lemma 7. Suppose that A is a nonnegative matrix, i.e.,

A ∈ R
n×n
+ . The matrix A is a Schur matrix if and only if the

following LMIs are feasible with respect to the diagonal ma-

trix variable X (i.e., Xij = 0 for i, j = 1, 2, . . . , n i 6= j).

[

X − ATXA 0

0 X

]

≻ 0, (8)

Proof. See, e.g., [3].

Proposition 2. Suppose that A is a nonnegative matrix,

i.e., A ∈ R
n×n
+ . The matrix A ∈ R

n×n
+ is a Schur matrix if

and only if the following LMIs are infeasible with respect to

the matrix variable Y

Y = Y T � 0, (9a)

I ◦
[
AY AT − Y

]
� 0, (9b)

where I stands for identity matrix of appropriate dimensions

and the symbol ◦ denotes the Hadamard product of two ma-

trices (i.e., componentwise multiplication). In other words,

A ∈ R
n×n
+ has at least one eigenvalue with modulus greater

or equal to 1 if and only if LMIs (9a–9b) are feasible.

Proof. Let us note that with Z1 = Y LMIs (9a–9b) can

be rewritten as follows.

Z =

[

Z1 0

0 Z2

]

� 0, (10a)

Z2 = I ◦
[
AZ1A

T − Z1

]
, (10b)

Now the proof follows in the same vein as that of Propo-

sition 1.

Example 2. Let us consider the following discrete-time

system
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x(i + 1) =








0.9 0.1 0.7 0.1

0.3 0.1 0.1 0.2

0.3 0.5 0.2 0.1

0.1 0.4 0.1 0.3








︸ ︷︷ ︸

A

x(i) +








1.4

3.3

3.4

0.3








︸ ︷︷ ︸

B

u(i),

y(i) =
[

1.4 4.1 2.1 0.4
]

︸ ︷︷ ︸

C

x(i), i = 1, 2, 3...

(11)

with x(0) = x0. Obviously, A is a nonnegative matrix

and it has the following eigenvalues λ1 = 1.2847, λ2 =
−0.0714 + 0.1716i, λ3 = −0.0714− 0.1716i, λ4 = 0.3582.

Since |λ1| > 1 the matrix A is not a Schur matrix. In fact,

for the matrix

Y =








2.4557 −0.0761 −0.9800 −0.0544

−0.0761 1.5545 0.0737 0.0620

−0.9800 0.0737 1.7387 0.0728

−0.0544 0.0620 0.0728 1.6996








� 0,

the conditions (9) are satisfied. One can also verify that for

Z1 := Y and

Z2 = diag
[

0.8186 1.2956 1.1623 1.2597
]

≻ 0,

the conditions (10) are satisfied.

5. Generalized approach to the alternative sta-

bility criteria for positive systems

This paper has been inspired by [26]. In particular, [26] pro-

vides us with the following theorem.

Theorem 1. [26] Exactly one of the following statements

is true.

1. ∃x ∈ V with F(x) + F0 ≻ 0 .

2. ∃Z ∈ S with Z � 0, F∗(Z) = 0, 〈F0, Z〉
S
≤ 0 .

Proof. See [26] and the references therein.

Since exactly one of the statements in the theorem is true they

are called strong alternatives [26].

Remark 1. Geometrical interpretation of Theorem 1 is

as follows. Statement 1) says that there exists nonempty in-

tersection of the image of the linear map F translated from

the origin of the space of symmetric matrices by F0 and the

interior of the cone of positive semidefinite matrices. State-

ment 2) says that there exists nonempty intersection of the null

space over F∗ (that is the orthogonal complement of the im-

age of F , since N (F∗) = R (F)
⊥

) with the cone of positive

semidefinite matrices and with the halfspace 〈F0, Z〉
S

≤ 0,

and that this intersection is not equal to {0}.

Remark 2. The proof of Proposition 1 makes use of the

ideas presented in the proof of Theorem 1 in [26].

Now let us return to Proposition 1 and Proposition 2.

Let Fc : S
n
d → S

n × S
n
d , and Fd : S

n
d → S

n × S
n
d be

defined in the following way

Fc(X) =

[

−(AT X + XA) 0

0 X

]

,

Fd(X) =

[

X − AT XA) 0

0 X

]

.

Then it is easily verified that F∗
c

: S
n×S

n
d → S

n
d is given by

F∗
c (Z) = −I ◦(AZ1)−I ◦(Z1A

T)+Z2 and F∗
d

: S
n×S

n
d →

S
n
d is given by F∗

d (Z) = Z2 − I ◦ [AZ1A
T − Z1], where

Z =

[

Z1 0

0 Z2

]

.

Now, the proof of Proposition 1 follows immediately from

Theorem 1 and Lemma 6, and the proof of Proposition 2 from

Theorem 1 and Lemma 7, respectively.

6. Concluding remarks and open problems

The stability problem for continuous time and discrete time

positive systems have been discussed. An alternative formu-

lation of stability criteria for positive systems have been

proposed. The results have been illustrated with numeri-

cal examples. It should be stressed that appropriate soft-

ware is necessary to apply the proposed results. All numer-

ical examples provided in the paper have been solved us-

ing M R©environment together with SDM R©solver and

Y R©parser. More details on the computational aspects

can be found in [28–31]. The generalization of the present-

ed results onto weakly positive systems [4] remains an open

problem.
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